— @
(4] =
C =
@ 4

N - 7))

(o=
o

Java Funct

ing

| style of programming

Create robust and maintainable Java applicat

functiona

Programming

Learn

Learning Java Functional
Programming

Create robust and maintainable Java applications
using the functional style of programming

Richard M Reese

open source

community experience distilled

PUBLISHING
BIRMINGHAM - MUMBAI

Learning Java Functional Programming

Copyright © 2015 Packt Publishing

All rights reserved. No part of this book may be reproduced, stored in a retrieval
system, or transmitted in any form or by any means, without the prior written
permission of the publisher, except in the case of brief quotations embedded in
critical articles or reviews.

Every effort has been made in the preparation of this book to ensure the accuracy
of the information presented. However, the information contained in this book is
sold without warranty, either express or implied. Neither the author, nor Packt
Publishing, and its dealers and distributors will be held liable for any damages
caused or alleged to be caused directly or indirectly by this book.

Packt Publishing has endeavored to provide trademark information about all of the
companies and products mentioned in this book by the appropriate use of capitals.
However, Packt Publishing cannot guarantee the accuracy of this information.

First published: October 2015
Production reference: 1091015

Published by Packt Publishing Ltd.
Livery Place

35 Livery Street

Birmingham B3 2PB, UK.

ISBN 978-1-78355-848-3

www . packtpub.com

www.packtpub.com

Credits

Author
Richard M Reese

Reviewers
Jose Luis Ordiales Coscia

David Greco
Hossein Kazemi

Amar Potghan

Commissioning Editor
Veena Pagare

Acquisition Editor
Vivek Anantharaman

Content Development Editor
Susmita Sabat

Technical Editor
Prajakta Mhatre

Copy Editor
Charlotte Carneiro

Project Coordinator
Judie Jose

Proofreader
Safis Editing

Indexer
Rekha Nair

Graphics
Jason Monteiro

Abhinash Sahu

Production Coordinator
Aparna Bhagat

Cover Work
Aparna Bhagat

About the Author

Richard M Reese has worked in both industry and academics. For 17 years, he
worked in the telephone and aerospace industries, serving in several capacities,
including research and development, software development, supervision, and
training. He currently teaches at Tarleton State University, where he has the
opportunity to draw on his years of industry experience to enhance his teaching.

Richard has written several Java books and a C pointer book. He uses a concise and
easy-to-follow approach to the topics at hand. His Java books have addressed EJB
3.1, updates to Java 7 and 8, certification, jMonkeyEngine, and Natural Language
Processing.

Richard would like to thank his daughter, Jennifer, for her numerous
reviews and contributions; his wife, Karla, for her continued
support; and the staff at Packt for their work in making this

a better book.

About the Reviewers

Jose Luis Ordiales Coscia is a software engineer with much experience in

both academia and the private industry. He has a master's degree in computer
science, focusing his research on helping developers improve their service-oriented
applications.

He has more than 7 years of experience working in backend development with Java
and other JVM languages.

David Greco is a software architect with more than 27 years of working
experience. He started his career as a researcher in the field of high-performance
computing; thereafter, he moved to the business world, where he worked for
different enterprise software vendors and helped to create two start-ups. He played
different roles, those of a consultant and software architect and even a CTO. He's an
enthusiastic explorer of new technologies, and likes to introduce new technologies
into enterprises to improve their businesses. Over the past 5 years, he has fallen

in love with big data technologies and typed functional programming — Scala and
Haskell. When not working or hacking, he likes to practice karate and listen to jazz
and classical music.

Hossein Kazemi is an entrepreneur and software engineer based in Amsterdam,
the Netherlands. He holds a master's in artificial intelligence with a major in machine
learning and minor in Natural Language Processing (NLP) from the University

of Amsterdam. He has more than 5 years of hands-on experience in software
development and has worked on projects for large-scale machine learning and

NLP using Java and Scala.

Amar Potghan is a polyglot functional programming enthusiast. He has vast
experience in building scalable distributed systems. Amar is currently working
on Haskell and ClojureScript to build a next generation P2P lending platform
for a fintech company in Singapore. Before that, he was working as a consultant
at ThoughtWorks and as a senior software engineer for a couple of other global
software consultancies where he worked on continuous delivery, microservices,
big data, and analytics product development projects. Amar's current interests
are functional programming, distributed systems, and machine learning.

www.PacktPub.com

Support files, eBooks, discount offers, and more

For support files and downloads related to your book, please visit www. PacktPub. com.

Did you know that Packt offers eBook versions of every book published, with PDF
and ePub files available? You can upgrade to the eBook version at www. PacktPub.
com and as a print book customer, you are entitled to a discount on the eBook copy.
Get in touch with us at service@packtpub.com for more details.

At www . PacktPub. com, you can also read a collection of free technical articles,
sign up for a range of free newsletters and receive exclusive discounts and offers
on Packt books and eBooks.

[a]PACKT

https://www2.packtpub.com/books/subscription/packtlib

®

Do you need instant solutions to your IT questions? PacktLib is Packt's online digital
book library. Here, you can search, access, and read Packt's entire library of books.

Why subscribe?

* Fully searchable across every book published by Packt
* Copy and paste, print, and bookmark content
* On demand and accessible via a web browser

Free access for Packt account holders

If you have an account with Packt at www . PacktPub. com, you can use this to access
PacktLib today and view 9 entirely free books. Simply use your login credentials for
immediate access.

www.PacktPub.com
www.PacktPub.com
www.PacktPub.com
www.PacktPub.com
https://www2.packtpub.com/books/subscription/packtlib
www.PacktPub.com

Table of Contents

Preface vii
Chapter 1: Getting Started with Functional Programming 1
Aspects of functional programming 2
Functions 3
Function composition 6
Fluent interfaces 7
Strict versus non-strict evaluation 8
Persistent data structures 9
Recursion 10
Parallelism 1
Optional and monads 13
Java 8's support for functional style programming 14
Lambda expressions 15
Default methods 16
Functional interfaces 17
Method and constructor references 18
Collections 20
Summary 20
Chapter 2: Putting the Function in Functional Programming 23
Lambda expressions usage 24
Functional programming concepts in Java 26
High-order functions 26
Returning a function 29
First-class functions 31
The pure function 33
Support repeated execution 33
Eliminating dependencies between functions 36
Supporting lazy evaluation 37

[il

Table of Contents

Referential transparency 37
Closure in Java 38
Currying 40
Lambda expressions revisited 43
Java 8 type inference 44
Exception handling in lambda expressions 46
Functional interfaces revisited 47
Creating a functional interface 47
Common functional interfaces 47
Function-type functional interfaces 48
Predicate-type functional interfaces 49
Consumer-type functional interfaces 50
Supplier-type functional interfaces 51
Operator-type functional interfaces 51
Summary 53
Chapter 3: Function Composition and Fluent Interfaces 55
Introduction to function composition 56
Creating composite functions prior to Java 8 56
Creating composite functions in Java 8 58
Using the Function interface for function composition 59
Using the Functional interface to supplement methods 60
Passing instances of the Functional interface 61
Fluent interfaces 64
Fluent interfaces in Java 8 64
Method chaining and cascading 65
Contrasting method cascading and fluent interfaces 67
Creating and using fluent interfaces 68
Using fluent interfaces to hide older interfaces/classes 72
Using fluent interfaces with the Properties class 74
Extending fluent interfaces 76
Default methods and functions 80
Static default methods 81
Default methods in Java 8 81
Multiple inheritance in Java 8 83
Summary 84
Chapter 4: Streams and the Evaluation of Expressions 85
The Stream class and its use 86
Intermediate and terminal methods 88
Creating streams 89
Fixed length streams 90

Lii]

Table of Contents

Infinite streams 90
Using the iterate method to create an infinite stream 91
Using the generate method to create an infinite stream 94

Using the Stream class methods 95

Filter methods 96
Using the filter method 97
Using the skip method 98

Sorting streams 99

Mapping methods 100
Understanding the mapping operation 100
Implementing the map-reduce paradigm 101
Using the flatmap method 103

Lazy and eager evaluation 106
Stream and concurrent processing 109

Understanding non-inference 110

Understanding stateless operations 111

Understanding side effects 112

Understanding the ordering 113

Summary 114
Chapter 5 Recursion Techniques in Java 8 117
Recursive data structures 118
Types of recursion 120
Using direct recursion 120
Head and tail recursion 121
Understanding recursion 123

The Node class 124

Using head recursion 126

Using tail recursion 127

Using the head and tail recursion 128

Creating a recursive solution based on a formula 129

Converting an iterative loop to a recursive solution 131

Merging two lists 132

Understanding the program stack 133

Recursive lambda expressions 137

Common problems found in recursive solutions 137
Absence of a base case 138
Using static or instance variables 138
Using the pre- and post-increment operators 139

Recursion implementation techniques 139

Using a wrapper method 140

Using short circuiting 140

[iii]

Table of Contents

Tail call optimization 141
Converting to a tail call 142
When to use recursion 143
Recursion and humor 144
Summary 146
Chapter 6: Optional and Monads 147
Using the Optional class 147
Creating Optional instances 148
Using the Optional class to support return values 149
Handling missing values 153
Using the orElse method to get a substitute value 153
Using the orElseGet method to use a function to get a substitute value 154
Using the orElseThrow method to throw an exception 154
Filter and transforming values 155
Using the Optional class's filter method 155
Using the Optional class's map method 156
Optional solution to the Customer problem 157
Disadvantages of the Optional class 159
Monads 160
Monads in Java 8 163
Using the of method as the unit function 164
Using the flatMap method 164
Using the map method 165
Using the Optional class with strings 166
Using monads with the Part class 167
A formal discussion of monads 168
Associativity 171
Left identity 171
Right identity 172
Summary 173
Chapter 7: Supporting Design Patterns Using Functional
Programming 175
Implementing the execute-around-method pattern 177
Object-oriented solution to the execute-around-method pattern 177
Functional solution to the execute-around-method pattern 178
Using the execute-around-method pattern with a stream 181
Implementing the factory pattern 182
Object-oriented solution to the factory pattern 183
Functional solution to the factory pattern 185
Implementing the command pattern 185
Object-oriented solution to the command pattern 186
Functional solution to the command pattern 188

[iv]

Table of Contents

Implementing the strategy pattern 189
Object-oriented solution to strategy pattern 190
Functional solution to the strategy pattern 194
Using the Function interface 195

Implementing the visitor pattern 196
Object-orient solution to the visitor pattern 197
Functional solution to the visitor pattern 200

Implementing the template pattern 202
Object-oriented solution to the template pattern 203
Functional solution to the template pattern 205

Summary 208

Chapter 8: Refactoring, Debugging, and Testing 209

Refactoring functional code 210

NetBeans support for refactoring 211
Converting anonymous inner classes to lambda expressions 211
Refactoring multiple code instances 212
Support of other refactoring operations 214

Eclipse support for refactoring 215
Converting anonymous inner classes to lambda expressions 215
Refactoring multiple code instances 217
Support of other refactoring operations 219

Debugging lambda expressions 220

Using the printin method to assist debugging 221
Using the peek method to assist debugging 222
Debugging lambda expressions using NetBeans 222
Debugging lambda expressions using Eclipse 225
Debugging recursive lambda expressions 227
Debugging parallel streams 229

Testing functional programs 230
Testing lambda expressions 230

Copying the lambda expression 232
Using a method reference 233
Reorganizing the test class 234

Testing exceptions using a fluent style 236

Summary 237

Chapter 9: Bringing It All Together 239

Functional Zork 239
Playing the game 240

The game's architecture 243
Understanding the GameElements class 243

Introducing the Item, Direction, and NPC classes 244

[v]

Table of Contents

Implementing the FunctionalZork class
Initializing the game
Initializing the commands
Getting a command from the console
Parsing the command
Executing the command
Implementing the Character class
Implementing the pickup method
Implementing the drop method
Implementing the walk method
Implementing the inventory method
Implementing the Location class
Handling items
Handling NPCs
Handling directions
Summary
Epilogue

Index

246
247
250
252
255
255

258
258
259
260
261

262
263
263
264

265

266
267

[vil

Preface

With the introduction of Java 8, many functional programming techniques have been
added to the language. However, functional programming may seem unfamiliar to
developers who are used to using imperative and object-oriented techniques. The
new additions to Java 8 offer the opportunity to develop more maintainable and
robust applications than that offered by earlier versions of Java.

The goal of this book is to introduce functional programming techniques to
developers who are not familiar with this technology. You will be guided through
the use of functional programming techniques with the help of numerous examples.
Older imperative and object-oriented approaches will be illustrated and contrasted
with equivalent functional programming solutions.

What this book covers

Chapter 1, Getting Started with Functional Programming, introduces the essential
elements of functional programming as supported by Java 8. This includes the
introduction of functional terms complemented by Java 8 examples.

Chapter 2, Putting the Function in Functional Programming, covers the types of
functions found in functional programming languages such as high-order functions,
first-class functions, and pure functions. The use of lambda expressions in support
of functions is explained.

Chapter 3, Function Composition and Fluent Interfaces, addresses how to use functional
composition. Also covered are fluent interfaces and the use of default methods.

Chapter 4, Streams and the Evaluation of Expressions, covers the basics of their creation
and use. Streams are an important addition to Java.

[vii]

Preface

Chapter 5, Recursion Techniques in Java 8§, demonstrates recursion, a very useful
functional programming technique. While not new to Java, we explore the topic
in depth and examine the use of recursive lambda expressions.

Chapter 6, Optional and Monads, covers the use and the nature of monads in creating
fluent interfaces and producing resilient code. The Optional class provides a better
way of working with missing data.

Chapter 7, Supporting Design Patterns Using Functional Programming, illustrates design
patterns. They play an important role in Java programming. The impact of the
functional style of programming and lambda expressions is illustrated.

Chapter 8, Refactoring, Debugging, and Testing, demonstrates how these tools have
been affected by the new functional programming techniques and how IDEs
support them. These are valuable tools in the development process.

Chapter 9, Bringing It All Together, summarizes many of the functional programming
techniques presented earlier that are used in the creation of a demonstration
application. Such an application provides a concise illustration of how these
techniques support the development of robust and maintainable software.

What you need for this book

Java SDK 1.8 is needed for the functional programming examples encountered in the
book. Some of the examples use NetBeans 8.02 and Eclipse IDE for Java developers,
Mars Release Version 4.5.0.

Who this book is for

This book is for developers who are already proficient in Java and want to learn how
to use the functional programming features of Java 8. Familiarity with basic Java
object-oriented programming concepts is all that is needed. You will learn how to
apply lambda expressions and other functional programming techniques to create

a more elegant and maintainable code.

Conventions

In this book, you will find a number of text styles that distinguish between different
kinds of information. Here are some examples of these styles and an explanation of
their meaning.

[viii]

Preface

Code words in text are shown are follows: "As you may remember, the forEach
method accepts a lambda expression which matches the consumer interface's
accept method."

A block of code is shown as follows:

list.forEach (new Consumer<Strings() {
@Override
public void accept (String t) {
System.out.println(t) ;

}
)

The output of code sequences is formatted as shown here:

Starting FPS Game
Generating FPS Image
Rendering FPS Image
Updating FPS Game

New terms and important words are shown in bold. Words that you see on the screen,
for example, in menus or dialog boxes, appear in the text like this: "There is the text
form as entered by the user such as: drop Axe."

& Warnings or important notes appear in a box like this.
i

a1

Q Tips and tricks appear like this.

Reader feedback

Feedback from our readers is always welcome. Let us know what you think about
this book —what you liked or disliked. Reader feedback is important for us as it
helps us develop titles that you will really get the most out of.

To send us general feedback, simply e-mail feedbackepacktpub. com, and mention
the book's title in the subject of your message.

If there is a topic that you have expertise in and you are interested in either writing
or contributing to a book, see our author guide at www.packtpub.com/authors.

[ix]

www.packtpub.com/authors

Preface

Customer support

Now that you are the proud owner of a Packt book, we have a number of things
to help you to get the most from your purchase.

Downloading the example code

You can download the example code files from your account at http: //www.
packtpub. com for all the Packt Publishing books you have purchased. If you
purchased this book elsewhere, you can visit http: //www.packtpub.com/support
and register to have the files e-mailed directly to you.

Errata

Although we have taken every care to ensure the accuracy of our content, mistakes
do happen. If you find a mistake in one of our books —maybe a mistake in the text or
the code —we would be grateful if you could report this to us. By doing so, you can
save other readers from frustration and help us improve subsequent versions of this
book. If you find any errata, please report them by visiting http: //www.packtpub.
com/submit-errata, selecting your book, clicking on the Errata Submission Form
link, and entering the details of your errata. Once your errata are verified, your
submission will be accepted and the errata will be uploaded to our website or

added to any list of existing errata under the Errata section of that title.

To view the previously submitted errata, go to https://www.packtpub.com/books/
content/support and enter the name of the book in the search field. The required
information will appear under the Errata section.

Piracy

Piracy of copyrighted material on the Internet is an ongoing problem across all
media. At Packt, we take the protection of our copyright and licenses very seriously.
If you come across any illegal copies of our works in any form on the Internet, please
provide us with the location address or website name immediately so that we can
pursue a remedy.

Please contact us at copyright@packtpub.com with a link to the suspected
pirated material.

We appreciate your help in protecting our authors and our ability to bring you
valuable content.

[x]

http://www.packtpub.com
http://www.packtpub.com
http://www.packtpub.com/support
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support

Preface

Questions

If you have a problem with any aspect of this book, you can contact us at
questionse@packtpub.com, and we will do our best to address the problem.

[xi]

Getting Started with
Functional Programming

Functional programming languages have been used successfully for decades and
present a different and often more elegant way of expressing the program logic.
Functional languages, such as Lisp, Clojure, or Haskell, incorporate techniques that
may seem odd and hard to follow by programmers who are used to imperative
programming techniques.

A language such as Java, while not initially developed with a functional orientation,
can incorporate functional techniques. This is the major change to the language
made with the release of Java 8. Java now incorporates imperative, procedural,
object-oriented, and functional techniques.

It is possible to write a non-object-oriented program in Java. Likewise, it is possible
to write a nonfunctional program in Java 8. The goal of this book is to enlighten the
reader to the nature of functional programming techniques and how to incorporate
these techniques in Java 8 applications.

We will start with a discussion of the attributes commonly associated with
functional programming. From there, we will examine the support, Java provides
for developing applications using a functional-style programming approach.

A predominant feature of functional programming languages is the use of functions.
The term, function, is generally understood to be:

* A way of expressing an algorithm

* A mathematical function

* Where the goal is to avoid state changes and mutable data

[11]

Getting Started with Functional Programming

In functional programming, applications are constructed using only pure functions.
A pure function is a function which does not have side effects. A side effect occurs
when a function does something else besides simply returning a value, such as
mutating a global variable or performing IO. In this chapter, we will examine the
major aspects of functional programming including;:

e Functions and function composition

* Fluent interfaces

* Strict and non-strict evaluation

e DPersistent data structures, monads, and the optional class

* Recursion and parallelism
This is followed by the support Java 8 provides for functional programming, including;:

* Lambda expressions

* Default methods

* Functional interface

* Method and constructor references

* Collections
In addition, to our discussion of functional programming support as provided by
Java 8, refactoring, debugging, and testing Java 8 code are also important topics,

which need to be addressed. These topics are covered in Chapter 8, Refactoring,
Debugging, and Testing.

So, let's begin with an overview of what constitutes the functional
programming approach.

Aspects of functional programming

Functions can be simple or complex, but simpler functions are preferred. The
function should ideally not change the state of memory or perform I/O, and
consequently work with immutable data. These later two concepts are explored
in Chapter 6, Optional and Monads.

There are several aspects of functional programming languages that we will
explore here. They include:

* Functions

* Function composition

¢ Fluent interfaces

[2]

Chapter 1

* Strict versus non-strict evaluation
e Parallelism

* Persistent data structures

¢ Recursion

* Optional and monads

Each of these concepts will be introduced in the following sections. We will explore
the nature of each concept, explain why it is important, and when practical provide
simple examples using Java.

Functions

Functions are the foundation of functional programming languages. They play a
central role in supporting other functional programming concepts. In this section,

we will introduce many of the terms used to describe functions including high-order,
first-class, and pure functions. The concepts of closure and currying will also

be explained.

First-class and high-order functions are associated with functional programming. A
first-class function is a computer science term. It refers to functions that can be used
anywhere a first-class entity can be used. A first-class entity includes elements such
as numbers and strings. They can be used as an argument to a function, returned
from a function, or assigned to a variable.

High-order functions depend upon the existence of first-class functions. They are
functions that either:

* Take a function as an argument

¢ Return a function

Java 8 has introduced the concept of lambda expressions to the language. These are
essentially anonymous functions that can be passed to and returned from functions.
They can also be assigned to a variable. The basic form of a lambda expression
follows where a parameter, such as x, is passed to the body of the function. The
lambda operator, - >, separates the parameter from the body. This function is
passed a value, which is multiplied by two and then returned, as follows:

X -> 2 * x

In this lambda expression, it is assumed that an integer is passed and that integer is
returned. However, the data type is not restricted to an integer as we will see later.
In the following lambda expression, an argument is passed and nothing is returned:

x->System.out.println(x)

[31]

Getting Started with Functional Programming

Lambda expressions must be used in the proper context. It would not be appropriate
to pass a lambda expression, which returns a value to a method, to a function that
cannot use the returned value.

We can use the previous expression in many places that expect a single value being
passed and nothing to be returned as shown next. In the following example, an array
of integers is converted to a list. The lambda expression is then used as an argument
to the List class's forEach method, which displays each element of the list. The
forEach method applies the lambda expression to each element in the list, avoiding
having to create an explicit loop to achieve the same effect:

Integer arr([] = {1,2,3,4,5};
List<Integer> list = Arrays.asList (arr);
list.forEach (x->System.out.println(x)) ;

Downloading the example code

M You can download the example code files from your account at
http://www.packtpub.com for all the Packt Publishing books
Q you have purchased. If you purchased this book elsewhere, you can
visit http: //www.packtpub.com/support and register to have
the files e-mailed directly to you.

The output will list the numbers one to five on separate lines.

Changing a program's state is avoided in functional programming. Calling a function
with the same input values should result in the same behavior each time. This makes
it easier to understand the function. Imperative programming changes the state
using statements such as the assignment statement.

A pure function is a function that has no side effects. This means that memory
external to the function is not modified, IO is not performed, and no exceptions are
thrown. With a pure function, when it is called repeatedly with the same parameters,
it will return the same value. This is called referential transparency.

With referential transparencys, it is permissible to modify local variables within the
function as this does not change the state of the program. Any changes are not seen
outside of the function.

Advantages of pure function include:

* The function can be called repeatedly with the same argument and get the
same results. This enables caching optimization (memorization).

* With no dependencies between multiple pure functions, they can be
reordered and performed in parallel. They are essentially thread safe.

[4]

http://www.packtpub.com
http://www.packtpub.com/support

Chapter 1

* Pure function enables lazy evaluation as discussed later in the Strict versus
non-strict evaluation section. This implies that the execution of the function
can be delayed and its results can be cached potentially improving the
performance of a program.

e [If the result of a function is not used, then it can be removed since it does
not affect other operations.

There are several other terms associated with functions, such as the term closure.
This refers to a function passed around along with its environment. The environment
consists of the variables it uses. Java 8 supports a form of closure, and will be
illustrated in Chapter 2, Putting the Function in Functional Programming.

Currying is the process of evaluating multiple arguments of a function one-by-one,
producing intermediate results. In the process, we introduce a new function with
one less argument than the previous step. For example, let's start with this function:

f(xy)=x+y

We can evaluate it for the value of 3 and 4 as follows, returning a result of 7:

f(3,4)=3+4
If we substitute 3 for x we get:
f(B.y)=3+y
Next, if we define g(y) as:
g(y)=3+y

Then, the following is also true:
f(3y)=g(y)=3+y

We reduced the number of arguments from two to one. Using a value of 4 for
y yields the original result of 7. The process of currying, and partially applying
functions, permit high-order functions to be used more effectively. This will
become clearer in Chapter 2, Putting the Function in Functional Programming.

[51]

Getting Started with Functional Programming

Function composition

Imperative programming places emphasis on a step-by-step process to implement
an application. This is typified by a logical set of steps where code is executed using
basic control constructs and is often encapsulated in functions or procedures.

Functional programming places more emphasis on how these functions are arranged
and combined. It is this composition of functions, which typifies a functional style of
programming. Functions are not only used to organize the execution process, but are
also passed and returned from functions. Often data and the functions acting on the
data are passed together promoting more capable and expressive programs.

We will illustrate this technique using the Function interface as defined in the java.
util.function package. This interface possesses a compose and andThen methods.
Both of these methods return a composed function.

The compose method will execute the function passed to it first, and then uses its
result with the function the compose method is executed against. The andThen
method will execute the first function and then execute the function passed as an
argument to the andThen method.

The next code sequence demonstrates the compose method, which is passed as a
function to take the absolute value of a number. The absThenNegate variable is
assigned a function that will also negate the number. This variable is declared as a
Function type, which means that the function assigned to it expects to be passed as
an integer and returns an integer.

This function will execute the argument of the compose method and the Math class's
abs method first, against some value, and then apply the negateExact method

to this result. In other words, it will take the absolute value of a number and then
negate it. Both of these methods are expressed as method references, which are new
to Java 8. A method reference consist of the class name followed by a set of double
colons, and then a method name providing a simpler form of method invocation:

Function<Integer, Integer>absThenNegate =
((Function<Integer, Integer>)Math: :negateExact)
.compose (Math: :abs) ;

This is illustrated with the following sequence. The Function interface's apply
method is used to invoke the composed function:

System.out.println (absThenNegate.apply (-25)) ;
System.out.println (absThenNegate.apply (25)) ;

[6]

Chapter 1

Both of these statements will display a -25. In the first statement, the absolute value
of a -25 is obtained and then negated. The second statement works the same way
except its argument is +25.

The negateThenabs variable that follows, illustrates the andThen method. The
function used as an argument to the andThen method is applied after the first function
is executed. In this case, the negateExact method is executed first and then the abs
function is applied:

Function<Integer, Integer>negateThenAbs =
((Function<Integer, Integer>)Math: :negateExact)
.andThen (Math: :abs) ;
System.out.println (negateThenAbs.apply (-25)) ;
System.out.println(negateThenAbs.apply(25)) ;

The output of both display statements will be 25.

We could have obtained the same results with a series of imperative statements.
However, this does not result in as much flexibility as can be obtained using
function composition. The ability to pass functions will provide the enhanced
flexibility. We will postpone a detailed discussion of this approach until Chapter 3,
Function Composition and Fluent Interfaces.

Fluent interfaces

Fluent interfaces constitute a way of composing expressions that are easier to write
and understand. A fluent interface is often implemented using method chaining,
sometimes called method cascading, where the returned value is used again in the
same context.

In Java 8, the use of fluent interfaces is found in numerous places. We will illustrate
this style with an example using the new Date and Time APL

Suppose we want to calculate a new date that is 2 years in the future, minus 1 month
plus 3 days. We can use the following code sequence to achieve this result. The
LocalDate class's method now returns an instance of the LocalDate class representing
the current date. This date is the base for creating a new day called futureDate:

LocalDate today = LocalDate.now() ;
LocalDate futureDate = today.plusYears(2);
futureDate = futureDate.minusMonths (1) ;
futureDate = futureDate.plusDays(3) ;
System.out.println (today) ;
System.out.println (futureDate) ;

[71

Getting Started with Functional Programming

This will generate the following output:

2015-03-22
2017-02-25

Contrast this with the next code sequence, which takes advantage of the APIs fluent
interface and produces the same output:

LocalDatefutureDate = LocalDate.now()
.plusYears(2)
.minusMonths (1)

.plusDays (3) ;

The code flow is easy to read and flows in a more natural way. You will see repeated
usage of fluent interfaces in the book. Streams use this approach consistently.

Strict versus non-strict evaluation

Functional languages can be classified as either using strict or non-strict evaluation
of expressions. With strict evaluation, sometimes called eager evaluation, the
expressions are evaluated as they are encountered.

With non-strict evaluation, they are not evaluated until necessary. Non-strict
evaluation is sometimes called lazy evaluation. However, these terms are not
always strict synonyms. Non-strict evaluation is concerned with the semantics of the
expression, while lazy evaluation deals more with how the expression is evaluated.

Lazy evaluation is supported using streams. A stream can be thought of as a series of
elements that flow like a river or stream. They add a convenient means of processing
data in an easy-to-use and natural manner. The stream concept is support in Java 8
with the Stream class.

In the following sequence, a stream is created by generating five random numbers,
sorting these numbers, and then displaying them:

Random random = new Random() ;

random. ints ()
.1limit (5)
.sorted ()
.forEach(x->System.out.println(x)) ;

[8]

Chapter 1

The ints method returns an IntStream instance. The 1imit method will restrict the
stream to the first five numbers, and the sorted method will sort these numbers.
However, the stream is not evaluated until a terminal method such as the forEach
method is encountered. The use of streams will be demonstrated in more detail in
Chapter 4, Streams and the Evaluation of Expressions.

One possible output follows:

-1790144043
-1777206416
23979263
801416357
874941096

A stream is processed lazily, which enables the runtime system to optimize how
the stream's component operations are executed. In addition, they are used in a
fluent manner.

Persistent data structures

Persistent data structures maintain previous versions of itself. As changes to the
data structure occur, a new version of the data structure is created while maintaining
the older version. These structures are effectively immutable.

Avoiding the mutation of data obviously has no side effects. This means that they
are thread-safe and enable various optimization techniques.

One consequence of mutable data is that, when accessed from multiple threads,
many threading issues arise that can make a program less reliable and maintainable.
If the data is immutable, then these threading issues such as the need to synchronize
data access largely go away.

One approach used by functional programming languages to simulate state is using
a data structure, which is passed to a function. The data structure is copied and any
changes made are reflected in the new copy of the data structure. This is referred to a
state-passing style and can use a considerable amount of memory unless appropriate
optimization techniques are applied.

There are immutable collections that support the concept of persistent data
structures. However, when a language is entirely immutable, then a large amount
of garbage is generated requiring extensive optimization to be useful. Some of these
collections are not practical when they contain a significant number of elements.

[o]

Getting Started with Functional Programming

We are not able to show how Java can support this concept here. However, in
Chapter 6, Optional and Monads we will examine techniques that can be used in
Java 8 to support data structures, such as some monads, in more detail.

Recursion

A'loop is used in an imperative language to perform repeated calculations.
Recursion is a technique that can achieve the same effect but often in a more elegant
manner. A function is recursive if it calls itself either directly or indirectly. For
example, calculating the factorial of a number can be accomplished using either
iteration or recursion. The factorial of a number is defined as follows:

f()=1
f(n)=n=f(n-1)

where n>0

An iterative solution follows:

int result = 1;
for (int i = 5; i»>= 1; i--) {
result = result * 1i;

}

System.out.println (result) ;

The output will be 120. The equivalent recursion solution starts with a recursive
factorial function:

public int factorial (int n)
if (n==1) {
return 1;
} else {
return n * factorial (n-1);
}
}

This solution is more succinct than the iterative version and more closely matches
the problem definition. The function can be invoked as follows:

System.out.println (factorial (num)) ;

[10]

Chapter 1

It will generate the same output: 120.

Indirect recursion occurs when a function calls itself but not immediately. For
example, if function A calls function B, which then calls function A, we have
indirect recursion.

A recursion function needs to be bounded. This means that it must stop calling
itself at some time. Otherwise, it will exceed the system's resources and result in an
exception being thrown and the program terminating abnormally. In the factorial
function, the test for an n value of 1 stopped the recursion.

Frequently, recursion is implemented using a program stack. However, if tail recursion
is used, then the compiler can avoid the use of a program stack and use essentially the
same technique used to implement an imperative loop. Tail recursion involves a tail
call, which is where the recursive call is the last statement of the function.

Parallelism

One area where the use of functional programming can be useful is handling parallel,
also called concurrent, programming tasks. Consider the following sequence:

result = a.methodA () + b.methodB() + c.methodC() ;

In what order can these methods be executed? If they have side effects, then they

will most likely need to be computed sequentially. For example, the effect of methoda
may affect the results of the other methods. However, if they do not have side effects,
then the order of execution is not important and can be executed concurrently.
Conceivably, they might not be executed at all until the value of result is needed,

if ever. This is another potential application of lazy evaluation.

Java has steadily improved its support of concurrent programming over the years.
These approaches built upon the underlying Thread class and provided various
classes to support specific concurrent task such as pools.

The problem with these earlier approaches has been the need to learn these models
and decide if they are a good fit for the problem at hand. While this is necessary and
works well for many problem areas, it does require more effort on the part of the
developer to learn these techniques.

In Java 8, much of the effort requires to add concurrent behavior to a program has
been lessened allowing the developer to focus more on the problem at hand. This
support comes in the use of functions in conjunction with streams and collections.

[11]

Getting Started with Functional Programming

For example, the next code sequence illustrates how a lambda expression can be
applied to each member of a stream. The Stream class's of method will generate a
stream of integers. The map function applies the lambda expression, x->x*2, to each
element of the stream:

Stream<Integer> stream = Stream.of (12, 52, 32, 74, 25);
stream.map (x->x*2)

.forEach(x ->System.out.println(x));

The output follows:

24
104
64
148
50

This can be parallelized easily using the parallel method as shown here:

stream = Stream.of (12, 52, 32, 74, 25);
stream.parallel () .map (x->x*2)
.forEach(x ->System.out.println(x));

One possible output follows. However, since the stream operations are executed
in parallel, a different output ordering is possible:

64
148
50
104
24

When the lambda expression is executed concurrently on different elements of the
stream, the operations can be assigned to different processors and at different times.
There is no guarantee with regard to the order in which the operations will

be executed.

Humans are not very adept at multitasking, let alone writing concurrent programs
that are reliable. By moving some of the decision-making process to the compiler
and runtime system, more capable and efficient programs can be created.

[12]

Chapter 1

Optional and monads

Null pointer exceptions are common, and their very existence is problematic to many
developers. They introduce a slew of problems, including the need to handle them
gracefully. The optional class has been introduced in Java 8 to help deal with null
pointer exceptions. It helps preserve type safety. The approach will ease the use of
functions, provide an opportunity for using fluent interfaces, and avoid exception
handling boilerplate code.

The intent of the optional class is to help programmers deal with situations where
a failure may occur. One way of handling this type of problem has been to return

a null reference indicating a missing value. Using the optional class forces the
programmer to explicitly deal with the possibility that a function might not return
a value. The optional type should be used as the return type of a method or
function that might not return a value.

Consider the situation where we would like to return an instance of a Customer
class based on an ID using the following method:

public Optional<Customer>findCustomerWithID(long id) {
Y

return someValue;

}

Later when we invoke the function, a value of the optional<Customers type will be
returned. We need to use the ispPresent method to explicitly determine if a value is
returned. If it is present, then the get method returns the actual customer instance
as shown next:

Optional<CustomersoptionalCustomer = findCustomerWithID(123) ;
if (optionalCustomer.isPresent()) {

Customer customer = optionalCustomer.get () ;

// Use customer
} else {

// handle missing value

}

The problem with simply returning null is that the programmer may not realize that
a method may return null and may not attempt to handle it. This will result in a null
pointer exception. In this example, since the findCustomerWithID method explicitly
used the Optional type, we know and must deal with the possibility that nothing
may be returned.

[13]

Getting Started with Functional Programming

The optional type allows chained function calls where a method might not return
a value. We will demonstrate this in Chapter 6, Optional and Monads where the
Optional type is discussed in more detail.

The optional type has a monadic structure. A monad is basically a structure
containing a set of computations represented as a series of steps. These computations
are chained together effectively forming a pipeline. However, there is more to
monads than this. Monads are a very useful technique and promote more reliable
programs than most imperative programming techniques are capable of doing.

You will learn more about the nature of monads and how to use them in Chapter 6,
Optional and Monads.

In the same way, as you need to choose the right hammer for a job, you also need

to choose the right language and programming style for the programming task. We
don't want to use a sledge hammer to put a small nail in the wall for a picture. Since
most jobs consist of multiple tasks, we need to use the right programming style for
the specific task at hand.

Hence, a major focus of the book is how to blend the various programming styles
available in Java 8 to meet an application's need. To be able to decide which
technique is best for a given job, one needs to understand the nature of the task
and how a technique supports such a task.

The incorporation of these functional programming techniques does not make Java a
functional programming language. It means that we now have a new set of tools that
we can use to solve the programming problems presented to us. It behooves us to
take advantage of these techniques whenever they are applicable.

Java 8's support for functional style
programming

So, what is the foundation for functional style programming in Java 8? Well, it comes
from a number of additions and modifications to the language. In this section, we
will briefly introduce several concepts that Java 8 uses. These include:

* Lambda expressions

* Default methods

* Functional interfaces

* Method and constructor references

e (Collections

[14]

Chapter 1

Understanding these concepts will enable you to understand their purpose and why
they are used.

Lambda expressions

Lambda expressions are essentially anonymous functions. They can be considered to
be one of the most significant additions to Java 8. They can make the code easier to
write and read.

We have already seen a lambda expression in the previous examples. In this section,
we will provide additional detail about their form and use. There are three key
aspects to lambda expressions:

* They are a block of code

* They may be passed parameters

* They may return a value

The following table illustrates several different forms a simple lambda expression
can take:

Lambda expression Meaning
() ->System.out.println() It takes no arguments and displays a single line
x->System.out.println(x) It takes a single argument and displays it on a line
X->2%x It takes a single argument and returns its double
(x,y) ->x+y It takes two arguments and returns their sum
x -> { It takes a single argument and returns its double
int y = 2+*x; using multiple statements

return y;

}

These examples are intended to provide some indication of what forms they may
take on. A lambda expression may have zero, one, or more parameters and may
return a value. They can be a concise single-line lambda expression or may consist
of multiple lines. However, they need to be used in some context to be useful.

You can use a lambda expression in most places where a block of code needs to
be executed. The advantage is that you do not need to formally declare and use
a method to perform some task.

[15]

Getting Started with Functional Programming

Lambda expressions are often converted to a functional interface automatically
simplifying many tasks. Lambda expressions can access other variables outside
of the expression. The ability to access these types of variables is an improvement
over anonymous inner functions, which have problems in this regard. Lambda
expressions will be discussed in more detail in Chapter 2, Putting the Function in
Functional Programming.

Default methods

A default method is an interface method that possesses an implementation.
Traditionally, interfaces can only contain abstract methods or static and final
variables. This concept provides a way of defining a set of methods that a class can
implement, and by doing so, it provides an enhanced form of polymorphic behavior.

Adding a default method to an interface is simple. The method is added using
the default keyword along with its implementation. In the following example,
an interface called computable is declared. It has one abstract method and two
default methods:

public interface Computable {
public int compute() ;

public default int doubleNumber (int num) {
return 2*num;

}

public default int negateNumber (int num) {
return -1l*num;

}
}

To use a default method, we create a class that implements its interface and
executes the method against an instance of the new class. In the next sequence,
the computeImpl class is declared that implements the computable interface:

public class ComputeImpl implements Computable

@Override
public int compute() {
return 1;

}

[16]

Chapter 1

Next, an instance of ComputeImpl is declared, and the default method is executed:

ComputeImplcomputeImpl = new ComputeImpl () ;
System.out.println (computeImpl.doubleNumber (2)) ;

The result will be a 4. We did not have to provide an implementation of the
doubleNumber method in the ComputeImpl class before we used it. However,
we can override if desired.

In Java 8, we can add default and static methods to interfaces. This has a number

of advantages, including the ability to add capability to previous interfaces without
breaking the existing code. This has allowed interfaces declared prior to Java 8 to
be augmented with a default method that supports functional-type operations.

For example, the forEach method has been added as a default method to the
java.lang package's Iterable interface. This method takes a lambda expression
that matches the consumer interface's accept method and executes it against each
member of the underlying collection.

In the next code sequence, an array list is populated with three strings. The ArrayList
class implements the Iterable interface enabling the use of the forEach method:

ArrayList<String> list = new ArrayList<>();
list.add ("Apple") ;

list.add ("Peach") ;

list.add ("Banana") ;
list.forEach(f->System.out.println(f)) ;

The addition of a default method will not break code that was developed before
the method was added.

Functional interfaces

A functional interface is an interface that has one and only one abstract method. The
Computable interface declared in the previous section is a functional interface. It has
one and only one abstract method: compute. If a second abstract method was added,
the interface would no longer be a functional interface.

Functional interfaces facilitate the use of lambda expressions. This is illustrated
with the Iterable interface's forEach method. It expects a lambda expression
that implements the Consumer interface. This interface has a single abstract
method, accept, making it a functional interface.

[17]

Getting Started with Functional Programming

This means that the forEach method will accept any lambda expression that
matches the accept method's signature as defined here:

void accept (T t)

That is, it will use any lambda expression that is passed a single value and returns
void. As seen with the ArrayList class used in the previous section and duplicated
next, the lambda expression matches the signature of the accept method.

list.forEach (f->System.out.println(f));

This is possible because Java 8 uses a technique called type inference to determine
if the lambda expression can be used.

Java 8 has introduced a number of functional interfaces. However, conceptually they
have been present in earlier version of Java, but were not identified as functional
interfaces. For example, the Runnable interface, with its single abstract run method,
is a functional interface. It has been a part of Java since the very beginning, but until
Java 8 was not labeled as a functional interface.

The advantage of functional interfaces is that Java is able to automatically use a
lambda expression that matches the signature of the abstract method found in a
functional interface. Consider the creation of a thread as illustrated in the following
code sequence:

new Thread(()->
for(inti=0; i<5; i++) {
System.out.println ("Thread!") ;

}

}) .start () ;

The argument of the Thread class's constructor is a lambda expression that
implements the Runnable interface's run method. This method takes zero
argument and returns void. The lambda expression used matches this signature.

Method and constructor references

A method or constructor reference is a technique that allows a Java 8 programmer
to use a method or constructor as if it was a lambda expression. In the following
sequence, a stream is generated, its elements are doubled, and then displayed
using a lambda expression:

Stream<Integer> stream = Stream.of (12, 52, 32, 74, 25);
Stream

[18]

Chapter 1

.map(x -> x * 2)
.forEach(x ->System.out.println(x));

The output follows:

24
104
64
148
50

We can duplicate this sequence using a method reference in place of the lambda
expression as shown next. A method reference takes the form of a class name
followed by a double colon and then the method name. The parameter is implied,
and the code will produce the same output as the previous example.

Stream<Integer> stream = Stream.of (12, 52, 32, 74, 25);
Stream

.map(x -> x * 2)

.forEach(System.out: :println) ;

In the following example, two method references are used where the first one
invokes the sin method against each element of the list:

stream
.map (Math: :sin)
.forEach(System.out: :println) ;

The output follows:

-0.5365729180004349
0.9866275920404853
0.5514266812416906
-0.9851462604682474
-0.13235175009777303

We can also use constructors in a similar manner. Method and constructor references
provide a convenient and easy way of using methods and constructors where
lambda expressions are used.

[19]

Getting Started with Functional Programming

Collections

The collection interface has been enhanced in Java with the addition of methods
that return a stream object based on the collection. The st ream method returns a
stream executed in sequential order while the parallelstream method returns a
stream that is executed concurrently. The following example illustrates the use of the
stream method as applied against the 1ist object. The List interface extends the
Collection interface:

String names[] = {"Sally", "George", "Paul"};

List<String> list = Arrays.asList (names) ;

Stream<String> stream = list.stream();

stream. forEach (name ->System.out.println(name + " - "
+ name.length()));

This sequence output follows:

Sally - 5
George - 6
Paul - 4

In addition, since the Collection interface inherits the Iterable interface's forEach
method from the iterator. We can use this with the previous List object:

list.forEach (name ->System.out.println(name + " - "
+ name.length()));

There are other enhancements to collections in Java 8, which we will present as they
are encountered.

Summary

In this chapter, we introduced many of the features that constitute a functional
programming language. These included functions and the idea that they can be
combined in more powerful ways than are possible in an imperative type language.

Functional languages frequently allow the expression of program logic using a
fluent style where function invocations build upon each other. The expression of
parallel behavior is simplified in functional programming languages allowing better
optimization of code.

An important goal of functional programs has been to minimize the use of mutable
data and avoid side effects. This also promotes certain optimizations and makes
functional code more maintainable. Recursion is central to functional programming
languages, and we hinted at how it can be used. The use of optional types and
monads were also introduced.

[20]

Chapter 1

Java 8 introduced several new language features that support the use of functions.
These include lambda expressions, which underlie functions and functional
interfaces with type inferences. The introduction of default methods enables the
newer functional techniques to be used with older interfaces and classes. Method
and constructor references provide a way of using these constructs where lambda
expressions are expected.

With many of these topics, we provided simple examples of how Java can support
these concepts. The remainder of the book provides a much more detailed discussion
of how Java can be used.

Java is not a pure functional programming language. However, it supports many
functional style techniques, which a knowledgeable developer can use. The use

of these techniques require a different way of thinking about and approaching
problems. We will convey these techniques in this book starting with a more detailed
discussion of functions in Chapter 2, Putting the Function in Functional Programming.

[21]

Putting the Function in
Functional Programming

In the first chapter, the basic concept of functions and how they are supported by
lambda expressions in Java 8 were introduced. In this chapter, we will cover lambda
expressions in more depth. We will explain how they satisfy the mathematical
definition of a function and how we can use them in supporting Java applications.

In this chapter, you will cover several topics, including:

* Lambda expression syntax and type inference

* High-order, pure, and first-class functions

* Referential transparency

* Closure and currying

e Common functional interfaces
Our discussions cover high-order functions, first-class functions, and pure functions.
Also examined are the concepts of referential transparency, closure, and currying.

Examples of nonfunctional approaches are followed by their functional equivalent
where practical.

While we used lambda expression extensively in our examples, in the last part of this
chapter, a little time will be spent examining their syntax and variations. We will also
examine functional interfaces and many of the standard functional interfaces added
to Java 8.

[23]

Putting the Function in Functional Programming

Lambda expressions usage

A lambda expression can be used in many different situations, including:

* Assigned to a variable
* Passed as a parameter

¢ Returned from a function or method

We will demonstrate how each of these is accomplished and then elaborate on the
use of functional interfaces. As you may remember from Chapter 1, Getting Started
with Functional Programming, a functional interface is an interface that has one and
only one abstract method.

Consider the forEach method supported by several classes and interfaces, including
the List interface. In the following example, a List interface is created and the
forEach method is executed against it. The forEach method expects an object

that implements the consumer interface. This will display the three cartoon
character names:

List<String> list = Arrays.asList ("Huey", "Duey", "Luey");
list.forEach(/* Implementation of Consumer Interface*/);

More specifically, the forEach method expects an object that implements the accept
method, the interface's single abstract method. This method's signature is as follows:

void accept (T t)

The interface also has a default method, andThen, which is passed and returns
an instance of the consumer interface. We will discuss this in Chapter 3, Function
Composition and Fluent Interfaces.

We can use any of three different approaches for implementing the functionality
of the accept method:
* Use an instance of a class that implements the Consumer interface
e Use an anonymous inner class
* Use alambda expression
We will demonstrate each method so that it will be clear how each technique works

and why lambda expressions will often result in a better solution. We will start with
the declaration of a class that implements the Consumer interface as shown next:

public class ConsumerImpl<T> implements Consumer<T> {
@Override

[24]

Chapter 2

public void accept (T t) {
System.out.println(t) ;

}
}

We can then use it as the argument of the forEach method:

list.forEach (new ConsumerImpl<>());

Using an explicit class allows us to reuse the class or its objects whenever an
instance is needed.

The second approach uses an anonymous inner function as shown here:

list.forEach (new Consumer<Strings() {
@Override
public void accept (String t) {
System.out.println(t) ;

}
3N

This was a fairly common approach used prior to Java 8. It avoids having to
explicitly declare and instantiate a class, which implements the Consumer interface.
However, it is not easily reused and has issues accessing variables outside of the
inner class as we will illustrate in the Closure in Java section.

A simple statement that uses a lambda expression is shown next:

list.forEach (t->System.out.println(t)) ;

The lambda expression accepts a single argument and returns void. This matches
the signature of the Consumer interface. Java 8 is able to automatically perform
this matching process. This process is covered in more detail in the Java 8 type
inference section.

This latter technique obviously uses less code, making it more succinct than the other
solutions. If we desire to reuse this lambda expression elsewhere, we could have
assigned it to a variable first and then used it in the forEach method as shown here:

Consumer consumer = t->System.out.println(t);
list.forEach (consumer) ;

Anywhere a functional interface is expected, we can use a lambda expression. Thus,
the availability of a large number of functional interfaces will enable the frequent use
of lambda expressions and programs that exhibit a functional style of programming.

[25]

Putting the Function in Functional Programming

While developers can define their own functional interfaces, which we will do
shortly, Java 8 has added a large number of functional interfaces designed to support
common operations. Most of these are found in the java.util.function package.
We will use several of these throughout the book and will elaborate on their purpose,
definition, and use as we encounter them. In the Functional interfaces revisited section,
we will briefly introduce many others.

Functional programming concepts in
Java

In this section, we will examine the underlying concept of functions and how they
are implemented in Java 8. This includes high-order, first-class, and pure functions.

A first-class function is a function that can be used where other first-class entities can
be used. These types of entities include primitive data types and objects. Typically,
they can be passed to and returned from functions and methods. In addition, they
can be assigned to variables.

A high-order function either takes another function as an argument or returns a
function as the return value. Languages that support this type of function are more
flexible. They allow a more natural flow and composition of operations. The use of
composition is explored in Chapter 3, Function Composition and Fluent Interfaces.

Pure functions have no side effects. The function does not modify nonlocal variables
and does not perform I/O.

High-order functions

We will demonstrate the creation and use of the high-order function using an
imperative and a functional approach to convert letters of a string to lowercase.

The next code sequence reuses the 1ist variable, developed in the previous section,
to illustrate the imperative approach. The for-each statement iterates through each
element of the list using the String class' toLowerCase method to perform the
conversion:

for (String element : list)
System.out.println(element.toLowerCase()) ;

}

The output of this sequence will display each name in the list, in lowercase and
on a separate line.

[26]

Chapter 2

To demonstrate the use of a high-order function, we will create a function called
processString, which is passed a function as the first parameter and then apply
this function to the second parameter as shown next:

public String processString (Function<String, String>
operation, String target) {
return operation.apply (target) ;

}

The function passed will be an instance of the java.util.function package's
Function interface. This interface possesses an accept method that passes one data
type and returns a potentially different data type. With our definition, it is passed
String and returns String.

In the next code sequence, a lambda expression using the toLowercase method is
passed to the processString method. As you may remember, the forEach method
accepts a lambda expression, which matches the consumer interface's accept
method. The lambda expression passed to the processstring method matches

the Function interface's accept method. The output is the same as produced by
the equivalent imperative implementation.

list.forEach(s ->System.out.println(
processString(t->t.toLowerCase(), s)));

We could have also used a method reference as show next:

list.forEach(s ->System.out.println(
processString (String: :toLowerCase, s)));

The use of the high-order function may initially seem to be a bit convoluted.

We needed to create the processstring function and then pass either a lambda
expression or a method reference to perform the conversion. While this is true,

the benefit of this approach is flexibility. If we needed to perform a different string
operation other than converting the target string to lowercase, we will need to
essentially duplicate the imperative code and replace toLowercCase with a new
method such as toUppercase. However, with the functional approach, all we
need to do is replace the method used as shown next:

list.forEach(s ->System.out.println (processString(
t->t.toUpperCase (), s)));

This is simpler and more flexible. A lambda expression can also be passed to another
lambda expression.

[27]

Putting the Function in Functional Programming

Let's consider another example where high-order functions can be useful. Suppose
we need to convert a list of one type into a list of a different type. We might have a
list of strings that we wish to convert to their integer equivalents. We might want to
perform a simple conversion or perhaps we might want to double the integer value.
We will use the following lists:

List<String> numberString = Arrays.asList("12", "34", "82");
List<Integer> numbers = new ArrayList<>();
List<Integer> doubleNumbers = new ArrayList<>();

The following code sequence uses an iterative approach to convert the string list
into an integer list:

for (String num : numberString) {
numbers.add (Integer.parselnt (num)) ;

The next sequence uses a stream to perform the same conversion:

numbers.clear () ;
numberString
.stream()
.forEach(s -> numbers.add(Integer.parselnt(s)));

There is not a lot of difference between these two approaches, at least from a
number of lines perspective. However, the iterative solution will only work for
the two lists: numberString and numbers. To avoid this, we could have written
the conversion routine as a method.

We could also use lambda expression to perform the same conversion. The following
two lambda expression will convert a string list to an integer list and from a string
list to an integer list where the integer has been doubled:

Function<List<String>, List<Integer>> singleFunction = s -> ({
s.stream/()
.forEach(t -> numbers.add(Integer.parselnt(t)));
return numbers;

bi

Function<List<String>, List<Integer>> doubleFunction = s -> {
s.stream/()
.forEach(t -> doubleNumbers.add (
Integer.parselnt (t) * 2));
return doubleNumbers;

bi

[28]

Chapter 2

We can apply these two functions as shown here:

numbers.clear () ;
System.out.println(singleFunction.apply (numberString)) ;
System.out.println (doubleFunction.apply (numberString)) ;

The output follows:

[12, 34, 82]
[24, 68, 164]

However, the real power comes from passing these functions to other functions.

In the next code sequence, a stream is created consisting of a single element, a list.
This list contains a single element, the numberstring list. The map method expects a
Function interface instance. Here, we use the doubleFunction function. The list of
strings is converted to integers and then doubled. The resulting list is displayed:

Arrays.asList (numberString) .stream()
.map (doubleFunction)
.forEach(s -> System.out.println(s));

The output follows:
[24, 68, 164]

We passed a function to a method. We could easily pass other functions to achieve
different outputs.

Returning a function

When a value is returned from a function or method, it is intended to be used
elsewhere in the application. Sometimes, the return value is used to determine how
subsequent computations should proceed. To illustrate how returning a function can
be useful, let's consider a problem where we need to calculate the pay of an employee
based on the numbers of hours worked, the pay rate, and the employee type.

To facilitate the example, start with an enumeration representing the employee type:
enum EmployeeType {Hourly, Salary, Sales};

The next method illustrates one way of calculating the pay using an imperative
approach. A more complex set of computation could be used, but these will suffice
for our needs:

public float calculatePay(int hourssWorked,
float payRate, EmployeeType type) {
switch (type) {

[29]

Putting the Function in Functional Programming

case Hourly:

return hourssWorked * payRate;
case Salary:

return 40 * payRate;
case Sales:

return 500.0f + 0.15f * payRate;
default:

return 0.0f;

}

If we assume a 7 day workweek, then the next code sequence shows an imperative
way of calculating the total number of hours worked:

int hoursWorked[] = {8, 12, 8, 6, 6, 5, 6, 0};
int totalHoursWorked = 0;
for (int hour : hoursWorked) ({
totalHoursWorked += hour;

}

Alternatively, we could have used a stream to perform the same operation as shown
next. The Arrays class's stream method accepts an array of integers and converts it
into a Stream object. The sum method is applied fluently, returning the number of
hours worked:

totalHoursWorked = Arrays.stream(hoursWorked) .sum() ;

The latter approach is simpler and easier to read. To calculate and display the pay,
we can use the following statement which, when executed, will return 803 . 25.

System.out.println (

calculatePay (totalHoursWorked, 15.75f,
EmployeeType.Hourly)) ;

The functional approach is shown next. A calculatePayFunction method is created
that is passed the employee type and returns a lambda expression. This will compute
the pay based on the number of hours worked and the pay rate. This lambda
expression is based on the BiFunction interface. It has an accept method that takes
two arguments and returns a value. Each of the parameters and the return type can
be of different data types. It is similar to the Function interface's accept method,
except that it is passed two arguments instead of one.

The calculatePayFunction method is shown next. It is similar to the imperative's
calculatePay method, but returns a lambda expression:

public BiFunction<Integer, Float, Float> calculatePayFunction (
EmployeeType type) {

[30]

Chapter 2

switch (type) {
case Hourly:
return (hours, payRate) -> hours * payRate;
case Salary:
return (hours, payRate) -> 40 * payRate;
case Sales:
return (hours, payRate) -> 500f + 0.15f * payRate;
default:
return null;

}
It can be invoked as shown next:

System.out.println (
calculatePayFunction (EmployeeType.Hourly)
.apply (totalHoursWorked, 15.75f));

When executed, it will produce the same output as the imperative solution. The
advantage of this approach is that the lambda expression can be passed around
and executed in different contexts. In addition, it can be combined with other
functions in more powerful ways as we will see in Chapter 3, Function Composition
and Fluent Interfaces .

First-class functions

To demonstrate first-class functions, we use lambda expressions. Assigning a
lambda expression, or method reference, to a variable can be done in Java 8. Simply
declare a variable of the appropriate function type and use the assignment operator
to do the assignment.

In the following statement, a reference variable to the previously defined BiFunction-
based lambda expression is declared along with the number of hours worked:

BiFunction<Integer, Float, Float> calculateFunction;
int hoursWorked = 51;

We can easily assign a lambda expression to this variable. Here, we use the lambda
expression returned from the calculatePayFunction method:

calculateFunction = calculatePayFunction (EmployeeType.Hourly) ;

The reference variable can then be used as shown in this statement:

System.out.println (
calculateFunction.apply (hoursWorked, 15.75f)) ;

It produces the same output as before.

[31]

Putting the Function in Functional Programming

One shortcoming of the way an hourly employee's pay is computed is that overtime
pay is not handled. We can add this functionality to the calculatePayFunction
method. However, to further illustrate the use of reference variables, we will assign
one of two lambda expressions to the calculateFunction variable based on the
number of hours worked as shown here:

if (hoursWorked<=40)

calculateFunction = (hours, payRate) -> 40 * payRate;
} else {
calculateFunction = (hours, payRate) ->

hours*payRate + (hours-40)*1.5f*payRate;

}
When the expression is evaluated as shown next, it returns a value of 1063.125:

System.out.println (
calculateFunction.apply (hoursWorked, 15.75f)) ;

Let's rework the example developed in the High-order functions section, where we
used lambda expressions to display the lowercase values of an array of string.
Part of the code has been duplicated here for your convenience:

list.forEach(s ->System.out.println(
processString(t->t.toLowerCase(), s)));

Instead, we will use variables to hold the lambda expressions for the Consumer
and Function interfaces as shown here:

Consumer<Strings> consumer;

consumer = s -> System.out.println(toLowerFunction.apply(s));
Function<String, String> toLowerFunction;

toLowerFunction= t -> t.toLowerCase() ;

The declaration and initialization could have been done with one statement for
each variable. To display all of the names, we simply use the consumer variable
as the argument of the forEach method:

list.forEach (consumer) ;

This will display the names as before. However, this is much easier to read and follow.
The ability to use lambda expressions as first-class entities makes this possible.

We can also assign method references to variables. Here, we replaced the
initialization of the function variable with a method reference:

function = String::toLowerCase;

The output of the code will not change.

[32]

Chapter 2

The pure function

The pure function is a function that has no side effects. By side effects, we mean
that the function does not modify nonlocal variables and does not perform I/O. A
method that squares a number is an example of a pure method with no side effects
as shown here:

public class SimpleMath
public static int square(int x)
return x * XxX;

}
}

Its use is shown here and will display the result, 25:

System.out.println (SimpleMath.square(5)) ;

An equivalent lambda expression is shown here:

Function<Integer, Integer> squareFunction = x -> X*X;
System.out.println (squareFunction.apply(5)) ;

The advantages of pure functions include the following:

* They can be invoked repeatedly producing the same results

* There are no dependencies between functions that impact the order they
can be executed

* They support lazy evaluation

* They support referential transparency

We will examine each of these advantages in more depth.

Support repeated execution

Using the same arguments will produce the same results. The previous square
operation is an example of this. Since the operation does not depend on other
external values, re-executing the code with the same arguments will return the
same results.

This supports the optimization technique call memoization. This is the process of
caching the results of an expensive execution sequence and retrieving them when
they are used again.

[33]

Putting the Function in Functional Programming

An imperative technique for implementing this approach involves using a hash map
to store values that have already been computed and retrieving them when they are
used again. Let's demonstrate this using the square function. The technique should
be used for those functions that are compute intensive. However, using the square
function will allow us to focus on the technique.

Declare a cache to hold the previously computed values as shown here:

private final Map<Integer, Integer> memoizationCache =
new HashMap<> () ;

We need to declare two methods. The first method, called
doComputeExpensiveSquare, does the actual computation as shown here. A
display statement is included only to verify the correct operation of the technique.
Otherwise, it is not needed. The method should only be called once for each unique
value passed to it.

private Integer doComputeExpensiveSquare (Integer input)
System.out.println ("Computing square") ;
return 2 * input;

}

A second method is used to detect when a value is used a subsequent time and
return the previously computed value instead of calling the square method. This is
shown next. The containsKey method checks to see if the input value has already
been used. If it hasn't, then the doComputeExpensiveSquare method is called.
Otherwise, the cached value is returned.

public Integer computeExpensiveSquare (Integer input)
if (!memoizationCache.containsKey (input)) {
memoizationCache.put (input,
doComputeExpensiveSquare (input)) ;

}

return memoizationCache.get (input) ;

}
The use of the technique is demonstrated with the next code sequence:

System.out.println (computeExpensiveSquare (4)) ;
System.out.println (computeExpensiveSquare (4)) ;

The output follows, which demonstrates that the square method was only
called once:

Computing square
16
16

[34]

Chapter 2

The problem with this approach is the declaration of a hash map. This object may
be inadvertently used by other elements of the program and will require the explicit
declaration of new hash maps for each memoization usage. In addition, it does not
offer flexibility in handling multiple memoization. A better approach is available in
Java 8. This new approach wraps the hash map in a class and allows easier creation
and use of memoization.

Let's examine a memoization class as adapted from http://java.dzone.com/
articles/java-8-automatic-memoization. Itis called Memoizer. It uses
ConcurrentHashMap to cache value and supports concurrent access from
multiple threads.

Two methods are defined. The doMemoize method returns a lambda expression
that does all of the work. The memorize method creates an instance of the Memoizer
class and passes the lambda expression implementing the expensive operation to
the doMemoize method.

The doMemoize method uses the ConcurrentHashMap class's computeIfAbsent
method to determine if the computation has already been performed. If the value
has not been computed, it executes the Function interface's apply method against
the function argument:

public class Memoizer<T, Us> {
private final Map<T, U> memoizationCache = new
ConcurrentHashMap<> () ;

private Function<T, Us doMemoize (final Function<T, U>
function)
return input -> memoizationCache.computeIfAbsent (input,
function: :apply) ;

public static <T, U> Function<T, U> memoize (final Function<T,
U> functiom) {

return new Memoizer<T, U> () .doMemoize (function) ;

}
A lambda expression is created for the square operation:

Function<Integer, Integer> squareFunction = x -> {
System.out.println("In function");
return x * XxX;

bi

[35]

http://java.dzone.com/articles/java-8-automatic-memoization
http://java.dzone.com/articles/java-8-automatic-memoization

Putting the Function in Functional Programming

The memoizationFunction variable will hold the lambda expression that is
subsequently used to invoke the square operations:

Function<Integer, Integer> memoizationFunction =
Memoizer.memoize (squareFunction) ;
System.out.println(memoizationFunction.apply(2));
System.out.println(memoizationFunction.apply(2));
System.out.println(memoizationFunction.apply(2));

The output of this sequence follows where the square operation is performed
only once:

In function
4
4
4

We can easily use the Memoizer class for a different function as shown here:

Function<Double, Double> memoizationFunction2 =
Memoizer.memoize (x -> x * X);
System.out.println (memoizationFunction2.apply(4.0)) ;

This will square the number as expected. Functions that are recursive present
additional problems. Recursion will be addressed in Chapter 5, Recursion Techniques
in Java 8.

Eliminating dependencies between functions

When dependencies between functions are eliminated, then more flexibility in
the order of execution is possible. Consider these Function and BiFunction
declarations, which define simple expressions for computing hourly, salaried,
and sales type pay, respectively:

BiFunction<Integer, Double, Double> computeHourly =

(hours, rate) -> hours * rate;
Function<Double, Double> computeSalary = rate -> rate * 40.0;
BiFunction<Double, Double, Double> computeSales =

(rate, commission) -> rate * 40.0 + commission;

These functions can be executed, and their results are assigned to variables as
shown here:

double hourlyPay = computeHourly.apply (35, 12.75);
double salaryPay = computeSalary.apply(25.35);
double salesPay = computeSales.apply(8.75, 2500.0) ;

[36]

Chapter 2

These are pure functions as they do not use external values to perform their
computations. In the following code sequence, the sum of all three pays are
totaled and displayed:

System.out.println (computeHourly.apply (35, 12.75)
+ computeSalary.apply (25.35)
+ computeSales.apply(8.75, 2500.0));

We can easily reorder their execution sequence or even execute them concurrently,
and the results will be the same. There are no dependencies between the functions
that restrict them to a specific execution ordering.

Supporting lazy evaluation

Continuing with this example, let's add an additional sequence, which computes
the total pay based on the type of employee. The variable, hourly, is set to true if
we want to know the total of the hourly employee pay type. It will be set to false
if we are interested in salary and sales-type employees:

double total = 0.0;
boolean hourly = ...;
if (hourly) {
total = hourlyPay;
} else {
total = salaryPay + salesPay;

}

System.out.println(total) ;

When this code sequence is executed with an hourly value of false, there is no
need to execute the computeHourly function since it is not used. The runtime system
could conceivably choose not to execute any of the lambda expressions until it
knows which one is actually used.

While all three functions are actually executed in this example, it illustrates the
potential for lazy evaluation. Functions are not executed until needed. Lazy
evaluation does occur with streams as we will demonstrate in Chapter 4, Streams
and the Evaluation of Expressions.

Referential transparency

Referential transparency is the idea that a given expression is made up of
subexpressions. The value of the subexpression is important. We are not concerned
about how it is written or other details. We can replace the subexpression with its
value and be perfectly happy.

[37]

Putting the Function in Functional Programming

With regards to pure functions, they are said to be referentially transparent since
they have same effect. In the next declaration, we declare a pure function called
pureFunction:

Function<Double,Double> pureFunction = t -> 3*t;

It supports referential transparency. Consider if we declare a variable as shown here:
int num = 5;

Later, in a method we can assign a different value to the variable:
num = 6;

If we define a lambda expression that uses this variable, the function is no
longer pure:

Function<Double,Double> impureFunction = t -> 3*t+num;

The function no longer supports referential transparency.

Closure in Java

The use of external variables in a lambda expression raises several interesting
questions. One of these involves the concept of closures. A closure is a function
that uses the context within which it was defined. By context, we mean the
variables within its scope. This sometimes is referred to as variable capture.

We will use a class called closureExample to illustrate closures in Java. The class
possesses a getStringOperation method that returns a Function lambda expression.
This expression takes a string argument and returns an augmented version of it. The
argument is converted to lowercase, and then its length is appended to it twice. In the
process, both an instance variable and a local variable are used.

In the implementation that follows, the instance variable and two local variables are
used. One local variable is a member of the getStringOperation method and the
second one is a member of the lambda expression. They are used to hold the length
of the target string and for a separator string:

public class ClosureExample {
int instancelength;

public Function<String, String> getStringOperation() {
final String seperator = ":";

[38]

Chapter 2

return target -> {
int locallLength = target.length();
instancelLength = target.length() ;
return target.toLowerCase ()

+ seperator + instancelLength + seperator
+ localLength;

}
The lambda expression is created and used as shown here:

ClosureExample ce = new ClosureExample() ;

final Function<String,String> function =
ce.getStringOperation() ;

System.out.println (function.apply ("Closure")) ;

Its output follows:

closure:7:7

Variables used by the lambda expression are restricted in their use. Local variables
or parameters cannot be redefined or modified. These variables need to be effectively
final. That is, they must be declared as final or not be modified.

If the local variable and separator, had not been declared as final, the program would
still be executed properly. However, if we tried to modify the variable later, then

the following syntax error would be generated, indicating such variable was not
permitted within a lambda expression:

local variables referenced from a lambda expression must be final or
effectively final

If we add the following statements to the previous example and remove the final
keyword, we will get the same syntax error message:

function = String::toLowerCase;
Consumer<String> consumer =
s -> System.out.println(function.apply(s)) ;

This is because the function variable is used in the Consumer lambda expression.
It also needs to be effectively final, but we tried to assign a second value to it, the
method reference for the toLowerCase method.

Closure refers to functions that enclose variable external to the function. This
permits the function to be passed around and used in different contexts.

[39]

Putting the Function in Functional Programming

Currying
Some functions can have multiple arguments. It is possible to evaluate these

arguments one-by-one. This process is called currying and normally involves
creating new functions, which have one fewer arguments than the previous one.

The advantage of this process is the ability to subdivide the execution sequence
and work with intermediate results. This means that it can be used in a more
flexible manner.

Consider a simple function such as:
f(xp)=x+y

The evaluation of f(2,3) will produce a 5. We could use the following, where the 2
is "hardcoded":

f(2y)=2+y
If we define:
g(y)=2+y

Then the following are equivalent:
f(2y)=g(y)=2+y
Substituting 3 for y we get:
f(2,3)=g(3)=2+3=5
This is the process of currying. An intermediate function, g(y), was introduced which

we can pass around. Let's see, how something similar to this can be done in Java 8.

Start with a BiFunction interface's apply method that can be used for concatenation
of strings. This method takes two parameters and returns a single value as implied
by this lambda expression declaration:

BiFunction<String, String, String> biFunctionConcat =
(a, b) -> a + b;

[40]

Chapter 2

The use of the function is demonstrated with the following statement:

System.out.println (biFunctionConcat.apply ("Cat", "Dog")) ;
The output will be the catDog string.

Next, let's define a reference variable called curryconcat. This variable is a
Function interface variable. This interface is based on two data types. The first one
is string and represents the value passed to the Function interface's accept
method. The second data type represents the accept method's return type. This
return type is defined as a Function instance that is passed a string and returns

a string. In other words, the curryConcat function is passed a string and returns
an instance of a function that is passed and returns a string.

Function<String, Function<String, String>> curryConcat;
We then assign an appropriate lambda expression to the variable:
curryConcat = (a) -> (b) -> biFunctionConcat.apply(a, b);

This may seem to be a bit confusing initially, so let's take it one piece at a time.

First of all, the lambda expression needs to return a function. The lambda expression
assigned to curryConcat follows where the ellipses represent the body of the
function. The parameter, a, is passed to the body:

(a) ->...;
The actual body follows:
(b) -> biFunctionConcat.apply(a, b);

This is the lambda expression or function that is returned. This function takes two
parameters, a and b. When this function is created, the a parameter will be known
and specified. This function can be evaluated later when the value for b is specified.
The function returned is an instance of a Function interface, which is passed two
parameters and returns a single value.

To illustrate this, define an intermediate variable to hold this returned function:
Function<String, String> intermediateFunction;

We can assign the result of executing the curryConcat lambda expression using it's
apply method as shown here where a value of cat is specified for the a parameter:

intermediateFunction = curryConcat.apply("Cat") ;

[41]

Putting the Function in Functional Programming

The next two statements will display the returned function:

System.out.println(intermediateFunction) ;
System.out.println (curryConcat.apply("Cat")) ;

The output will look something similar to the following:

packt.Chapter2$$Lambda$3/798154996@5305068a
packt.Chapter2$$Lambda$3/798154996@1£32e575

Note that these are the values representing this functions as returned by the implied
tostring method. They are both different, indicating that two different functions
were returned and can be passed around.

Now that we have confirmed a function has been returned, we can supply a value
for the b parameter as shown here:

System.out.println(intermediateFunction.apply ("Dog")) ;

The output will be catbog. This illustrates how we can split a two parameter
function into two distinct functions, which can be evaluated when desired.
They can be used together as shown with these statements:

System.out.println (curryConcat.apply("Cat") .apply ("Dog")) ;
System.out.println (curryConcat.apply(
"Flying ") .apply ("Monkeys")) ;

The output of these statements is as follows:

CatDog

Flying Monkeys
We can define a similar operation for doubles as shown here:

Function<Double, Function<Double, Double>> curryAdd =
(a) -> (b) -> a * b;
System.out.println (curryAdd.apply(3.0) .apply(4.0)) ;

This will display 12. 0 as the returned value.

Currying is a valuable approach useful when the arguments of a function need
to be evaluated at different times.

[42]

Chapter 2

Lambda expressions revisited

In this section, we will explore the syntax of lambda expression in more depth. So
far, we used them without formally describing them. We will also examine other
forms they can take.

As mentioned earlier, a lambda expression is essentially an anonymous function.
They can be passed to another function or method, returned from a function or a
method, and assigned to variables.

A lambda expression consists of an optional parameter list, followed by the lambda
operator, and then a body. The lambda operator is a dash followed by the greater
than symbol. The body of a lambda expression may be one or more statements and
may optionally return a value.

Let's examine several variations of a simple lambda expression. A single value
is passed to the function. This value is incremented and then returned. Several
equivalent variations of this function are illustrated in the following table:

Variation Comment
X ->x + 1 The simplest form of the function
(x) ->x +1 The parameter(s) can be enclosed in parentheses
(Integer x) -> | A datatype can be declared for parameter(s)
x + 1
x -> | A multiline function which is verbose
X + 1;
return x;
}
x -> | A multiline function which uses a local variable
Integer y;
Yy =X + 1;
return y;
}i

[43]

Putting the Function in Functional Programming

Multiple parameters are possible as illustrated in the following table:

Variation Comment

(x,¥y) ->x +y Multiple parameters must be placed in parentheses

(Integer x, Integer y) -> | Data types can be declared
X +Yy

(Integer x, Double y) -> | The parameter's data types can be different
X +Yy

(x,y) -> System.out A return value is not required
.println(x+y)

A lambda expression's parameter list does not necessarily need a data type or a set
of parentheses. A data type is used when it is necessary to clarify the type of data
being passed. Parentheses are needed when a data type is used or when multiple
parameters are passed.

Java 8 type inference

When a lambda expression is used, it goes through a process of inferring the types of
its arguments based on its context. Its context depends on which functional interface
it matches. More specifically, it depends on the signature of the functional interface's
abstract method.

Consider the following example where we define a concatenate method, which
combines two string, integers, or doubles together:

public interface StringConcatenation {
public String concatenate (String sl, String s2);

}

public interface IntegerConcatenation
public String concatenate (Integer nl, Integer n2);

}

public interface DoubleConcatenation {
public String concatenate (Double nl, Double n2);

}

[44]

Chapter 2

In the following code sequence, lambda expressions are declared, which implement
the concatenation functionality by returning a string containing the two arguments
separated by a colon:

StringConcatenation sc = (s, t) -> s + ":" + t;
IntegerConcatenation ic = (m, n) ->m + ":" + n;
DoubleConcatenation de = (m, n) ->m + ":" + n;

With each assignment, the lambda expression is matched against the signature of
the concatenate method. Should a mismatch occur, then a syntax error will be
produced. You may note that the same lambda expression is assigned to both the
IntegerConcatenation and DoubleConcatenation variables. Since the data type
of the lambda expression's parameters are not specified, the system can infer that
they be treated as either an Integer or a Double types.

Likewise, the lambda expression used with the StringConcatenation variable
could be used in place of the other lambda expressions since it matches the
concatenate method's signature.

The following illustrates their use:

System.out.println(sc.concatenate ("Cat", "Dog")) ;
System.out.println(ic.concatenate (23, 45));
System.out.println(dc.concatenate (23.12, 45.12));

The following output is generated:

CatDog
23:45
23.12:45.12

We can create another functional interface that eliminates the need for the previous
three interfaces using generics as shown here:

public interface Concatenation<Ts> {
public String concatenate(T u, T Vv);

Lambda expressions are assigned to an instance of this interface as shown next:

Concatenation<String> stringConcatenate = (s,t) -> s+":"+ t;
Concatenation<Integer> integerConcatenate = (s,t) -> s+":"+t;
System.out.println (

stringConcatenate.concatenate ("Cat", "Dog")) ;
System.out.println (integerConcatenate.concatenate (23, 45));

[45]

Putting the Function in Functional Programming

When a lambda expression is assigned to a variable, the left-hand side of the
assignment is called the lambda expression's target type. There are several rules
for target types:

* It must be a functional interface
* It must be compatible with the abstract method's parameter and return types
* It must throw only those exceptions thrown by the abstract method

We will address exception handling and functional interfaces in the next
two sections.

Exception handling in lambda expressions

Lambda expressions can throw exceptions. However, they must only be those
specified by its functional interface's abstract method.

To illustrate how to throw an exception in a lambda expression, we modified the
IntegerConcatenation interface as developed in the previous section. This will
throw an instance of I1legal FormatException as shown here:

public interface IntegerConcatenation
public String concatenate (Integer nl, Integer n2)
throws IllegalFormatException;

}

A lambda expression is then declared, which will throw the exception when the
first argument is zero:

IntegerConcatenation ic = (m, n) -> {
if (m==0) ({
throw new IllegalArgumentException() ;
} else {
return m + ":" + n;

}
bi

System.out.println(ic.concatenate (0, 45));

While we will not be using exceptions very frequently, it is useful to know how
they are handled.

[46]

Chapter 2

Functional interfaces revisited

We used several functional interfaces in the previous examples. In this section,
we will examine in more detail how they are created and illustrate a number of
predefined functional interfaces available for immediate use in Java 8.

As mentioned earlier, a functional interface is an interface that has one and only one
abstract method. It may have zero or more default methods. Since the interface has
only one abstract method, the system is able to know which method to match to a
lambda expression. This abstract method is called the functional method.

Creating a functional interface

The IntegerConcatenation interface is duplicated here as an example. Note the
use of the @FunctionalInterface annotation. While not required, it will generate
a syntax error if the interface is not a functional interface:

@FunctionalInterface
public interface IntegerConcatenation
public String concatenate (Integer nl, Integer n2);

}

Functional interfaces are easy to create. After working with functional interfaces
for a while, some common patterns quickly emerged suggesting the need for some
standard definitions. By defining these standard functional interfaces, there is less
of a need to reinvent the wheel and common names can be used, which facilitates
communication. For example, we used the Function functional interfaces several
times in previous examples and hopefully its meaning is clear. The next section
explores many of these standard interfaces.

Common functional interfaces

The java,util.function package was added to Java 8. In this package, 42
functional interfaces have been defined. We will not exhaustively examine every
functional interface here, but we will discuss how they are categorized and detail
a few of the more commonly used ones.

We can group these interfaces into five categories:

* Function: These transform their arguments and return a value

* Predicate: These are used to perform a test, which returns a Boolean value

[47]

Putting the Function in Functional Programming

* Consumer: These use their arguments, but do not return a value
* Supplier: These are not passed data, but do return data

* Operator: These perform a reduction type operation

We will examine each of these types in the following sections.

Function-type functional interfaces

We have seen the Function interface used in several of the previous examples. Its
abstract method is called apply. As its name implies, it performs a transformation
type operation against its arguments. Its signature is as follows:

R apply (T)

There are several other interfaces related to the Function interface that accept one

or two arguments and return a single value. Some of these are designed to work with
specific input and output data types such as DoubleToIntFunction, which is passed
a double and returns an integer.

The DoubleToIntFunction interface has been added as a convenience.
We could have used the Function interface to achieve the same result:
Function<Double, Integer>. However, having a specialized interface
eliminates the need to declare the data types explicitly.

Conversion between wrapper classes, such as Double and the primitive data type
double, occurs automatically using boxing/unboxing. Boxing converts a primitive
type to its wrapper equivalent while unboxing performs the opposite conversion.

These functional interfaces are listed in the following table:

Functional-type interfaces Return type Functional method
Function<T,R> R apply (T t)
BiFunction<T,U,R> R apply (T t, U u)
DoubleFunction<R> R apply (double wvalue)
DoubleToIntFunction int applyAsInt (double value)
DoubleToLongFunction long applyAsLong (double value)
IntFunction<R> R apply (int value)
IntToDoubleFunction double applyAsDouble (int value)
IntToLongFunction long applyAsLong (int value)
LongFunction<R> R apply (long value)
LongToDoubleFunction double applyAsDouble (long value)

[48]

Chapter 2

Functional-type interfaces Return type Functional method
LongToIntFunction int applyAsInt (long value)
ToDoubleBiFunction<T, U> double applyAsDouble (T t, U u)
ToDoubleFunction<Ts> double applyAsDouble (T value)
ToIntBiFunction<T, Us> int applyAsInt (T t, U u)
ToIntFunction<T> int applyAsInt (T value)
ToLongBiFunction<T, U> long applyAsLong (T t, U u)
ToLongFunction<T> long applyAsLong (T value)

Predicate-type functional interfaces

The predicate-type interface is designed for use in situations where a test needs to
be performed and a Boolean value needs to be returned. The predicate interface
functional test method is shown here:

boolean test (T t)

This is useful when the functionality needed simply returns a Boolean value based
on some input value. This is demonstrated next where we determine whether a
value is too large to process:

Predicate<Integer> toolarge = s -> s>100;
System.out.println (tooLarge.test (45)) ;

We can also use it with a stream as shown here, along with its output:

List<Integer> list = Arrays.asList (230, 45, 13, 563, 4);
Stream<Integer> stream = list.stream() ;
stream. forEach(s->System.out.println(tooLarge.test(s)));
true
false
false
true

false

There is a Bipredicate functional interface, which accepts two parameters. Three
other predicates are defined for double, integer, and long values. We could have
defined our tooLarge variable using the IntPredicate interface as shown here:

IntPredicate toolarge = s -> s>100;

[49]

Putting the Function in Functional Programming

There are six predicate-type functional interfaces. They all return a Boolean value,
but differ in the number and types of their parameters as shown in the next table:

Predicate-type interfaces Return type Functional method
Predicate<T> boolean test (T t)

BiPredicate<T,U> boolean test (T t, U u)
DoublePredicate boolean boolean test (double value)
IntPredicate boolean boolean test (int value)
LongPredicate boolean boolean test (long value)

Consumer-type functional interfaces

The consumer-type functional interface is intended to accept input, but not return
a value. It this sense, it consumes its input. It is typified by the Consumer interface
whose accept method's signature is shown here:

void accept (T t)

We have seen this type of interface used with the earlier forEach method as
shown next:

list.forEach(s ->System.out.println(
processString(t->t.toLowerCase(), s)));

There are seven functional style interfaces all of which return void. They differ in
terms of the number and types of parameters. These are listed next:

Consumer-type interfaces | Return type | Functional method

Consumer<Ts> void accept (T t)

BiConsumer<T, U> void void accept (T t, U u)
DoubleConsumer void void accept (double wvalue)
IntConsumer void void accept (int value)
LongConsumer void void accept (long value)
ObjDoubleConsumer<Ts> | void void accept (T t, double wvalue)
ObjIntConsumer<Ts> void void accept (T t, int value)

[50]

Chapter 2

Supplier-type functional interfaces

The supplier-type functional interfaces are intended to return a data type, but no
input is provided. It is like a source of information. The supplier interface typifies
this style and its get method's signature is as follows:

T get ()

The following illustrates the use of the Supplier interface to generate a random
number between 0 and 9 excluding the numbers, 5, 6, 7, and 8:

Supplier<Integer> randomIntegers = () -> {
Random random = new Random() ;
int number = random.nextInt (10) ;
while (number >= 5 && number <= 8) ({
number = random.nextInt (10) ;
return number;
for (int i = 0; i < 10; i++) {
System.out.print (randomIntegers.get () + " ");

}

System.out.println() ;
The output of this sequence is as follows:
9931239009

The other supplier-type interfaces use specific data types as shown in the
following table:

Supplier-type interfaces Return type Functional method
Supplier<Ts> T get ()
BooleanSupplier Boolean getAsBoolean ()
DoubleSupplier double getAsDouble ()
IntSupplier<R> R getAsInt ()
LongSupplier long getAsLong ()

Operator-type functional interfaces

The operator-type functional interfaces are used to apply some operation against
one or two operands. It corresponds to unary or binary type operators. The
BinaryOperator interface typifies the operator type. Its apply method's signature
is as follows:

R apply (T t1, T t2)

[51]

Putting the Function in Functional Programming

We could have used this interface instead of the Concatenation interface we
developed in the Java 8 type inference section. This interface is duplicated here,
followed by one possible use:

public interface Concatenation<T>
public String concatenate(T u, T Vv);

Concatenation<String> stringConcatenate = (s,t) -> s+":"+t;

Instead, we can define stringConcatenate as shown next:

BinaryOperator<String> stringConcatenate = (s,t) -> s+":"+t;
System.out.println(stringConcatenate.apply("Cat", "Dog")) ;

The output is identical to the previous example.

Several other operator-type interfaces are available and differ in the number of
parameters. The return type as shown in this table:

Operator-type interfaces Return type Functional method
BinaryOperator<T> R apply (T tl1, T t2)
DoubleBinaryOperator | double applyAsDouble (double left,

double right)
DoubleUnaryOperator double applyAsDouble (double operand)
IntBinaryOperator int applyAsInt (int left, int right)
IntUnaryOperator int applyAsInt (int operand)
LongBinaryOperator long applyAsLong (long left,

long right)
LongUnaryOperator long applyAsLong (long operand)
UnaryOperator<Ts> R apply (T t)

[52]

Chapter 2

Summary

In this chapter, we investigated the use of lambda expressions and how they support
the functional style of programming in Java 8. When possible, we used examples to
contrast the use of classes and methods against the use of functions. This frequently
led to simpler and more maintainable functional implementations.

We illustrated how lambda expressions support the functional concepts of
high-order, first-class, and pure functions. Examples were used to help clarify the
concept of referential transparency. The concepts of closure and currying are found
in most functional programming languages. We provide examples of how they are
supported in Java 8.

Lambda expressions have a specific syntax, which we examined in more detail.
Also, there are several ways of expressing a lambda expression which we illustrated.
Lambda expressions are based on functional interfaces using type inference. It is
important to understand how to create functional interfaces and to know what
standard functional interfaces are available in Java 8. This was covered in the latter
part of the chapter.

Having gained a solid foundation in the creation and use of lambda expression,
we are ready to explore more advanced use of these expressions. In the next chapter,
we will examine function composition and how this is achieved in Java 8.

[53]

Function Composition
and Fluent Interfaces

Having discussed the nature of functions in Java 8, we will now focus on the various
ways in which functions can be composed. By compose, we mean how they can be
combined in interesting and powerful ways. These techniques include basic function
composition and the use of fluent interfaces.

Function composition is concerned with combining two functions to form a third
one. Using the output of one function as the input to another one is a common
practice. By combining two such functions, we are able to create more complex
functions, which can be reused.

We will examine the basic approach for composing functions and then move on
to the use of the Function interface and its compose and andThen methods. These
methods make it easier to compose functions and use them.

We will also cover the topic of fluent interfaces. This programming style is frequently
associated with functional programming languages. Java has used method chaining,
which shares attributes with fluent interfaces. However, with Java 8 there has been
more of a concerted effort to add fluent interfaces to Java.

In this chapter, you will cover:

* Function composition in Java
e The creation and use of fluent interfaces

e How default methods work in Java 8

[55]

Function Composition and Fluent Interfaces

Fluent interfaces do not refer to an actual Java interface declaration. Rather, it implies
a style of programming that flows easily and is more readable than the typical use

of methods. It applies the output of one method directly to another method without
using intermediate variables. It also incorporates a naming convention that makes

its use more natural than method chaining.

We will examine the use of method chaining in Java prior to Java 8. This will

help contrast this approach to that of fluent interfaces. Java 8 fluent interfaces are
demonstrated to give the reader a better idea of where they can be used. However, it is
equally important to understand how they can be created so that fluent interfaces can
be incorporated into new application interfaces and act as a facade for older interfaces.

A summary of default functions will also be presented. This brief coverage will
increase your knowledge of Java 8 and help explain how the functional style of
programming has been added to Java without breaking the existing classes
and interfaces.

Introduction to function composition

Function composition is concerned with combining two functions into one.
For example, assume that we have two functions: £ (x) and g (x) . The result
of composition is the creation of a third function, let's call ¢, such that:

That is, the effect of calling ¢ (x) is the same as using the output of g (x) as the input
to the function £. To illustrate this approach, let's use the following definitions:

f(x) = -x
g(x) = 2*x
c(5) = £(g(5)) = £(2*x) = -(2*%5) = -10

The effect is that the g (x) function is called first. Its results are then used as input to
the £ (x) function. This capability allows more complex functions to be created in a
more flexible and useful manner.

Creating composite functions prior to
Java 8

Prior to Java 8 it was possible to affect this type of operation using a specialized
library such as http://www. functionaljava.org/ or by creating a class and
interface first. We will demonstrate the latter approach here.

[56]

http://www.functionaljava.org/

Chapter 3

The interface will permit two methods to be combined. To illustrate this
approach, we will declare a class called compose. Within the class, we will
declare a CompositionFunction interface, containing a single call method
along with a compose method. The compose method returns an instance of the
CompositionFunction interface using two CompositionFunction interface
instances passed to it. The call method does the actual work.

The first part of the compose class and the CompositionFunction interface are
shown next. This interface uses generics to declare a single method, call, that is
passed a single value and returns a value:

public class Compose
public interface CompositionFunction<T, R> {
R call(T x);

}

The compose class's static compose method follows. It is passed two objects that
implement the CompositionFunction interface, £ and g. It uses an anonymous
inner class to return a CompositionFunction interface instance. In the call
method, the g function is invoked first followed by the £ function:

public static <T, U, R> CompositionFunction<T, R> compose (
final CompositionFunction<U, R> f,
final CompositionFunction<T, U> g) ({
return new CompositionFunction<T, R>() {
public R call(T x) {
return f.call(g.call(x));

bi
}

We are now ready to use this class. To duplicate the earlier definitions of the £ and
g functions, anonymous inner classes are created and assigned to the doubleNumber
and negateNumber CompositionFunction interface variables as shown here:

CompositionFunction<Double, Double> doubleNumber =
new CompositionFunction<Double, Doubles> () {
public Double call (Double x) {
return 2*x;

[57]

Function Composition and Fluent Interfaces

CompositionFunction<Double, Double> negateNumber =
new CompositionFunction<Double, Doublesx () {
public Double call (Double x) {
return -x;

}i

A doubleThenNegate variable is declared. This will hold the composed function
and is invoked as shown here:

CompositionFunction<Double, Double> doubleThenNegate;
doubleThenNegate = Compose.compose (doubleNumber,
negateNumber) ;

System.out.println (doubleThenNegate.call(5.0)) ;

This will outputa -10. 0.

Creating composite functions in Java 8

In Java 8, we can use the Function interface's compose method along with lambda
expressions instead to achieve the same results with a lot less effort as shown next.
The output will still be -10:

Function<Double, Double> doubleFunction = x -> 2 * X;
Function<Double, Double> second
= doubleFunction.compose (x -> -X);

The Function interface is found in the java.util. function package. The source
code for this interface is shown next. The default compose method is passed a
single function and returns a function encapsulating the passed function. The
requireNonNull method is used to support null values, and will be discussed in
Chapter 6, Optional and Monads. The andThen method will be discussed shortly.

The compose method uses a parameter named, before, and the
andThen method uses a parameter named, after. These names
’ indicate the order that the functions will be evaluated on.

@FunctionalInterface
public interface Function<T, R> {
R apply (T t);

default <V> Function<V, R> compose (
Function<? super V, ? extends T> before) {
Objects.requireNonNull (before) ;

[58]

Chapter 3

return (V v) -> apply(before.apply(v)) ;

}

default <V> Function<T, V> andThen (
Function<? super R, ? extends V> after) {
Objects.requireNonNull (after) ;
return (T t) -> after.apply(apply(t));

}

static <T> Function<T, T> identity() ({
return t -> t;

}
}

The default methods mean that objects that implement the interface do not have to
implement these methods. However, if necessary, they can be overridden. We will
elaborate on default methods in the Default methods and functions section.

Using the Function interface for function
composition

The previous example of the Function interface does not demonstrate how
the andThen method provides support for function composition. Consider
these function definitions:

F(x)=(2+x)*3;
g(x)=2+(x*3);

In the first function, we add 2 to x and the multiply it by 3. In the second function,
we multiply it by 3 and then add 2. If we apply these functions using a value of 5,
we get the following results, respectively:

f(5)=21
g(5)=17

We can illustrate this set of operations using a series of Function declarations.
A base function is declared first:

Function<Integer, Integer> baseFunction = t -> t + 2;

[59]

Function Composition and Fluent Interfaces

If we desire to duplicate the functionality of f(x) using composition, we use the
Function interface's andThen method:

Function<Integer, Integer> afterFunction =
baseFunction.andThen(t -> t * 3);
System.out.println (afterFunction.apply(5)) ;

This will display a 21. This is like saying, add 2 to the parameter and then multiply
it by 3.

To duplicate the functionality of g (x), we use the compose method:

Function<Integer, Integer> beforeFunction =
baseFunction.compose(t -> t * 3);
System.out.println (beforeFunction.apply(5)) ;

This will display 17. Here, we are saying multiply the parameter by 3 before you
add 2 to it.

In each of these lambda expression's declarations, the lambda expression was
matched against the Function interface's functional method. This method
is the apply method. This means that when the apply method is executed,
the corresponding lambda expression is executed.

Using the Functional interface to supplement
methods

However, the previous example does not convey the full power of this approach.
In the next example, a Customer and Salesman class are defined, which we will
use to get the e-mail address of a specific salesman's best customer:

public class Customer {
private String emailAddress;

public Customer (String emailAddress)
this.emailAddress = emailAddress;

}

public String getEmailAddress()
return emailAddress;

}
}

public class Salesman {

[60]

Chapter 3

private Customer bestCustomer;

Salesman (Customer bestCustomer) {
this.bestCustomer = bestCustomer;

public Customer getBestCustomer ()
return bestCustomer;

}

To get the e-mail address of a specific salesman's best customer, we can use an object-
oriented approach as shown here:

Customer customer = new
Customer ("bestcustomer@thebestcustomer.com") ;
Salesman salesman = new Salesman (customer) ;

System.out.println(salesman.getBestCustomer ()
.getEmailAddress()) ;

It will return:

bestcustomer@thebestcustomer.com

Passing instances of the Functional interface

However, this approach does not possess the flexibility of a functional solution.
Such a solution starts with three functional expressions:

* customerToEmailAddress: This expression returns an e-mail address
given a Customer instance

* salesmanToBestCustomer: This expression returns a Customer instance
given a Salesman instance

* toEmailAddress: This is the composite function that returns the e-mail
address of the salesman's best customer

These functions are declared here and use method references:

Function<Customer, String> customerToEmailAddress =
Customer: :getEmailAddress;

Function<Salesman, Customer> salesmanToBestCustomer =
Salesman: :getBestCustomer;

Function<Salesman, String> toEmailAddress =

salesmanToBestCustomer.andThen
(customerToEmailAddress) ;

[61]

Function Composition and Fluent Interfaces

The following s displays the previous e-mail address using these functions:

System.out.println (toEmailAddress.apply(salesman)) ;

The effort required to setup the functions requires more effort than the previous
object-oriented approach. However, we can use these lambda expressions in many
places where the invocation chaining approach cannot be used.

The real power of this approach lies in the ability to pass these functions around,
which is not possible using the object-oriented approach. To illustrate this approach,
we will create a Manager class which parallels that of the customer class. A salesman
is associated with a manager who possesses an e-mail address. The Manager class

is as follows:

public class Manager {
private String emailAddress;

public Manager (String emailAddress)
this.emailAddress = emailAddress;

public String getEmailAddress()
return emailAddress;

}

We will need to add the following code to the Salesman class. This will tie a
manager to a salesman:

private Manager manager

public Salesman (Manager manager) ({
this.manager = manager;

}

public Manager getManager () {
return manager;

}

A series of lambda expressions are then declared that parallel the previous
customer's e-mail related declarations:

Function<Manager, String> managerToEmailAddress =
Manager: :getEmailAddress;

[62]

Chapter 3

Function<Salesman, Manager> salesmanToManager =
Salesman: :getManager;

Function<Salesman, String> toManagerEmailAddress =
salesmanToManager .andThen (managerToEmailAddress) ;

To demonstrate the use of these functions, a Manager object is created along with
a new salesman. The toManagerEmailAddress function is then applied:

Manager manager = new Manager ("manager@thecompany.com") ;
Salesman salesman2 = new Salesman (manager) ;
System.out.println (toManagerEmailAddress.apply (salesman2)) ;
System.out.println(salesman2.getManager () .getEmailAddress()) ;

The output follows:

manager@thecompany.com

manager@thecompany.com

So far, we have merely duplicated the approach. However, we can declare a method
such as the following that is passed a Salesman instance and a function. This simple
function displays an e-mail address associated with the salesman.

public void processEmailAddress (
Salesman salesman,
Function<Salesman, String> toEmailAddress) {
System.out.println (toEmailAddress.apply(salesman)) ;

}

The method can be invoked using either of the two functions that return an e-mail
address as shown here:

processEmailAddress (salesman, toEmailAddress) ;
processEmailAddress (salesman2, toManagerEmailAddress) ;

The output follows:

bestcustomer@thebestcustomer.com

manager@thecompany.com

The flexibility to pass composite functions around allows their execution to be delayed
until it is needed. This flexibility is not available using the object-oriented approach.

[63]

Function Composition and Fluent Interfaces

Fluent interfaces

Fluent interfaces provide a convenient and easy-to-use technique for expressing
solutions to many different types of problems. They are similar to method chaining
but are more natural to use. It is a form of function composition where the method
invocations are chained together. In this section, we will discuss the difference and
similarities between method chaining, method cascading, and fluent interfaces.

Java supported fluent styles before Java 8 though their use was not common. For
example, in JavaFX 2 the IntegerProperty class possesses a number of numerical
methods that return the NumberBinding instances. These methods are used in a
fluent style as shown here:

IntegerProperty nl = new SimpleIntegerProperty(5);
IntegerProperty n2 = new SimpleIntegerProperty(2);
IntegerProperty n3 = new SimpleIntegerProperty(3);
NumberBinding sum = nl

.add (n2)

.multiply (n3);
System.out.println (sum.getValue()) ;

A value of 21 is displayed. The use of methods on individual lines and their
indention is a common way of coding, chaining, cascading, and using fluent
interfaces.

As an aside, the term, binding, refers to the ability of these objects to be
"re-evaluated" as one of their elements changes. This is demonstrated here:

nl.set(2);
System.out.println (sum.getValue()) ;

The output will be a 12.

Fluent interfaces in Java 8

In Java 8, the use of fluent interfaces is most visible with the Stream class and
the new Date and Time APIL. We have seen the stream class used in the previous
chapters. The following is a simple example, which sums the integers in a stream
that are greater than 6:

int hoursWorked[] = {8, 12, 8, 6, 6, 5, 6, 0};
int totalHoursWorked = Arrays.stream(hoursWorked)
.filter(n -> n > 6)
.sum() ;
System.out.println (totalHoursWorked) ;

[64]

Chapter 3

The sum displayed will be a 28. The stream method generates the stream, the
filter method removes those that are larger than ¢, and the sum method computes
their total.

The Date and Time API uses fluent interfaces to make it easier to construct date and
time-type objects. In the following example, a date in the future is computed using
method names that clearly convey their intent:

LocalDateTime timeInstance = LocalDateTime.now ()
.plusDays (3)
.minusHours (4)
.plusWeeks (1)
.plusYears(2) ;
System.out.println(timeInstance) ;

One possible output follows:

2017-04-28T10:39:43.691

There are many other places in Java 8 where fluent interfaces are used.

Method chaining and cascading

Method chaining consists of a series of method calls that are invoked against each
other. This technique is used in many Java classes. Method chaining eliminates
the need to introduce temporary variables.

Let's assume that we want to convert a string to lower case and then determine
the length of the string. In this example, we use intermediate variables to perform
this task:

String animal = "Cat";

String concat = animal.concat ("Dog") ;
String lower = concat.toLowerCase() ;
int length = lower.length() ;
System.out.println (lower) ;
System.out.println (length) ;

This results in the following output:

catdog
6

However, this approach is verbose and not as easy to read.

[65]

Function Composition and Fluent Interfaces

The following illustrates the same process, but uses method chaining:

String animal = "Cat";

System.out.println(animal
.concat ("Dog")
.toLowerCase ()) ;

System.out.println (animal
.concat ("Dog")
.toLowerCase ()
.length()) ;

The previous example also illustrates cascading. With cascading, each of the methods
in a chain returns an object that subsequent methods execute against. With chaining,
the object may not necessarily be the same object the method acted upon.

Cascading is similar to chaining, but the returned object is the current object.
Multiple methods are applied to the same object. It can be implemented in Java
using chaining where the method always returns this.

We will use the following class to contrast these two techniques. The class
possesses two methods: chainedMethod and cascadedMethod. They differ
in the objects they return.

public class Number {
public Number chainedMethod (int num) {
Number newTest = new Number () ;
// use num
return newTest;

}

public Number cascadedMethod (int num) {
// use num
return this;

}

There are two aspects to cascading:

* The return value will return the original object

* This object must be mutable

If it was not mutable, then it would be of limited value.

[66]

Chapter 3

Sometimes, the terms chaining and cascading are used interchangeably. For our
purposes, we will define method chaining as a technique that may return the same
or a different object. We define cascading as a technique, which always returns the
same object — the original object. The exception to this rule would be a method that
returns void. Frequently, it is called a terminating method. We will see examples
of a terminating method shortly.

Contrasting method cascading and fluent
interfaces

Method cascading and fluent interfaces are similar. The methods of both techniques
return the original object the method was executed against. They differ in the style
of the method names. Cascading is the foundation of fluent interfaces.

Fluent interfaces:

* Make the resulting code more readable and maintainable

* Are typically used to convey domain information

By domain information, we are referring to the use of method names that convey
the meaning of the method in a more natural and easier to understand style. For
example, we can use a Book class using a fluent interface as follows:

Book book = new Book () ;

Book.setTitle ("Twenty Thousand Leagues Under the Sea")
.setPages (129)
.setAuthor ("Jules Verne") ;

Alternatively, it can be expressed as:

Book.title ("Twenty Thousand Leagues Under the Sea")
.pageCount (129)
.author ("Jules Verne ") ;

The latter approach is arguably better.

The key difference between method cascading and fluent interfaces
is that fluent interfaces are designed to be more readable and convey
g more domain-specific information about its target.

[67]

Function Composition and Fluent Interfaces

Creating and using fluent interfaces

A fluent interface is implemented using method cascading. The critical part of this
process is to return the context of the method invocation so that it can be reused.
Specifically, it needs to:

¢ Return the method's context
e Reference itself

* Optionally terminate with a call that returns void

We will use several classes to demonstrate the creation and use of fluent interfaces.
Let's start with a simple class called Boat as shown here:

public class Boat
private String name;
private String country;
private int tonnage;
private int draft;

public String getName () {
return name;

}

public void setName (String name) {
this.name = name;

}

public String getCountry() {
return country;

}

public void setCountry(String country) {
this.country = country;

}

public int getTonnage () {
return tonnage;

}

public void setTonnage (int tonnage) {
this.tonnage = tonnage;

}

public int getDraft() {
return draft;

[68]

Chapter 3

}

public void setDraft (int draft) {
this.draft = draft;

}

public String toString() {

return "Name: " + this.name + " Country: " + this.country
+ " Tonnage: " + this.tonnage + " Draft: " +
this.draft;

}

The use of this class is demonstrated here where a simple instance of a Boat class
is created:

Boat boat = new Boat () ;
boat .setName ("Albatross") ;
boat .setCountry ("Panama") ;
boat .setTonnage (12000) ;
boat .setDraft (25) ;

Next, we will replace the setter methods with new versions that return this. Itis
necessary to replace the methods as opposed to adding them since their signatures
are identical. The only difference is the return data type, which is not part of a
method's signature. These declarations are as follows:

public Boat setName (String name) {
this.name = name;
return this;

}

public Boat setCountry(String country) {
this.country = country;
return this;

}

public Boat setTonnage (int tonnage)
this.tonnage = tonnage;
return this;

}

public Boat setDraft (int draft) {
this.draft = draft;
return this;

[69]

Function Composition and Fluent Interfaces

They can then be used with a cascading style as shown here:

boat .setName ("Albatross")
.setCountry ("Panama")
.setTonnage (12000)
.setDraft (25) ;

To create a fluent interface, we need to rename the setter methods. One possible
version is shown here:

public Boat named (String name) {
this.name = name;
return this;

public Boat country(String country) {
this.country = country;
return this;

public Boat tonnage (int tonnage) {
this.tonnage = tonnage;
return this;

public Boat draft (int draft) {
this.draft = draft;
return this;

}
They are used to create the same Boat instance as follows:

boat .named ("Albatross")
.country ("Panama")
.tonnage (12000)
.draft (25) ;

These fluent methods are essentially setter methods that violate the standard Java
naming convention. Set type methods should be passed a single value and should
return void. However, as the term implies, it is a convention and is not cast in stone.
Such conventions should only be violated when the results outweigh the benefits of
following the convention.

To further illustrate the use of fluent interfaces, a Port class is declared next to hold
a list of Boat instances. The class overloads the add method. The first version accepts
the name of a boat, creates a new instance of the Boat class, adds it to the list, and
then returns this instance.

[70]

Chapter 3

The second version accepts a Boat instance, adds it to the list, and returns the same
Boat instance:

public class Port
private List<Boat> boats = new ArrayList();

public Boat add(String name) {
Boat boat = new Boat () .named (name) ;
boats.add (boat) ;
return boat;

public Boat add(Boat boat) {
boats.add (boat) ;
return boat;

}
The use of the method's first version is illustrated here:

Port port = new Port();
Boat newBoat = port.add("Cloud") ;

The use of the method's second version is as follows:

boat .named ("Albatross")
.country ("Panama")
.tonnage (12000)
.draft (25) ;
port.add (boat) ;

This leads to an interesting technique where the fluent style is used as part of an
anonymous inner class. The previous example is duplicated here using a fluent style:

port.add (new Boat ()
{
named ("Albatross") ;
country ("Panama") ;
tonnage (1500) ;
draft (35) ;

3N

The double set of curly braces forming the nested blocks can be confusing initially.
The inner block statement is the anonymous inner class's initializer block. This
sequence of statements is displayed using a fluent style.

[71]

Function Composition and Fluent Interfaces

In contrast, we could have used the following more explicit version:

port.add (new Boat ()
{
this.named ("Albatross") ;
this.country ("Panama") ;
this.tonnage (1500) ;
this.draft (35);
}
I3

This example demonstrates that the fluent can be used and encountered in
unexpected situations.

Using fluent interfaces to hide older
interfaces/classes

As languages mature, they tend to find better ways of doing things. The evolution
of Java over the years attests to the changes that can occur. Older techniques are
often marked as deprecated to indicate that in the future they will not be supported.
However, the actual removal of the feature may not always be practical in some
situations.

An alternative is to provide a new interface that hides the older technique. When
this need arises, providing a fluent style interface can be a good implementation
choice. For example, a class may possess a series of getter and setter methods that
can be tedious to use. Supplementing this class with one that uses a fluent interface
will result in more readable solutions to problems. We will illustrate how this can
be accomplished by hiding the java.util.Random class within another class and
providing it with a fluent interface.

A class called FluentRandom is created, which provides a simple implementation.

It is limited to generating integers. One of the problems with the Random class is

that it does not readily provide a means to set the lower bound on the range of
integers that its next Int method returns. There is an overloaded nextInt version
that accepts an integer argument to specify the upper bound. While it is not hard to
modify the return value to accommodate a lower bound, it is not always convenient.
The FluentRandom class addresses this concern.

[72]

Chapter 3

The class maintains lower and upper instance variables that are used with the
nextInt method as shown next. These variables are set to 0 and Integer.MAX
VALUE, respectively, reflecting the Random class's default range of integers. Methods
are provided permitting these values to change. Also, the useAsseed method
controls the seed used for the random number generator:

public class FluentRandom extends Random
private int lower = 0;
private int upper = Integer.MAX VALUE;

public FluentRandom useAsSeed(long seed) {
this.setSeed(seed) ;
return this;

public FluentRandom asLower (int lower) {
this.lower = lower;
return this;

public FluentRandom asUpper (int upper) {
this.upper = upper;
return this;

@Override
public int nextInt() {
return lower + this.nextInt (upper - lower) ;

}
Here, only the nextInt method is used:

FluentRandom fr = new FluentRandom() ;
for (int i=0; i<5; i++)

System.out.println(fr. nextInt()) ;

[73]

Function Composition and Fluent Interfaces

One possible output follows:

1598703823
802097941
718536822
796766539
803170706

In this next example, several of its fluent methods are used. The methods' order is
not important and can be changed.

fr = new FluentRandom/()
.asLower (5)
.asUpper (25)
.useAsSeed (35) ;
for (int i=0; i<5; i++)
System.out.println(fr. nextInt()) ;

}

The example will always generate the following sequence, since a seed was
provided:

17

8

11

20

17

Using this approach, we can simplify the use of existing classes and interfaces.
However, since these implementations are not standard, they may not be as portable.

Using fluent interfaces with the Properties class

The properties class is used in many applications to provide a common means

of declaring a set of properties or attributes of an entity. For example, it is often
used to specify the configuration of a database connection as shown next. This has
been adapted from https://docs.oracle.com/javase/tutorial/jdbc/basics/
connecting.html. The Properties instance is used to specify the user name and
password for a database.

Connection conn = null;
Properties connectionProps = new Properties() ;
connectionProps.put ("user", this.userName) ;

[74]

https://docs.oracle.com/javase/tutorial/jdbc/basics/connecting.html
https://docs.oracle.com/javase/tutorial/jdbc/basics/connecting.html

Chapter 3

connectionProps.put ("password", this.password) ;

conn = DriverManager.getConnection (
"jdbc:" + this.dbms + "://" + this.serverName +
":" + this.portNumber + "/", connectionProps) ;

This approach can be verbose and non-intuitive. However, older classes may require
the use of the properties class. We can hide its usage by introducing a class to
encapsulate the entities properties.

In the following code sequence, the ConnectionProperties class is declared that
encapsulates these properties and provides a properties method to return the
equivalent Properties object:

public class ConnectionProperties
private String user;
private String password;
Properties properties = new Properties() ;

public ConnectionProperties user (String user)
this.user = user;
properties.setProperty ("user", this.user);
return this;

public ConnectionProperties password(String password) {
this.password = password;
properties.setProperty ("password", this.password) ;
return this;

public Properties properties() {
return properties;

}

We can now use the following sequence to establish a connection using a fluent
approach:

Connection conn = null;
ConnectionProperties cp = new ConnectionProperties() ;
cp.user ("user")

.password ("password") ;

[75]

Function Composition and Fluent Interfaces

conn = DriverManager.getConnection (
"jdbc:" + this.dbms + "://" + this.serverName +
":" + this.portNumber + "/", cp.properties());

This shortens the sequence and makes it easier to read and use. Using this technique
with a larger list of properties or where the properties are used extensively, will
make it even more valuable.

Extending fluent interfaces

Fluent interfaces are elegant and can be extended if needed. However, you have
to be careful when you do this. The key to the approach is to use generics. We will
illustrate this process by creating a variation of the Boat class called BaseBoat to
distinguish it from the Boat class. We will derive a class called sailBoat from the
base class.

Let's start with the BaseBoat and sailBoat declarations that do not use generics.
The BaseBoat class declaration is shown next, where four private instance variables
are declared and supported using fluent style methods:

public class BaseBoat
private String name;
private String country;
private int tonnage;
private int draft;

public String getName () {
return name;

public BaseBoat named (String name) {
this.name = name;
return this;

public String getCountry() ({
return country;

public BaseBoat country(String country) {
this.country = country;
return this;

public BaseBoat tonnage (int tonnage) {

[76]

Chapter 3

this.tonnage = tonnage;
return this;

public int getDraft() {
return draft;

public BaseBoat draft (int draft) {
this.draft = draft;
return this;

public String toString() {
return "Name: " + this.name + " Country: " + this.country
+ " Tonnage: " + this.tonnage + " Draft: "
+ this.draft;

}
The sailBoat class declaration is shown here. It uses two instance variables:

public class SailBoat extends BaseBoat {
private int numberOfSails;
private int numberOfHulls;

public int getSails() {
return this.numberOfSails;

public SailBoat sails(int numberOfSails) {
this.numberOfSails = numberOfSails;
return this;

public int getNumberOfHulls () {
return this.numberOfHulls;

public SailBoat hulls (int numberOfHulls) {
this.numberOfHulls = numberOfHulls;
return this;

public String toString() {

[77]

Function Composition and Fluent Interfaces

return super.toString/()
+ " Number of sails: " + this.numberOfSails
+ " Number of hulls: " + this.numberOfHulls;

}
Suppose we try to compile this code:

SailBoat sailBoat = new SailBoat ()
.named ("Endeavour")
.country ("United Kingdom")
.sails (3)

.tonnage (15)
.hulls (2);

Then, we will get the following error message:

error: cannot find symbol
.sails (3)
symbol: method sails(int)

location: class BaseBoat

This error occurs because the country method returns a BaseBoat object that does
not possess a sails method.

The declaration of the BaseBoat class methods returns instances of BaseBoat and not
SailBoat. The country method is a base class method and thus returns an instance
of BaseBoat. This class does not have a sails method. We can avoid this problem
using generics. It will use the derived class to specify the return type for the base
class methods.

A new version of the BaseBoat class using generics is declared as shown next. It
contains the same fields and methods as the Boat class. It differs in its use of generics
to account for derived classes. The DERIVED type forces the derived classes to provide
a type that can be incorporated into the base class definition. Otherwise, it is very
similar to the original class.

public class BaseBoat<DERIVED extends BaseBoat<DERIVED>> {
private String name;
private String country;
private int tonnage;
private int draft;

public DERIVED named (String name)
this.name = name;

[78]

Chapter 3

return (DERIVED)this;

public DERIVED country(String country) {
this.country = country;
return (DERIVED)this;

public DERIVED tonnage (int tonnage) {
this.tonnage = tonnage;
return (DERIVED)this;

public DERIVED draft (int draft) {
this.draft = draft;
return (DERIVED)this;

public String toString() {
return "Name: " + this.name + " Country: " + this.country

+ " Tonnage: " + this.tonnage + " Draft: "
+ this.draft;

}

An abbreviated version of the SailBoat class follows. The only difference from
the first version is the use of generics in its declaration:

public class SailBoat extends BaseBoat<SailBoat> {

}

In the following sequence, an instance of SailBoat is created and its methods
are used:

SailBoat sailBoat = new SailBoat ()
.named ("Endeavour")
.country ("United Kingdom")
.sails (3)

.tonnage (15)
.hulls(2) ;
System.out.println(sailBoat) ;

[79]

Function Composition and Fluent Interfaces

The output follows:

Name: Endeavour Country: United Kingdom Tonnage: 15 Draft: 0 Number of
sails: 3 Number of hulls: 2

We can use the methods in any order that we desired. The following will produce
the equivalent output:

sailBoat = new SailBoat ()
.tonnage (15)
.hulls (2)
.country ("United Kingdom")
.named ("Endeavour")
.sails(3);
System.out.println(sailBoat) ;

The use of generics allows us to successfully extend a fluent interface. This allows
us to use fluent interfaces in many more situations.

Default methods and functions

Default methods can be added to interfaces. They permit existing interfaces to be
expanded to include new methods without breaking the older code. It is the default
method of an interface that has an implementation. For example, consider a class that
implements an interface, and then later a default method is added to the interface.
The class has to implement all of the interfaces' abstract methods or the class will be
abstract. However, since a default method is not abstract and has an implementation,
it does not affect the class.

The addition of functions to Java suggests the need to incorporate their use with
older classes and interfaces. After all, it is desirable to take advantage of existing
code when possible to avoid rewriting it. Many of the default method additions to
existing Java packages have been done with the intent of supporting functions.

Default methods consist of the keyword, default, followed by the declaration of
a method and its implementations. This is illustrated in the Saveable interface
declared next. It consists of an abstract method, readFile, and a default method,
saveFile. The saveFile method constitutes a simplistic implementation:

public interface Saveable {
public Object readFile(String fileName) ;

public default void saveFile (String fileName, String content)
throws IOException {

[80]

Chapter 3

FileWriter fileWriter = new FileWriter (new File(fileName)) ;
fileWriter.write (content) ;
fileWriter.close() ;

}

Any class that implements this interface only needs to implement the readFile
method.

Since interfaces support multiple inheritance between other interfaces, interesting
problems can occur, including the diamond inheritance problem. While we do not
cover this topic here, a good reference to these issues is found at http: //examples.
javacodegeeks.com/java-basics/java-8-default-methods-tutorial/.

Static default methods

Java 8 also permits the addition of static methods to an interface. One advantage of
this capability is that it is no longer necessary to create a helper class to hold static
supporting methods. Prior to Java 8, if we wanted to provide a "standard" method
to support an interface, we needed to create a separate class that held these static
methods. The ability to add static methods to an interface eliminates the need for
these specialized helper classes.

The following code can be added to the Saveable interface. This method is treated
as a default method:

enum FileType {executable, readable, writeable, readWrite};

public static FileType standardFileType() {
return FileType.readWrite;

}

Default methods in Java 8

Default methods have been added to a number of older interfaces. For example,
two default methods have been added to the Iterable interface: forEach and
spliterator. Their signatures follow:

default void forEach (Consumer<? super T> action);
default Spliterator<Ts> spliterator();

[81]

http://examples.javacodegeeks.com/java-basics/java-8-default-methods-tutorial/
http://examples.javacodegeeks.com/java-basics/java-8-default-methods-tutorial/

Function Composition and Fluent Interfaces

The List interface implements the Iterable interface, which allows us to use these
methods immediately. The forEach method requires a functional interface for its
argument. This means that we can iterate through the elements of a List instance
using a lambda expression as follows:

List<String> list = Arrays.asList(
"Io", "Europa", "Ganymede", "Callisto");
list.forEach(s->System.out.println(s + " ")) ;

The output follows:

Io
Europa
Ganymede
Callisto

To better understand the addition of default methods, let's re-examine the Function
interface since it includes an abstract method, two default methods, and a static
method as follows:

@FunctionalInterface
public interface Function<T, R> {
R apply (T t);

default <V> Function<V, R> compose (
Function<? super V, ? extends T> before) {..}

default <V> Function<T, V> andThen (
Function<? super R, ? extends V> after) {..}

static <T> Function<T, T> identity() {..}

}

The default methods constitute a means of providing a standard implementation of
the intent of the functional interface. It avoids requiring the developer to implement
these methods. All the developer needs to do is to implement the apply method.
This is frequently accomplished using lambda expressions.

There are differences and similarities between an interface and an abstract class.
These are summarized in the following table:

Abstract class Interface

Can instantiate No No

Supports multiple inheritance | No Yes, between interfaces

[82]

Chapter 3

Abstract class Interface
Fields Flexible Are public, static, and final by default
Methods Flexible All public

The fields and methods of a class are more flexible than those of an interface. They

can be declared as public, private, or protected.

Multiple inheritance in Java 8

Consider the situation where we have two interfaces, both possessing a default
display method, and a class that implements both of these interfaces. This situation
is illustrated in the following set of declarations:

interface FirstBaseInterface ({

default void display () {

}

System.out.println("From FirstBaseInterface");

interface SecondBaselnterface {

default void display () {

System.out.println ("From SecondBaseInterface") ;

public class DerivedClass implements SecondBaselInterface,

FirstBaselInterface {

public void display () {

public static void main(String...

}

FirstBaseInterface.super.display () ;

new DerivedClass () .display () ;

args)

The DerivedClass class explicitly declared that it prefers the FirstBaseInterface
interface's display method using the following statement:

FirstBaseInterface.super.display () ;

[83]

Function Composition and Fluent Interfaces

It could have used the other interface, both interfaces' method, or neither. However,
it cannot use the following:

super.display () ;
This will generate an error indicating that the display cannot be found.

There is also the situation where the diamond inheritance problem occurs. This is
where you have one base interface, which possesses a default method. Two other
interfaces will then extends this base interface with their own version of the default
method. No problem so far, since they are overriding the base interface method. When
a fourth interface extends both of the intermediate interfaces, then the fourth interface
will need to state its preference as was done in the Derivedclass display method.

Summary

Method composition provides a flexible way of combining two or more functions
into a single function. This offers flexibility that will otherwise not be present. We
illustrate how this technique can be implemented using the Function interface. Its
compose and andThen methods support the execution of functions before or after
another function. We also demonstrated the usefulness of this technique by passing
the composite functions to other methods allowing it be executed when needed.

Fluent interfaces are common in functional programming languages. We discussed
the difference between this type of interface and the chaining and cascading
techniques. While similar, chaining methods do not necessarily return the same
object each time. Cascading does return the same object, and fluent interfaces

add a more natural set of method names.

Given the importance of fluent interfaces in a class's design, we demonstrated how to
create fluent interfaces. We followed up by showing how it can be used to hide older
classes and interfaces. This allows us to make older code more readable and useful.

Default methods are critical in bridging the gap between older Java libraries and the
new functional programming approach. It permits the addition of new methods to old
interfaces without breaking existing code. Java 8 uses default methods extensively to
allow older classes and interfaces to work with and use lambda expressions.

Now that you have a good understanding of function composition and fluent
interfaces, we can explore how they are used in the support of streams in the next
chapter. Streams are composed of a sequence of elements that offer a more flexible
technique for processing data.

[84]

Streams and the Evaluation
of Expressions

In this chapter, we will examine how Java 8 supports the concept of streams. A
stream can be thought of as a sequence of elements processed by a series of methods
using a fluent interface. The stream concept is supported by the Stream class.

We will begin with a brief overview of the stream class and its methods. After
conveying the essence of the stream technique, we will examine how streams are
created and show how they can replace imperative and object-oriented approaches
to solve similar problems. The intent is to provide an overview of the Stream class
and its methods. A detailed coverage of each method is not possible here.

The topics you will cover include the following:

* Creating fixed and infinite length streams
* Filtering a stream
* Sorting streams
* Mapping elements of a stream
How stream methods are evaluated is also of interest—either in a lazy or eager

manner. How they are evaluated affects when their methods are executed. The
uses and advantages of each approach are explained.

One of the useful features of streams is how they support concurrent behavior.
Streams are executed concurrently using the parallel method. While this is
easy to achieve, care must be taken use it correctly.

[85]

Streams and the Evaluation of Expressions

The Stream class and its use

The stream class provides the primary support for the stream concept in Java.
However, there are specialized classes, such as the DoubleStream, IntStream, and
LongStream classes, that handle numbers. In addition, the collection interface
supports the creation of streams.

A stream will support either a finite or an infinite sequence of elements. The methods
of a stream can be classified in a number of ways such as mapping, filtering, and
sorting type methods. We will start with a simple example of a stream, and then
follow up with a discussion of how they are created and several of their methods.

Let's assume that we need to process an array of numbers by summing the values
of each unique element. For example, in the following array, there are six distinct
numbers whose sum is 35:

int[] numbers = {3,6,8,8,4,6,3,3,5,6,9,4,3,6};
One approach to solve the problem involves:

1. Finding the distinct numbers in the array.

2. Summing these numbers.

Finding the distinct numbers is an instance of the count-distinct problem as
explained at http://en.wikipedia.org/wiki/Count-distinct problem.
The summation is relatively straightforward.

First, we will examine an imperative solution to the problem. We will use the
Hashset class to hold the distinct elements of the array and a simple loop to compute
their sum. The following sequence adds each distinct number in the array to the set:

Set<Integer> numberSet = new HashSet<>();
for (int number : numbers) {
numberSet .add (number) ;

}
Next, we iterate through each element of the set, adding them to the total variable:

int total = 0;
for (int number : numberSet) {
total += number;

}

[86]

http://en.wikipedia.org/wiki/Count-distinct_problem

Chapter 4

However, using streams will greatly simplify this process. In the next sequence, a
Stream object is created using the Arrays class's stream method followed by the use
of the distinct and sum methods. The stream method takes the numbers array and
returns a Stream instance representing the array. The distinct and sum methods
perform the operations suggested by their names:

total = Arrays.stream(numbers)
.distinct ()
.sum() ;

This is much shorter and easier to follow than the equivalent iterative approach.

We can visualize the typical stream process using the following figure. A data
source is converted to a stream. A series of operations are executed against the
stream followed by a terminating operation. In the previous example, we used one
intermediate method, distinct, and then the terminal method, sum. The stream
operations are effected by methods. Refer to the following diagram:

Elements

Figure 1: The Stream process

Java 8's stream concept is often a better design and performance choice than many
equivalent imperative approaches. It helps separate the "what to do" from "how
to do". The implementation details are left to Java. In this sense, it represents a
declarative style of programming. In Java, a stream is not a data structure. We can
simply think of it as a potentially unbounded sequence of elements.

Collections and streams both represent a series of elements. They differ in a number
of ways. A collection holds the entire set of elements in memory. Elements are added
and deleted from a collection. A stream is not complete in the same sense. Only part
of the stream will be present at any time. Its elements are computed as needed. In
addition, a collection requires the programmer to explicitly iterate over its elements
using one of several techniques such as the for-each statement. With a stream, the
iteration is implicit in its operation.

[87]

Streams and the Evaluation of Expressions

Intermediate and terminal methods

Most stream methods will perform some operation on the elements of the stream
and then return the stream. These are called intermediate methods. This includes
the distinct method used earlier. There are also terminal methods that do not
return the stream and effectively end the processing sequence. The sum method
is a terminal method.

Intermediate methods always return a stream and do not actually modify the stream,
but create a new stream instead. The processing of a stream starts when the terminal
operation starts and stops when the terminal method completes. This will be clearer
as we work through this chapter's examples.

Terminal methods may produce a result as the sum method did, or it can produce
a side effect. After a terminal method has been executed, the stream is said to have
been consumed. This means the stream cannot be used again.

For example, we can rewrite the previous example using the IntStream class. This
is a specialized stream class that only holds integers. Since our stream consists of
integers, this is an appropriate class to use:

IntStream stream = Arrays.stream(numbers) ;
total = stream

.distinct ()

.sum() ;

This will produce the same results as before. However, if we add the following
statement that sums all of the elements of the array, immediately following the
previous code sequence, the program will terminate.

total = stream.sum() ;
This will generate the following exception:

Exception in thread "main" java.lang.IllegalStateException: stream has
already been operated upon or closed

Once a stream has been used, it cannot be reused. We will need to create new stream
if we want to perform additional processing. In the next section, we will focus on
how steams are created.

[88]

Creating streams

Streams can be of fixed or infinite length. In the previous example, we used an array

of integers to create a fixed length stream. However, if we want to process data

arriving through a network connection, this stream of data may appear to be infinite.

We can create both types of streams in Java 8.

We will use a Rectangle class to demonstrate the use of streams in several
sections of this chapter. The class possesses position and dimension variables
and three methods:

* scale: This changes the size of a rectangle
* getArea: This returns its area

* tostring: This displays its values
The class declaration follows:

public class Rectangle
private int x;
private int y;
private int height;
private int width;

public Rectangle(int x, int y, int height, int width) {
this.x = x;
this.y = y;
this.height = height;
this.width = width;

public Rectangle scale(double percent)
height = (int) (height * (1.0 + percent));
width = (int) (width * (1.0 + percent));
return this;

public int getArea() {
return height*width;

public String toString() {

[89]

Streams and the Evaluation of Expressions

return "X: " + x + " Y: " + vy
+ " Height: " + height + " Width: " + width;

Fixed length streams

We have already seen how a finite stream of integers is created using the Arrays
class's static stream method:

int[] numbers = {3,6,8,8,4,6,3,3,5,6,9,4,3,6};
IntStream stream = Arrays.stream(numbers) ;

The stream method is not limited to work with integers. It can also be used with
objects such as the ones shown here:

Rectangle[] rectangles = {
new Rectangle (10, 10, 50, 75),
new Rectangle (30, 40, 30, 45),
new Rectangle (110, 70, 70, 15),
new Rectangle (50, 10, 45, 35)
}i

Stream<Rectangle> stream = Arrays.stream(rectangles) ;

The stream method also exists as a default method in the collection interface.
This implies that the method can be used with classes such as ArrayList, Hashset,
and TreesSet. The following illustrates its use with an ArrayList instance:

List<String> cities = new ArrayList<>();
cities.add ("London") ;

cities.add ("Paris") ;

cities.add("Cairo") ;

cities.add("Manila") ;

Stream<Strings> cityStream = cities.stream() ;

However, some streams may be conceptually unlimited in length. These are
discussed next.

Infinite streams

An infinite stream may be a video or audio feed of indeterminate length. Data from
a sensor device may be effectively infinite, at least until the device stops sending
information. These types of streams can be represented by the Stream class.

[90]

Chapter 4

The following code illustrates an imperative approach for generating an infinite
series of random numbers:

Random random = new Random() ;
while (true) {
int number = random.nextInt () ;

// process number

}

There are two stream methods used to create infinite streams:

¢ The iterate method

* The generate method

The values returned by these methods are not generated until they are needed.
Otherwise, this will require that all of the values be generated before the stream is
created. Since there are infinite values, the stream will never be created. Also, the
length of an infinite stream is frequently restricted using the 1imit method. This
method will be demonstrated shortly.

Using the iterate method to create an infinite stream

The iterate method uses a seed and a UnaryOperator instance. The method is
declared as follows:

static <T> Stream<T> iterate (T seed, UnaryOperator<T> f)

The seed is the initial value used. The UnaryOperator instance, frequently
implemented using a lambda expression, uses the seed value to create a new value.
This value is used in the next iteration.

In the following example, a simple series of numbers is displayed. An initial value of
zero is returned first. The value is incremented by one each time the iterate method
is invoked. The 1imit method will restrict the output to 10 elements:

IntStream.iterate(0, n -> n + 1)
.limit (10)
.forEach(n -> System.out.print(n + " "));

The following output is produced:

01234567829

[91]

Streams and the Evaluation of Expressions

We can create an infinite stream of strings as easily:

Stream.iterate ("Going",m -> m + "...")
.limit (5)
.forEach(System.out: :println) ;

The output of this statement follows:

GFoing

Coing. . -

The 1imit method provides simple way of controlling the number of elements
produced by a stream.

The filter method, which will be detailed in the Using the filter method section, will
also restrict the numbers generated. In the following sequence, only the numbers 11
through 20 are displayed:

IntStream.iterate(0, n -> n + 1)
.filter(n -> n>10 && n<100)
.limit (10)
.forEach(n -> System.out.print(n + " "));

We need to be careful when creating our streams. If we reverse the order of the
filter and limit methods, no output is generated. This is because we limit the
output to the first 10 numbers, 0 through 9, and these are filtered out.

We can also accidentally create infinite streams. In the previous example, if we had
not used the 1imit method, then the numbers 11 through 99 will be displayed, but
the stream will never terminate. The program will behave as if it was stuck in an
infinite loop.

In the following example, the modulo division means that only 0's and 1's will be
generated. The distinct method eliminates duplicates, and the 1imit method
restricts the output to 10 numbers. Since only two numbers are created, the limit
of 10 numbers is never reached and the stream runs forever.

IntStream.iterate (0, n -> (n+1l)%2)
.distinct ()
.limit (10)
.forEach(System.out: :println) ;

[92]

Chapter 4

The problem is compounded when we use a parallel stream. These types of streams
are covered in the Stream and concurrent processing section.

Generating a stream of random text is useful for testing purposes. It eliminates the
need to create a test file containing test data. Instead, a possible random set of strings
can be used.

One approach to create such a stream is to use the Scanner class to get the
input from the keyboard. Another approach uses the iterate method. We will
demonstrate both the techniques.

The Scanner class example is as follows:

Scanner scanner = new Scanner (System.in) ;
Stream.iterate (scanner.next (), s -> scanner.next())
.forEach(System.out: :println) ;

The output will simply display the text entered. We can use the 1imit method to
control the number if input values processed.

The next example will create a series of simple sentences based on a random
combination of words. Three arrays are created representing the subject, verb, and
objects of a sentence. The Random class will randomly select among the possible
combinations:

String[] subject = {"cat", "dog", "monkey", "bat"};
String[] verb = {"chased", "ate", "lost", "swatted"};
String[] object = {"ball", "rat", "doughnut", "tamale"};

Random random = new Random() ;

The iterate method is shown next where the three words are combined in a
random order:

Stream.iterate("", m -> subject [random.nextInt (3)]
+ " " 4+ verb[random.nextInt (3)]
+ " the " + object[random.nextInt (3)])
.limit (5)

.forEach(System.out: :println) ;

One possible output follows:

dog lost the ball
monkey lost the rat
monkey ate the rat

cat lost the rat

[93]

Streams and the Evaluation of Expressions

Only four sentences appear to be generated. This is because we used an empty string
for the initial value. This can be corrected using the following expression as the first
argument of the iterate method instead:

subject [random.nextInt (3)]
+ " " 4+ verb[random.nextInt (3)]
+ " the " + object[random.nextInt (3)]

Using the generate method to create an infinite
stream

The generate method uses a Supplier interface instance as its argument. Each time
a new value is needed, the instance's get method is invoked. The declaration of the
generate method follows:

static <T> Stream<T> generate (Supplier<T> s)

To generate an infinite stream of repeating values, use a simple lambda expression
to return the same value each time. In the following example, a series of five zeros
are displayed:

Supplier intSupplier = () -> 0;
Stream.generate (intSupplier)

.limit (5)

.forEach(System.out: :println) ;

To generate a stream based on the previous value, we will need to use a method that
allows us to increment a number. We will use the following method that increments
a static variable each time it is called:

static int number = 0;
public int nextInt()

return number++;

}
If we use it with the following stream, it will display the numbers from 0 to 4:

Stream.generate (() ->nextInt ())
.limit (5)
.forEach(System.out: :println) ;

[94]

Chapter 4

We are unable to use a lambda expression in place of the next Int method. If we try
to use the following stream, it will generate a syntax error:

int number = 0;
Stream.generate (() ->number++)

.limit (5)

.forEach(System.out: :println) ;

The error message will be:

local variables referenced from a lambda expression must be final or
effectively final

We cannot access external variables unless they are effectively final. We violated this
rule when we tried to modify the local variable, number.

However, we can use a method reference to generate random numbers as
shown here.

Supplier<Double> randomSupplier = Math::random;
System.out.println() ;
Stream.generate (randomSupplier)

.limit (4)

.forEach(System.out: :println) ;

One possible output follows:

0.3865760805523275
0.3560223160363011
0.14676285607241135
0.46249744143226224

Infinite streams can also be created using recursion, but this is a rather
expensive technique.

Using the Stream class methods

In this section, we will explore how the stream class methods are used to solve
various types of problems. Streams are useful for transforming stream elements,
filtering elements, and reducing elements. They can mimic SQL-type processing and
implement the map-reduce paradigm, which we will illustrate in the Implementing the
map-reduce paradigm section.

[95]

Streams and the Evaluation of Expressions

Filter methods

The process of filtering involves iterating over a sequence and eliminating those
elements that are no longer needed. We will examine how this is accomplished using
an imperative loop and then how it is performed using streams.

Assume that we want to filter out the plural names in an animal list. We start with an
array of strings containing animal names. Each element of the array will be matched
against a regular expression to determine if ends with an "s". If it is not plural, it will
be added to a list as shown here:

String[] animals = {"cats", "dog", "ox", "bats"
"horses", "mule"};
List<String> list = new ArrayList<>();
for (String name : animals) {
if (!name.matches (".*s$")) {
list.add (name) ;

}
}

The list is then sorted and displayed:

list.sort (null) ;
for (String name : list) {
System.out.println (name) ;

}
The output follows:

dog
mule

ox

The 1ist object was necessary because we wanted to display the animal names in
alphabetical order. The iterative approach works, but is verbose compared to the
filter method that we will demonstrate shortly. In addition, it is harder to perform
this operation concurrently. As we will demonstrate in the Stream and concurrent
processing section using parallel streams that simplifies this task.

We will demonstrate three filter type methods:

* filter: This leaves out elements
* distinct: This leaves out duplicates

* skip: This skips over elements

[96]

Chapter 4

Each of these removes elements from the stream. Actually, elements are not
removed, but rather select certain elements for further processing. We will not
demonstrate the distinct method since we illustrated its use previously.

Using the filter method

We will duplicate the previous example using a stream and the £ilter method.
It is simpler and avoids creating an explicit intermediate variable to perform the
sorting operation.

The filter method takes an argument that implements the predicate interface.
This argument must implement the interface's test method. It is passed a single
value and returns a Boolean result. If the method returns true, then the filter
method forwards the element, otherwise it is effectively removed from the stream.

In the next code sequence, the previous example is duplicated using the filter
method. In this case, the String class's matches method uses a regular expression
to determine if its argument is plural.

Stream<String> animalStream = Arrays.stream(animals) ;
animalStream

filter (x->!X.matches (".*ss$"))

.sorted ()

.forEach (x->System.out.println(x)) ;

The £ilter method can also mimic SQL-type statements. The following SQL
select statement will return a set of record from the customer table where salesman
is "Ralph":

Select * from Customer where salesman = "Ralph"

We can mimic this behavior easily. Let's assume that we want to perform a select
statement similar to the following:

Select * from Rectangles where x>10

Instead of using a database, we will use the array of Rectangle objects created
earlier. To support this example, we added a getx method to the Rectangle class.
The following demonstrates the process where the array is converted to a stream,
and then the filter and forEach methods are applied to it:

Stream<Rectangle> stream = Arrays.stream(rectangles) ;
stream.filter(r -> r.getX() > 10)
.forEach(r -> System.out.println(r));

[97]

Streams and the Evaluation of Expressions

The output follows:

X: 30 Y: 40 Height: 30 Width: 45
X: 110 Y: 70 Height: 70 Width: 15
X: 50 Y: 10 Height: 45 Width: 35

This illustrates that the SQL paradigm of processing is easily supported by
streams. If the nature of the problem lends itself to this technique, then streams
can be applied readily.

Using the skip method

The skip method acts similar to the £ilter method except that the number of
elements, to ignore, are specified by a 1ong argument. To demonstrate this method,
we will create the following stream containing 14 numbers:

int [] numbers = {3, 6, 8, 8, 4, 6, 3, 3, 5, 6, 9, 4, 3, 6};
IntStream stream = Arrays.stream(numbers) ;

Before we demonstrate the skip method, let's re-examine the IntStream class and its
associated IntSummaryStatistics class. Streams of numbers can be generated and
used for a variety of purposes. They can be used to represent payroll data, grades, a
package's dimensions, and any number of other uses. As such, statistics like average
and largest numbers are often of interest. The Int SummaryStatistics class serves

to collect and generate these types of statistics.

In the following sequence, the integer stream is processed by first skipping the first
five elements and then using the terminal stream method, summaryStatistics,
to return an instance of the IntSummaryStatistics class:

IntSummaryStatistics stats =
stream.skip(5) .summaryStatistics () ;

The stats variable is used as shown here:

System.out.println("Average: " + stats.getAverage()) ;
System.out.println("Count: " + stats.getCount());
System.out.println("Min: " + stats.getMin()) ;
System.out.println("Max: " + stats.getMax());
System.out.println("Sum: " + stats.getSum()) ;

[98]

Chapter 4

The following output is produced:

Average: 5.0

Count: 9
Min: 3
Max: 9
Sum: 45

Sorting streams

Sorting is a very common and useful technique. To sort the elements of a stream, the
overload sorted method is used. There is a no argument version that sorts according
the natural ordering of the data stream and a single argument version that uses an
object that implements the comparator interface.

Let's continue with our number stream:

int[] numbers = {3, 6, 8, 8, 4, 6, 3, 3, 5, 6, 9, 4, 3, 6};
IntStream stream = Arrays.stream(numbers) ;

A simple use of the sorted method is as follows:

stream.sorted () .
forEach (n->System.out.print(n + " "));
System.out.println() ;

The output will appear as the following:

3333445606626 2182829

To get distinct values, we can use the following code sequence:

stream = Arrays.stream(numbers) ;
stream
.sorted ()
.distinct ()
.forEach(n->System.out.print(n + " ")) ;
System.out.println() ;

The output follows:

3456829

[99]

Streams and the Evaluation of Expressions

Mapping methods

Mapping operations transform an element of a stream. For example, we may want to
increase all employees' salaries by five percent or convert a string to lowercase. The
map and flatMap methods perform this type of operation.

The map method transforms an element into a different value. The f1latMap method
can also transform an element, but it is intended to collapse a series of streams into
one stream. We will demonstrate the map method first.

We will also explore how the map-reduce process is supported using streams. These
techniques perform a mapping operation against each element of a stream, and then

it combines these transformations into a terminal value. For example, we can use this
technique to give all of our employees the five percent raise and then total these values.

Understanding the mapping operation

To demonstrate these techniques, we start by creating an array of Rectangle objects:

Rectangle[] rectangles = ({
new Rectangle (10, 10, 50, 75),
new Rectangle (30, 40, 30, 45

)
(30),
new Rectangle (110, 70, 70, 15),
new Rectangle (50, 10, 45, 35)

Vi

We will use the following imperative example to apply the scale method to each
element and to total their new areas. While the code can be rewritten to use a single
loop, two loops are used to clearly separate the mapping and summation operations.
The first loop maps the elements of the area to new values. The second loop performs
a summation operation:

System.out.println("Iterative mapping") ;

for (Rectangle rectangle : rectangles) ({
rectangle.scale(0.25) ;

}

int total = 0;

for (Rectangle rectangle : rectangles) ({
total += rectangle.getArea() ;

}

System.out.println(total) ;

When executed, it will display a total area of 11,812. This is essentially an imperative
version of the map-reduce paradigm. In the next sections, we will demonstrate
various streaming techniques to accomplish the same task.

[100]

Chapter 4

Implementing the map-reduce paradigm

The map-reduce paradigm is a popular technique for transforming data and then
performing a reduction type operation where the data is condensed in some way.
We will examine several stream techniques that support this operation. The process
consists of using the map method followed by the reduce method.

To illustrate the process, instances of the Rectangle class developed in the previous
section will be scaled, and then their total area will be computed. The scaling process
is the mapping operations, and the total sum represents the reduction operation.

There are several ways of performing the map-reduce operation using a stream. The
first technique will use two mapping methods and a sum method. As shown next,

a stream of rectangles is created. The first map method applies the scale method
against each stream element. The mapToInt method maps a Rectangle instance to
an integer using the getArea method. The sum method computes a cumulative total.

Stream<Rectangle> stream = Arrays.stream(rectangles) ;
total = stream

.map(r -> r.scale(0.25))

.mapToInt (Rectangle: :getArea)

.sum() ;
System.out.println(total) ;

The scale method modifies the Rectangle instance, which is not desirable from a
pure functional programming approach. Alternatively, we can develop and use a
scale method that returns a new instance of a Rectangle instance. In addition, we
could have used a second map method instead of the mapToInt method to achieve the
same effect as shown next. However, the mapToInt method is more explicit.

.map (Rectangle: :getArea)
The stream approach is easier to follow and more concise than the iterative approach.

The second approach uses two map methods and then the reduce method. The map
methods are applied as before. The reduce method takes two parameters: an initial
total value of zero and a lambda expression to perform the summation.

stream = Arrays.stream(rectangles) ;
total = stream
.map(r -> r.scale(0.25))
.mapToInt (Rectangle: :getArea)
.reduce (0, (r, s) -> 1 + 8);

[101]

Streams and the Evaluation of Expressions

The lambda expression matches the apply method of the BiFunction interface. This
implementation will compute a cumulative sum. The first parameter represents a
sum, while the second parameter is the current rectangle's area. While this approach
is more verbose than the earlier use of the sum method, it provides more flexibility if
we need to perform a more sophisticated reduction operation.

To better understand how this works, let's go back and consider this imperative
implementation:

for (Rectangle rectangle : rectangles) ({
rectangle.scale(0.25) ;
System.out.println(total + " - " + rectangle.getAreal());
total += rectangle.getArea() ;

}

System.out.println(total) ;

It will display each rectangle's area along with a cumulative sum. When executed,
we get the following output:

0 - 5766

5766 - 2072

7838 - 1566

9404 - 2408

11812

Next, let's modify the stream implementation. Instead of using the following;:

.reduce (0, (r, s8) -> r + 8);

Let's use the following more verbose versions where the values of r and s are
displayed:

.reduce (0, (r, s) -> {
System.out.println(r + " - " + s);

return r + s;

1)
The following output is produced, which is identical to the imperative solution:

0 - 5766
5766 - 2072
7838 - 1566
9404 - 2408
11812

[102]

Chapter 4

We can see that the r variable holds the cumulative sum, while the s variable holds
the area for a specific rectangle.

Using the flatmap method

To understand the f1atMap method, it is useful to consider the concat method first.
This method simply concatenates two streams together. In the following example,
two streams are created from two lists of Rectangle objects:

List<Rectangle> listl = Arrays.asList(

new Rectangle (10, 10, 20, 20),

new Rectangle (10, 20, 30, 40),

new Rectangle (40, 30, 20, 20));
List<Rectangle> list2 = Arrays.asList (

new Rectangle (50, 50, 30, 30),

new Rectangle (60, 60, 20, 20));
Stream<Rectangle> listlStream = listl.stream() ;
Stream<Rectangle> list2Stream = list2.stream() ;

The concat method is used here:

Stream<Rectangle> concatenatedStream =
Stream.concat (listlStream, list2Stream) ;
concatenatedStream. forEach(System.out: :println) ;

The output is as follows:

X: 10 Y: 10 Height: 20 Width: 20
X: 10 Y: 20 Height: 30 Width: 40
X: 40 Y: 30 Height: 20 Width: 20
X: 50 Y: 50 Height: 30 Width: 30
X: 60 Y: 60 Height: 20 Width: 20

The concat method simply combined the two streams, but did not modify elements
of either stream. Similar to the concat method, the f1atMap method also performs
a concatenation type operation. Like the concat method, it returns a St ream object.
However, it can also modify the stream.

The £1atMap method is passed a Function instance, which accepts a value and
returns a Stream object. The £1atMap method's declaration follows:

<R> Stream<R> flatMap (Function<? super T,
? extends Stream<? extends R>> mapper)

[103]

Streams and the Evaluation of Expressions

The Function instance's apply method's declaration is shown next:
R apply (T t)

It will be passed an argument of type: ? super T, as defined by the mapper

data type. It will return an instance of type: ? extends Stream<? extends R>.
The Function interface's apply method is executed against each element and
then returns a stream. It will be called repeatedly with each invocation returning
a stream. That is, each invocation of the apply method will return a stream.

The flatMap method returns a Stream object that has "flattened" these multiple
argument streams.

We will illustrate how we can combine several lists using an imperative approach.
As we will see, this can be done with less effort using streams. First, we declare a list
where each element is a list of Rectangle objects. This is a list of lists of Rectangle
objects:

List<List<Rectangle>> rectanglelLists = Arrays.asList(
Arrays.asList (new Rectangle (10, 10, 20, 20),
new Rectangle (10, 20, 30, 40),
new Rectangle (40, 30, 20, 20)),
Arrays.asList (new Rectangle (50, 50, 30, 30),
new Rectangle (60, 60, 20, 20)),
Arrays.asList (new Rectangle (100, 100, 30, 40),
new Rectangle (110, 10, 20, 20),
new Rectangle (120, 10, 50, 60))
)i

Another list is created that will hold the combined elements of these lists. The
ArrayList class's addall method adds these to the new list:

List<Rectangle> flatList = new ArrayList<>();
for (List<Rectangle> rectangleList : rectangleLists)
flatList.addAll (rectanglelList) ;

}
The content of the new list is displayed as follows:

for (Rectangle rectangle : flatList) {
System.out.println (rectangle) ;

[104]

Chapter 4

The output for this example is shown here:

X: 10 Y: 10 Height: 20 Width: 20
X: 10 Y: 20 Height: 30 Width: 40
X: 40 Y: 30 Height: 20 Width: 20
X: 50 Y: 50 Height: 30 Width: 30
X: 60 Y: 60 Height: 20 Width: 20
X: 100 Y: 100 Height: 30 Width: 40
X: 110 Y: 10 Height: 20 Width: 20
X: 120 Y: 10 Height: 50 Width: 60

The lists have been combined and flattened. Instead of a list of lists, we have a
single list.

We can achieve the same results using a stream as shown next. A stream of
rectangle lists is created. The £1atMap method is then applied against the list,

using a lambda expression. This expression uses the st ream method to convert each
list to a stream and then returns the stream. The forEach method then displays the
elements of the new stream:

Stream<List<Rectangle>> rectangleListStream =
rectanglelLists.stream() ;
Stream<Rectangle> rectangleStream = rectangleListStream
.flatMap((list) -> list.stream());
rectangleStream. forEach(System.out: :println) ;

The output will be the same one we obtained using the imperative approach. While
the stream method appears to use a bit more code, its real power comes from its
ability to more elegantly express solutions to problem. The previous example can be
rewritten to get the same results as follows:

rectanglelLists.stream()
.flatMap((list) -> list.stream())
.forEach(System.out: :println) ;

In the previous example, we did not modify any elements of the initial lists.
However, we can use the £1atMap method to modify the stream elements.

For example, in the next code sequence, the height of each rectangle is set to 30
and the distinct areas greater than 900 are displayed:

rectangleLists
.stream()
.flatMap (

[105]

Streams and the Evaluation of Expressions

(list) -> list.stream()
.map (r -> {
r.setHeight (30) ;
return r;
)
.filter(r -> r.getArea() > 900)
)

.map (r -> r.getArea())
.distinct ()
.forEach(System.out: :println) ;

The output is as follows:

1200
1800

The £latMap method can be useful when multiple streams need to be combined.

Lazy and eager evaluation

There are three terms dealing with this topic: lazy loading, lazy evaluation, and eager
evaluation. They are all present in most functional programming languages. These
terms are defined as follows:

* Lazy loading: Delaying an expensive loading operation until needed.

* Lazy evaluation: Refers to the delaying of the evaluation of an operation
until it is needed. Lazy evaluation support infinite streams.

* Eager evaluation: An operation is executed as soon as it is encountered.

We will discuss lazy and eager evaluation in this section. Lazy loading can occur
when a line of a file is not read until it needs to be processed. This can occur in a
stream when a line is read depending on the operations performed. Streams are
sometimes called lazy sequences because they are often evaluated in a lazy manner.

The following demonstrates lazy evaluation. A part of this example first appeared
in Chapter 1, Getting Started with Functional Programming. Here, we clearly show that
the stream is not evaluated until the terminal operation is introduced. A lambda
expression is declared that displays each number as it is processed:

IntUnaryOperator sampleMap = num -> {
System.out.println ("number: " + num) ;

return num;

[106]

Chapter 4

}i
Random random = new Random() ;
IntStream randomStream = random.ints ()
.limit (5)
.map (sampleMap)
.sorted () ;
System.out.println (randomStream) ;
randomStream. forEach (System.out: :println) ;

The first line of the following output displays the IntStreamclass's toString
method representation of the random stream. The next five lines are produced

by the print1n method in the lambda expression. The last five lines are the result
of the forEach method being called:

java.util.stream.SortedOps$0fInt@85ede7b
number: -1920271154
number: -316602508
number: -1274637426
number: 683544337
number: 1482205327
-1920271154
-1274637426
-316602508
683544337
1482205327

The map method is not executed when the stream is declared, but rather when the
forEach method is used. This is lazy evaluation - the expression is not evaluated
until it is needed.

The following example illustrates how even arithmetic expressions are not evaluated
until needed. Four lambda expressions are defined. In the first one, we try to divide
by zero which, when executed, will abort the program.

Function<Integer, Integer> divide = n->1/0;
Function<Integer, Integer> add = n->n+3;
Function<Integer, Integer> multiply = n->n*5;
Function<Integer, Integer> subtract = n->n-4;

[107]

Streams and the Evaluation of Expressions

These expressions are assigned to an array, which is then converted to a stream:

Function[] arr = {divide,add,multiply, subtract};
Stream<Function> stream = Arrays.stream(arr) ;

These expressions are not evaluated until they are needed. Here the first element is
skipped and the remaining elements are processed:

stream.skip (1)
.forEach (operation->System.out.println (operation.apply(2)));

The output is as follows:

5
10
-2

If we had not skipped the divide operation, the following exception would have been
generated:

Java.lang.ArithmeticException: / by zero

If streams were evaluated eagerly, then every stream element would be processed
and then the stream would be returned.

There is a findFirst method that truncates the stream when an element that meets
a specific condition occurs. If we used a method such as findFirst, then lazy
evaluation avoids processing elements that are never used. This is critical for infinite
streams. An infinite stream would never terminate if eager evaluation were used.
Lazy evaluation makes it possible to have infinite streams.

Methods such as £indFirst are called short-circuiting methods. When they are
used with an infinite stream, they will return a finite stream. Other short-circuiting
methods are listed in the following table:

Method Returns when

anyMatch Any element matches

allMatch All of the elements match. For an infinite stream, a
limit-type method will restrict its length

noneMatch None of the elements match

findAny Finds any element that matches

limit Restrict the number of elements

subStream Creates a substream

[108]

Chapter 4

Stream and concurrent processing

All stream operations execute either sequentially or in parallel. They execute
sequentially by default. To execute concurrently, a parallel stream must be created.
The stream class uses a parallel method, and the collection interface uses a
parallelStream method to create parallel streams.

The typical iterative loop in Java (such as the for or while loops) are serial in
nature. That is, they are designed to execute sequentially and are not able to easily
incorporate concurrent behavior.

Over the years, Java has introduced a number of improvements in how parallel
behavior can be achieved. Each of these improvements has built upon the thread
concept and frequently addresses specific concurrent approaches such as thread
pools. However, these approaches required the developer to deal with possible
data corruption and deadlock situations.

To parallelize a stream on the surface, all you need to do is to use the parallel
method instead of the st ream method and the system will handle all of the details
for you. Ideally, it will produce the same results as if executed serially and execute
faster.

However, it is not as simple as this. There are several factors you need to take into
consideration before making a stream parallel. We will not be able to address all of
these issues, but will address many of them including;:

* Non-inference: During the processing of the stream, the stream's data source
must not be modified.

* Stateless operations: A lambda expression whose outcome might vary
during its execution are called state full. This is potentially a problem,
because as the stream's operations are executed, the results can differ each
time it is executed. Instead, lambda expressions should be written to not use
a state.

* Side effects: A stream operation can affect other parts of a program. They
should be avoided if possible.

* Ordering: The ordering of elements produced by a parallel stream may be
important. If so, care must be taken to address the ordering issue.

We will examine each of these issues next.

[109]

Streams and the Evaluation of Expressions

Understanding non-inference

This type of problem occurs when the stream's data source is modified, while

the stream is executing. This can be a problem with non-concurrent data sources
whether or not the stream is executed in parallel. There is always the possibility that
some other thread may be accessing the data source. Inaccurate results or exceptions
can occur.

In the next example, a stream of integers representing hours worked is created from
an ArrayList instance. In the map method, the lambda expression will attempt to
modify the underlying ArrayList:

List<Integer> hours = new ArrayList(
Arrays.asList (32, 40, 54, 23, 35, 48, 40, 40, 23,
54, 45, 44, 45, 65, 34, 35, 42, 42, 50, 45,
35, 45, 35, 31, 12, 56));
Stream<Integer> hoursStream;
hoursStream = hours.parallelStream() ;
int totalHours = hoursStream
.map (h -> {
int amount =h*30;
if (amount>40)
hours.add (h+10) ;
}
return amount;
|3
.reduce (0, (r, 8) ->1r + 8);
System.out.println (totalHours) ;

This will generate a ConcurrentModificationException exception, since we are
trying to modify an ArrayList instance, which is not thread safe. We can avoid this
problem using the CopyOnWriteArrayList class instead, which permits concurrent
modifications of the list as shown here:

CopyOnWriteArrayList<Integer> concurrentHours =
new CopyOnWriteArrayList (
Arrays.asList (32, 40, 54, 23, 35, 48, 40, 40, 23,
54, 45, 44, 45, 65, 34, 35, 42, 42, 50, 45,
35, 45, 35, 31, 12, 56));
Stream<Integer> hoursStream;
hoursStream = concurrentHours.parallelStream() ;
int totalHours = hoursStream
.map (h -> {

[110]

Chapter 4

int amount =h*30;
if (amount>40)
concurrentHours.add (h+10) ;
}
return amount;
)
.reduce (0, (r, s8) ->r + 8);
System.out.println (totalHours) ;

The general rule is to avoid modifying the stream's data source.

Understanding stateless operations

Ideally, lambda expressions should be stateless and not be dependent on external
factors. This will ensure that the stream's operations will produce the same result
each time it is executed.

To demonstrate such operations, we will use a lambda expression that uses a getPay
method. The method is passed the number of hours worked and returns the pay
based on a rate variable. However, the rate changes depending on the number of
hours. If it exceeds 40 hours, then the current thread is delayed for half of a second.
This delay is introduced to highlight the effect of potentially different processing
times and the rate values used. The get Pay method is as follows:

int rate = 30;

public int getPay(int hours) {
if (hours > 40) {
rate = 25;
try {
Thread.sleep(500) ;
} catch (InterruptedException ex) {
// Handle exception
}
} else {
rate = 30;
}

return rate * hours;

[111]

Streams and the Evaluation of Expressions

In the following sequence, a series of hours is transformed into a parallel stream
and used to compute the total pay. A new stream is created twice to demonstrate
various outputs:

List<Integer> hours
= Arrays.asList (32, 40, 24, 23, 35, 18, 40, 30, 23,
54, 35, 34, 25, 15, 34, 35, 42, 44, 40, 35,
35, 45, 35, 31, 12, 56); 31, 12, 56);
Stream<Integer> hoursStream;
for (int i=0; i<2; i++)
rate = 30;
int total = hours
.parallelStream()
.map(h -> getPay(h))
.reduce (0, (r, s8) ->1r + 8);
System.out.println(total) ;

}

When executed using the stream method, we will always obtain a result of 24955.
However, if we use a parallel stream, the result will differ. One possible set of
results follow:

25175
25450

The output value depends on how the stream is parallelized. We cannot readily
predict where the stream will be split, and it will appear to be random. The stream
operations should not be dependent on external values.

Understanding side effects

A stateless operation will not be affected by external program elements. In a similar
manner, operations should not modify other data elements of a program unless
absolutely necessary. If the operation has side effects, then this can have unintended
consequences.

In the following example, we use a stream to add overtime hours to a separate list:

List<Integer> overtimeList = new ArrayList<>();
hours.parallelStream/()
.filter(s -> s > 40)

[112]

Chapter 4

.forEach(s -> overtimeList.add(s)) ;
for (Integer hour : overtimeList) ({
System.out.print (hour + " ");

}

System.out.println() ;

Since the array list is not thread safe, concurrent modification of the list may produce
errors. When this example is executed repeatedly, null values may creep in or an
ArrayIndexOutOfBoundsException exception may be generated. This is more
pronounced when many of the hours exceed 40.

An alternative approach to solve this problem is to use the collect method with the
Collectors class's toList method. This will safely create a new list as shown here:

overtimeList = hours
.parallelStream()
.filter(s -> s > 40)
.collect (Collectors.toList()) ;

Some side effects such as displaying intermediate results can be tolerated. However,
side effects should be avoided when using a functional style of programming.

Understanding the ordering

The ordering of a stream's elements can be important. For example, sorting the
stream's elements is often a task requirement. When we parallelize a stream, we
affect the order the elements that are processed. Consider the following example
where we sort those hours that are greater than 40 using a parallel stream:

hours

.parallelStream()

.filter(s -> s > 40)

.sorted ()

.forEach(h -> System.out.print(h + " "));
System.out.println() ;

One possible output follows. However, the list is not sorted.

48 54 56 45 65 45 42 45 54 50 45 42 44

[113]

Streams and the Evaluation of Expressions

The order will vary with each execution because each parallel stream sorted

its elements, but when the streams merge they are not sorted. Instead, use the
forEachOrdered method, which forces the stream to process the stream elements
in the encountered order as shown next. However, this method can distract from
the efficiency gained from parallel streams:

hours

.parallelStream()

.filter(s -> s > 40)

.sorted ()

.forEachOrdered (s -> System.out.print(s + " "));
System.out.println() ;

The output is as follows:

42 44 45 54 56

Parallel operations can significantly improve the performance of an application
allowing us to take full advantage of multiple processors. However, care must be taken
when working with parallel streams to avoid unintended consequences. We provided
an introduction to several of the issues that can affect parallel streams. You are
encouraged to carefully consider the consequences of using these types of operations.

Summary

The use of streams is considered to be one aspect of functional programming
languages. In this chapter, we addressed the use of streams as supported by Java 8.
We demonstrated the creation and use of finite and infinite streams. These depend
on some data source, which might be bounded in length as with arrays or indefinite
if derived from a source such as a network connection.

The stream class supports the stream concept in Java. While it possesses many
methods, we covered only a few with the goal of imparting a feel for the use and
power of streams. We examined the filter, skip, and sorted methods and used
them in several examples. We demonstrated the popular map-reduce technique,
which potentially modifies a set of data and then combines these values into a result.

[114]

Chapter 4

The concepts of lazy and eager evaluation were examined and illustrated. Lazy
evaluation makes possible the use of infinite streams. You also learned that a stream
execution begins when the terminal method starts and ends when the terminal
method completes.

In the last section, we examined the nature of parallel streams and the issues that
need to be considered when using them. Ideally, the stream's operations should
be stateless and not be dependent on external values. Conversely, these operations
should not modify external values. Care should also be taken when the order of a
stream's elements is important.

In the next chapter, we will examine the use of recursion, its functional implications,
and its use in Java 8.

[115]

Recursion Techniques In
Java 8

Recursion is a powerful functional programming technique that lends itself to more
elegant and succinct solutions than an iterative approach. Recursion is the technique
where a method, either directly or indirectly, calls itself. A lambda expression can
also call itself recursively. The discussion in this chapter will focus on method
recursion. However, keep in mind that the ideas and concepts apply equally

to recursive lambda expressions.

In this chapter, we will:

* Introduce recursion terminology
* Contrast iterative and recursion techniques
* Demonstrate recursive lambda expressions
* Explore common recursion strategies
* Provide guidance as to when to use recursion
Recursion is not new to Java 8. To illustrate recursion using a method, let's examine

what is probably the most commonly used problem to illustrate recursion —the
factorial problem. It is defined as follows:

f(1) =1
f(n) = n * f(n-1)
where n > 0

[117]

Recursion Techniques in Java 8

The following is an iterative solution for the factorial of 5. It will return 120:

long fact = 1;
for(int i=1; i<=5; i++) {
fact *= 1i;

}

A recursive solution is implemented using the following factorial method, which
produces equivalent results:

public long factorial (long n) {
if (n==1) {
return 1;
} else {
return n * factorial (n-1);
}
}

The factorial implementation provided is simplistic. It does not verify that the values
passed to it are greater than zero as required by the factorial definition. In addition,
even though it uses long data types, eventually a number will be generated that
exceeds the maximum long number possible, which will result in overflow and
incorrect results. This happens very quickly.

In this chapter, we will start with a discussion of recursive data structures and the
types of recursion techniques in common use. We will be using a binary tree to
illustrate many of these techniques, including head and tail recursion.

We will discuss common problems encountered when using recursion to help the
reader avoid these types of mistakes. Also, recursion implementation issues and
how the recursion process can be optimized will be discussed.

It is not always clear when recursion should be used. We will discuss those
situations where it is the preferred technique and when iteration is better. A short
section concludes the chapter by discussing how recursion has evoked various
humorous responses.

Recursive data structures

A recursive data structure contains references to itself, such as a list or tree. These
types of structures are dynamic data structures where the structure can theoretically
grow to an infinite length.

[118]

Chapter 5

The recursive nature of this data structure lends itself to recursive algorithms.
Examples of recursive data structures include:

* Linked lists
* Trees

* Filesystems
* Graph

It is sometimes thought that recursive methods work differently from regular
methods. They don't. They both simply return when they are completed. A problem
that can be solved using iteration can be solved using recursion. A problem that can
be solved using recursion can be solved using iteration.

A recursive solution will typically take more space than an iterative solution.

Each time a method is called, an activation record is created for the method. This
activation record will contain its parameters and any local variables as is detailed

in Understanding the program stack. An iterative solution will require a fixed amount
of memory, the memory for the data being processed. Recursive solutions require
memory for each activation record. They frequently require at least O(n) memory
versus the O(1) for an iterative solution unless optimization such as tail recursion is
performed as detailed in Converting to a tail call. The O(n) notation classifies how an
algorithm responds to increases in input size. It established an upper bound on how
the growth rate of an algorithm. A O(n) is linear, while O(1) is constant.

With the iterative factorial solution, memory is only needed for the code and data.
For the recursive version, memory needs to be allocated for each invocation of the
method for its supporting activation record. The larger the number of recursive calls,
the more activation records are needed.

Some problems that can be quite difficult to solve using an iterative approach can
be implemented very nicely using recursion. For example, the N-Queens problem
is concerned with the placement of N queens on an N by N chess board such that no
two queens can capture each other. An iterative solution can be found at http://
course.wilkes.edu/Java2Labs/stories/storyReader$9. A much simpler
recursive solution can be found at http://www.javawithus.com/programs/
towers-of-hanoi. Tower of Hanoi is another example of where the iterative
solution is more difficult than the recursive version.

[119]

http://course.wilkes.edu/Java2Labs/stories/storyReader$9
http://course.wilkes.edu/Java2Labs/stories/storyReader$9
http://www.javawithus.com/programs/towers-of-hanoi
http://www.javawithus.com/programs/towers-of-hanoi

Recursion Techniques in Java 8

Types of recursion

There are several different recursion types and terms. These include:

* Direct recursion: This is typified by the factorial implementation where the
methods call itself.

* Mutual recursion: This happens where one method, say method A, calls
another method B, which then calls method A. This involves two or more
methods that eventually create a circular call sequence.

* Multi-recursion: Multiple recursive calls are made in the method.
* Head recursion: The recursive call is made at the beginning of the method.

e Tail recursion: The recursive call is the last statement.

Direct recursion is the most common form of recursion. Head and tail recursion are
specialized terms for direct and mutual recursion.

Mutual recursion is not as common as other forms of recursion. However, it can
be quite useful in the implementations of recursive descent parsers. The reader is
referred to http://en.wikipedia.org/wiki/Recursive descent parser for
details on how to use mutual recursion with a recursive descent parser.

There are several other recursion terms that you may encounter but these are
generally formal language related such as left and right recursion. These terms
are used to describe certain attributes of a language definition.

Using direct recursion

Direct recursion occurs when a method calls itself directly. In the earlier factorial
method, it called itself if the number passed was not 1. It is the simplest type of
recursion. When a method calls itself, it must encounter some condition where it
stops calling itself. If a method calls itself again and again without encountering such
a case, it will never terminate. This is called unbounded recursion. This is not a good
form of recursion. It will eventually result in the application terminating abnormally.

To prevent unbounded recursion, at least one condition must exist where the method
does not call itself. In addition, it is necessary for the value passed to the method to
eventually meet this condition. When this happens, we say that we have bounded
recursion. This is the useful form of recursion.

In the factorial method, when the parameter n is a 1, the method stops calling
itself. This eventually becomes possible because in the recursive call the value
passed to the method is decreased by one each time.

[120]

http://en.wikipedia.org/wiki/Recursive_descent_parser

Chapter 5

Every useful recursive solution possesses two types of cases:

* Base case: Where the problem is solved directly and the method does
not call itself

e Recursive case: Where the recursive call is made

The base case represents a solution to a simple, smaller part of the problem.

There may be more than one base case. One or more recursive cases must be present.
A recursive method requires at least one parameter to be passed to it. It often uses
few or no local variables.

The iteration and recursion process works because they perform similar tasks with
each iteration. If the tasks change, then either technique is not easy to use. The
recursion case needs to perform three steps:

1. Split the problem into simpler parts.
2. Perform the recursive call.

3. Combine the results.

This is a version of the divide-and-conquer strategy. The basic idea of recursion is
to reduce a problem to a smaller version of the same type. Each recursive call will
convert the problem to a yet a smaller version. When the problem becomes small
enough you reach a base case. From here the results are "combined."

Head and tail recursion

A simple illustration of the difference between head and tail recursion is shown
with the following two recursive methods. They are both passed a string. The head
method will display the string in reverse, while the tail method will display the
string normally.

A string is passed to each method. If its length is zero, the method returns. With
the head method, a recursive call is made and then the first character of the phrase
is displayed. In the tail method, the first character is displayed followed by the
recursive call:

public void head(String phrase)
if (phrase.length() == 0) {
return;
}
head (phrase.substring (1)) ;
System.out .print (phrase.charAt (0)) ;

[121]

Recursion Techniques in Java 8

public void tail (String phrase)
if (phrase.length() == 0) {

return;

}

System.out.print (phrase.charAt (0)) ;
tail (phrase.substring (1)) ;

}
The following statements demonstrate their use:

head ("Recursion") ;
System.out.println() ;
tail ("Recursion") ;
System.out.println() ;

The output is as follows:

noisruceR

Recursion

It is helpful to use other statements to assist in understanding recursion.
Try replacing the following statement:

System.out.print (phrase.charAt (0)) ;
With this one in both of the methods:

System.out.println (phrase) ;

This will produce the following output. Each line shows the phrase for each
invocation of the method. The first sequence shows head recursion where the first
display of the phrase occurs once the stack has grown to its largest size. The second
sequence shows tail recursion, where the phrase is displayed before the recursive
call. The phrase is shortened each time until there is nothing left to display:

n

on

ion

sion

rsion

ursion

cursion

[122]

Chapter 5

ecursion

Recursion

Recursion
ecursion
cursion
ursion
rsion
sion

ion

on

n

In the Understanding the program stack section, we will examine the use of the
program stack, which will provide further insight into how recursion works.

As a functional programming technique, its use becomes more prominent and
important in Java 8. It is now possible to use recursion with other functional
programming techniques previously not available in Java such as lambda
expressions.

Understanding recursion

Recursion can be understood at several different levels. A simplistic understanding
involves knowing the definition of recursion. A method that calls itself is recursive.
This understanding is not particularly useful.

Another level of understanding is being able to take a recursive algorithm and
implement it using recursion. This is often a fairly direct process, and can be
performed without truly understanding recursion.

A mathematical understanding occurs when one can clearly see how the recursive
invocation works at a functional level and how local variables are handled. This is
an important level of understanding to achieve where one is better able to create and
maintain recursive application.

A more complete understanding involves being able to explain how the program
stack implements recursive programs. This level, which is closely tied to the previous
level, will enable the programmer to fully understand how recursion works and
assist in debugging the more difficult recursive programming errors.

[123]

Recursion Techniques in Java 8

The intent of this chapter is to convey these levels of understanding and provide the
reader with the ability to develop useful recursive solutions to appropriate problems.
In the next section, we will explore the creation of a recursive solution using direct
recursion. It will illustrate the essential steps in a recursive solution, which can be
applied to mutual or other types of recursion.

The Node class

We will be using the Node class to illustrate recursion as shown next. It supports the
creation of binary trees where each element will contain a numerical value and has
references to left and right subtrees. A fluent method style is used. We will perform
a number of operations against binary trees including preorder, inorder, and
postorder traversal.

public class Node {
private int wvalue;
private Node left;
private Node right;

public Node (int value) {
this.value = value;
this.left = null;
this.right = null;

public Node (Node node) {
this.value = node.value;
this.left = null;
this.right = null;

public int getValue() {

return value;

public Node left() {
return this.left;

public Node addLeft (int value) {
Node node = new Node (value) ;
this.left = node;

[124]

Chapter 5

return node;

public Node addLeft (Node node) {
this.left = node;
return this;

public Node right () {
return this.right;

public Node addRight (int value) {
Node node = new Node (value) ;
this.right = node;
return node;

public Node addRight (Node node)
this.right = node;
return this;

H

Preorder, inorder, and postorder are techniques for traversing a binary tree. They are
similar in nature consisting of three basic operations. They differ in the order they
are followed as shown in the following table. Going left or right means to traverse
the left or right subtree, respectively. To visit a node is to perform some operation on
the node:

Technique Steps
Preorder Visit the node
Go left

Go right
Inorder Go left

Visit the node
Go right
Postorder Go left

Go right

Visit the node

[125]

Recursion Techniques in Java 8

The tree we will use for our examples is initialized with the following code sequence:

Node root = new Node (12) ;
root .addLeft (8) .addRight (9) ;
root .addRight (18) .addLeft (14) .addRight (17) ;

This represents a tree that appears as follows:

The effect of traversing this tree with each algorithm is shown in the next table:

Algorithm Output

Preorder 1289181417
Inorder 8912141718
Postorder 9817141812

Using head recursion

Head recursion occurs when the recursive call occurs at the beginning of the
method. It cannot actually be the first statement because this will lead to unbounded

recursion. The first statement is typically a base case.

We can illustrate head recursion using the following postorder method, where the
left and right nodes are traversed before the node's value is displayed:

public void postOrder (Node node) {
if (node != null) {
postOrder (node.left ()) ;
postOrder (node.right ()) ;
System.out.print (node.getValue() + " ");

[126]

Chapter 5

The output of this code sequence is as follows:

9 8 17 14 18 12

Head recursion can also be used to implement the power function, which raises a
base value to an exponent. In the pow method that follows, a base and exponent are
passed to the method. There are three cases:

* An exponent of 0: This returns one
* An exponent of 1: This returns the base

* An exponent greater than 1: The recursive call is made using half the value
of the exponent with even and odd exponents being treated differently

private static long pow(long base, long exponent)
if (exponent == 0) {
return 1;
} else if (exponent == 1) {
return base;
} else {
long intermediate = pow(base, exponent / 2);
if (exponent % 2 == 0) {
return intermediate * intermediate;
} else {
return intermediate * intermediate * base;
}

}
Invoking the method as shown here will return a value of 59049:

System.out.println (pow(9,5)) ;

Using tail recursion

The preorder traversal of binary tree illustrates tail recursion. The method is called
twice at the end as shown in the following implementation:

public void preOrder (Node node) {

if (node == null) {
return;
} else {
System.out.print (node.getValue() + " ");

preOrder (node.left ()) ;
preOrder (node.right ()) ;

[127]

Recursion Techniques in Java 8

The output of this code sequence follows:

12 8 9 18 14 17

This type of traversal is often used to create a prefix expression based on a binary
tree, where the internal nodes are operators and the leaves are values.

Tail recursion is also useful for copying a tree. The following method demonstrates
how this is accomplished. A new copy of a tree node is created. A recursive call is
made for the left and right branches of the node, which are added to the new node
fluently. The new node is returned allowing it to be added to parent nodes:

public Node copyTree (Node node) {
if (node == null) {
return null;
} else {
return (new Node (node))
.addLeft (copyTree (node.left ()))
.addRight (copyTree (node.right ())) ;

}
The use of the method is shown next:

Node tree = copyTree (root) ;

Using the head and tail recursion

The different types of recursion can be mixed. For example, the following
implementation of an inorder traversal of a tree uses both head and tail recursion:

public void inOrder (Node node) {

if (node == null) {
return;
} else {

inOrder (node.left ()) ;
System.out.print (node.getvValue() + " ");
inOrder (node.right ()) ;

}

The output of this code sequence is as follows:

8 9 12 14 17 18

[128]

Chapter 5

A Binary Search Tree (BST) is a binary tree whose node values are ordered. All
nodes in a left subtree are less than the base node. All nodes in the right subtree

are greater than the base node. The tree we have been using is a BST. A useful
characteristic of a BST is when the tree is traversed in an inorder manner. The result
will be sorted as demonstrated with the previous results.

Creating a recursive solution based on a
formula

When a problem is stated in a formal manner, such as with a formula, it is easy to
create a recursive solution. Consider the following definition of finding the greatest
common denominator of two numbers:

If y=0 then gcd(x,y) = x
If y>0 then gcd(x,y) = gcd(y,x %y)

In the following implementation, the two conditions are specified using the then and
else clauses of an if statement. In the then clause, we simply return x. In the else
clause, we perform the recursive call:

public int gecd(int x, int y) {

if (y == 0) {
return x;
} else {

return gcd(y, x % y);
}
}

We can test this method with the following statements:

System.out.println(gcd(48,72)) ;
System.out.println(gcd(182,154)) ;

The results are as follows:

24
14

The implementation of this type of definition simply maps the operations to the
matching conditions. For a definition with more than two conditions, a series of
elseif type clauses can be used.

[129]

Recursion Techniques in Java 8

When a problem is defined in a recursive manner, it lends itself to a recursive
solution. However, that does not necessarily mean it is the best solution. The
Fibonacci sequence definition is a classic example. Its definition is as follows:

fib(0) = 0
fib(1) =1
fib(n) = fib(n-1) + fib(n-2)

The method can be implemented as follows:

public int fib(int n)
if(n == 0) {
return 0;
} else if(n == 1) {
return 1;
} else {
return fib(n-1) + fib(n-2);
}
}

The next statement will display the Fibonacci of 11:

System.out.println(fib(11)) ;

It will display 89 as the answer. The reason this implementation is not a good choice
is because it involves an excessive number of method invocations. Adding a simple
counter to total the number of times it is called will determine that the method was
called 287 times for the fib (11).

A more efficient iterative solution follows. The first two elements of the array are
initialized to 0 and 1, respectively. The for loop will then set the remaining elements
to the sum of their previous two elements:

int arr[] = new int[15];
arr[0] = 0;
arr[l] = 1;
for (int i = 2; i < 15; i++) {
arr[i] = arr[i - 1] + arr[i - 2];

}

System.out.println(arr[11]) ;

This will display 89 as expected.

[130]

Chapter 5

A more detailed discussion of computing the Fibonacci of a number is found at
http://jlordiales.me/2014/02/20/dynamic-programming-introduction/.
In Chapter 2, Putting the Function in Functional Programming, we examined the
memoization technique. The post also uses this technique as part of a recursive
Fibonacci solution.

Converting an iterative loop to a recursive
solution

While it is not necessary, or necessarily desirable, to convert iterative loops to a
recursive method, it is useful to examine this process to help you better understand
how to develop recursive solutions.

Let's use the following iterative approach to compute the sum of the even numbers
from 2 to 20. The output of the code sequence will be 110:

int sum = 0;
for(int i=2; i<=20; i+=2) {
sum += 1i;

System.out.println (sum) ;

A recursive solution follows. It is passed an integer, n, which is checked to determine
if it is equal to a 2. If so, it simply returns a 2. Otherwise, a recursive call is made
where n is added to the return value of the recursive call. To add only even numbers,
the value passed is n-2:

private static int recursiveSum(int n)
if(n == 2) {
return 2;
} else {
return n + recursiveSum(n-2) ;
}
}

This solution will work for any positive, even number greater than or equal to 2.
However, it does not verify that the number passed is an even number. When the
number is odd or less than 2, a stack overflow occurs. This can be corrected by
checking for evenness as we will demonstrate in Using a wrapper method.

[131]

http://jlordiales.me/2014/02/20/dynamic-programming-introduction/

Recursion Techniques in Java 8

Merging two lists
Lists are an example of a recursive data structure. Here, we will illustrate how
recursion can be used to merge two lists as implemented using the ArrayList

class. This method has been adapted from http://stackoverflow.com/
questions/14912835/how-to-create-recursive-merge-of-2-sorted-lists-

resulting-in-sorted-merged-list.

Two sorted lists are merged. The mergeList method is passed two lists and
returns a merged list. A test is made for empty lists in the base cases. Otherwise,
anew ArrayList is created and the smaller of two elements are added to the list.
A recursive call is made and the list returned. One of the lists is reduced in size
with each call:

public ArrayList<Integer> mergeList (

ArraylList<Integer> listl,
ArrayList<Integer> list2)

if (listl.isEmpty()) {
return list2;

}

if (list2.isEmpty()) {
return listl;

}

ArrayList list = new ArrayList<>();
if (listl.get(0) < list2.get(0)) {
list.add(listl.remove(0)) ;

} else {
list.add(list2.remove (0)) ;
}
list.addAll (mergelist (listl, 1list2));
return list;

}

Here two lists are created, and the mergeList method is called:

Integer arrl[] = {2, 6, 9, 10, 14};
ArraylList<Integer> listl = new ArrayList<>();
listl.addAll (Arrays.aslList (arrl));

Integer arr2[] = {3, 5, 7, 12, 13};
ArrayList<Integer> list2 = new ArrayList<>();
list2.addAll (Arrays.aslList (arr2));

[132]

http://stackoverflow.com/questions/14912835/how-to-create-recursive-merge-of-2-sorted-lists-resulting-in-sorted-merged-list
http://stackoverflow.com/questions/14912835/how-to-create-recursive-merge-of-2-sorted-lists-resulting-in-sorted-merged-list
http://stackoverflow.com/questions/14912835/how-to-create-recursive-merge-of-2-sorted-lists-resulting-in-sorted-merged-list

Chapter 5

ArrayList<Integer> 1list3;

list3 = mergelList(listl,list2);

list3.stream() .forEach(n -> System.out.print(n + " "));
System.out.println() ;

The output of this sequence is as follows:

235679 10 12 13 14

Understanding the program stack

A solid understanding of recursion is one where the programmer understands how
the program stack works. This is a fundamental data structure used to support
method and function invocation in most languages. Most hardware has specialized
instructions to help maintain a program stack.

Whenever a method is called, an activation record is created for that method,

and it is pushed onto a stack — the program stack. When a method returns, the
activation record is popped off the program stack. The activation record consists

of several elements, but the only ones of interest to us are the parameters and local
variables. It does not contain any of the method's code. The code is located elsewhere
in the program.

For example, let's reexamine the factorial function duplicated here for your
convenience:

public long factorial (long n) {
if (n==1) {
return 1;
} else {
return n * factorial (n-1);
}
}

For the method, there is one parameter, n, and no local variables. We can graphically
depict the program stack as shown in the next figure, where the method is invoked
with a value of 5. The state of the stack reflects that the method has only been called
once and before any of the method's code has been executed.

[133]

Recursion Techniques in Java 8

The names on the left side of the stack are the names of the methods. We are
assuming that the factorial method is called from the main method. The boxes to
the right of the method's names in the stack correspond to the methods. Parameters
and local variables are drawn as boxes inside of the method boxes. For the main
method, we have not shown any parameters or local variables to keep it simple.
For the factorial method, we show the single parameter n:

factorial

main

Program Stack

When the factorial method is executed with a value of 5, the else clause of the if

statement is executed. This means that a new activation record is created and pushed
onto the stack with a new value of 4 for the parameter. There are now two activation
records for the factorial method with their own unique parameters. This is the key
to understanding how recursion is implemented:

factorial n

factorial n

main

Program Stack

[134]

Chapter 5

Continuing with the example, the factorial function is called three more times
until the parameter is 1. This is shown here:

factorial

factorial

factorial

factorial

factorial

main

Program Stack

At this point, the base case is selected and the method will return 1. The top

factorial activation record is popped off of the stack, and 1 is returned to the
previous activation record. This is illustrated here where an X is used to depict

the removal of the top activation record and 1 being returned:

factorial

X

factorial

A

factorial

factorial

factorial

main

Program Stack

[135]

Recursion Techniques in Java 8

The returned value of 1 is multiplied by 2, and then the method will return. The next
activation is popped off the stack, and a 2 is returned. Eventually, a 120 is returned to
the main method as shown here:

factorial | | n |><< | -

< > 1
factorial | | n |>< | <
< > 2

factorial | | n |>< | <

6
factorial n |>< | <
< > 24
factorial n |>< | <
120
main <

Program Stack

The key points to remember are as follows:

e Each time a method is invoked, an activation record is created for it and is
pushed onto the program stack.

* The activation record consists of its parameters and local variables.

* When the method returns, the activation record is popped off the stack and
no longer exists. Any of its parameters or local variables are lost. Only the
return value is returned to the calling method.

* Each activation record maintains its own copies of its parameters and local
variables.

As we will see in Chapter 8, Refactoring, Debugging, and Testing, most IDEs provide
some support for visualizing the program stack. This visualization helps the
programmer understand how a specific recursive method behaves.

[136]

Chapter 5

Recursive lambda expressions

While we have been focusing on recursion using methods, these techniques are
applicable to lambda expressions. To create a recursive lambda expression, we will
duplicate the inorder recursion technique using a Consumer functional interface and
the tree developed in the Node class.

As shown next, the inorder variable is declared. A lambda expression is assigned to
the variable using essentially the same code as used in the method implementation.
The root tree is created and the accept method is called, which results in the
lambda expression's execution:

Consumer<Node> inorder; // Instance variable

inorder = (Node node) -> {
if (node == null) {
return;
} else {

inorder.accept (node.left ()) ;
System.out.print (node.getValue() + " ");
inorder.accept (node.right ()) ;

}i

Node root = new Node (12) ;

root .addLeft (8) .addRight (9) ;
root.addRight (18) .addLeft (14) .addRight (17) ;
inorder.accept (root) ;

The output follows:
8 9 12 14 17 18

The process is straightforward. We can use recursive lambda expression as easily as
recursive methods.

Common problems found in recursive
solutions

Sometimes, there are several problems encountered in recursive solutions, including:

* Absence of a base case
e The use of static or instance variables

* The use of the pre/post increment/decrement operators

[137]

Recursion Techniques in Java 8

The absence of a base case will lead to infinite recursion and stack overflow. Static
and instances variable are to be avoided so that the function or method will be pure.
Use of these variables can complicate the solution. As we will see, pre- and post-
operators can complicate recursion.

Absence of a base case

This is not a common problem. It may manifest itself in complex case selection
process, where the criteria needed to meet the base case is never achieved. More
likely, this happens due to mistakes made by the programmer.

For example, the recursivesum method, developed in Converting an iterative loop to a
recursive solution, does not handle odd numbers or numbers less than 2. When called
with these values a runtime StackOverflowError exception will be thrown because
the condition for the base case, n==2, never occurs.

Using static or instance variables

Static and instance variables can be misused in a recursive method. In the following
example, the method's purpose is to sum the specified number of elements of an
array. It does this using, incorrectly, either an instance or local variable, total, to
keep a cumulative sum. Both declarations have been included though only one is
needed. The approach is loosely based on an iterative solution, where each element
of the array is added to a total variable:

public int total = 0;

public int arrayTotal (int numbers([], int index) {
int total = 0;
if (index == 0) {

return numbers[0] ;
} else {
total += numbers [index] ;
return arrayTotal (numbers, index - 1);

}

When this code is executed, it displays 2 which is not the correct value. There are a
couple of problems with this approach. The variable total is not incorporated into
the return value, and the local variable is not actually needed. They are a distraction
from a recursive technique. An additional problem is that if the total variable is
declared locally, it will result in its re-initialization each time the method is called.
Making it an instance or static variable will insure that it is initialized only once.

[138]

Chapter 5

A better approach will be to replace the second return statement with the following:

return numbers [index] + arrayTotal (numbers, index - 1);

This will produce the correct output of 20. However, we are no longer using the
total variable. A simplified version of the method is shown here:

public int arrayTotal (int numbers([], int index) {
if (index == 0) {
return numbers[0] ;
} else {
return numbers [index] + arrayTotal (numbers, index -
1);

}

Frequently, recursive methods can be avoided, and don't need local variables.

Using the pre- and post-increment operators

Care should be taken when using the pre/post increment/decrement operators in
general. For example, in the arrayTotal method instead of using the minus operator
as shown here:

return numbers [index] + arrayTotal (numbers, index - 1);
We can use the post-decrement operator instead:
return numbers [index] + arrayTotal (numbers, index--);

However, this results in unbounded recursion and stack overflow since index

is passed first and then decremented. The effect is index passed never changes.
Instead, we should use the pre-decrement operator, which decrements index and
then passes it:

return numbers[index] + arrayTotal (numbers, --index) ;

This will produce the correct answer.

Recursion implementation techniques

There are a few implementation issues that should be addressed. These include the
use of wrapper methods and short-circuiting the base case. These techniques can
assist in the use of recursion.

[139]

Recursion Techniques in Java 8

Using a wrapper method

A wrapper method is used to support recursion. This method will not actually
perform recursion but will call one that does. The wrapper method may:

* Validate parameters
* Perform initialization
* Handle exceptions as errors are generated

The following is an example of a wrapper method for the arrayTotal method,
which is duplicated here for your convenience:

public int arrayTotal (int numbers[], int index) {
if (index == 0) {
return numbers [0] ;
} else {
return numbers[index] + arrayTotal (numbers, index -
1);

}

In the arrayTotalHelper method, the index variable is checked to see if it is within
the bounds of the array. If it is not, then the exception needs to be handled:

public int arrayTotalHelper (int numbers[], int index) {
if (index >= 0 && index <= numbers.length - 1) {
return arrayTotal (numbers, index) ;
} else {
// Handle exception

}

Using short circuiting

Shorts circuiting occurs when the base case is checked before the recursive call is
made. This is an optimization technique. Instead of incurring the expensive method
invocation and then checking for the base case, the base case is tested first. This
normally requires a wrapper method to handle an initial base case call.

[140]

Chapter 5

For example, with a tree traversal, a left or right value of null is common. If we
check it for a null value before we make the recursive call, the activation record and
its associated costs are not incurred. In the following example, the left and right
subtrees are tested before the call is made:

public void inOrder (Node node)

if (node == null) {
return;
} else {
if (node.left () != null) {

inOrder (node.left ()) ;

}

System.out.print (node.getValue() + " ");
if (node.right () != null) {
inOrder (node.right ()) ;

}
}

This will result in the inorder method being invoked 13 times versus 26 times for
the earlier implementation and the sample tree.

Tail call optimization

A tail call is where the last operation is a "simple" recursive call. Tail call
optimization is an optimization technique, which converts the recursive call to one
where the activation record is reused. This technique will save space and time.

The gcd method, used in the Creating a recursive solution based on a formula section,
illustrates a tail call and is duplicated here. The last statement of the recursive case is
a simple recursive call:

public int ged(int x, int y) {
if (y == 0) {
return x;
} else {
return gcd(y, x % y);

}

[141]

Recursion Techniques in Java 8

The following factorial method does not use a tail call. Since it uses a deferred
multiplication that accumulates, this requires it to be stored on the program stack.
The compiler is not able to optimize the call:

public long factorial (long n) {
if (n==1) {
return 1;
} else {
return n * factorial (n-1);
}
}

Tail calls can be optimized by effectively reusing the current activation record.
Without tail call optimization, it is necessary to create a new activation record to hold
and process the method's values. However, since the tail call does not involve an
additional computation beyond the recursive call, the current activation record and
its values can be reused.

Implementing tail call optimization results in a faster program that uses less space
and has the ability to express algorithms in a more maintainable and an often easier
to read recursion form. However, not all compilers incorporate tail call optimization,
including those that support Java 8. In future versions, this optimization technique
will be available.

In the meantime, it will be prudent to employee tail calls whenever possible. Thus,
when the optimization technique becomes available, your code can take immediate
advantage of it instead having to be rewritten.

Converting to a tail call

The previous factorial implementation did not use a tail call. We will provide

an alternate version of the method that uses a tail call. The following factorial
method uses the recursive factorialHelper method to do the actual work. In the
original factorial method, tail recursion was not employed because the recursive
return value was multiplied against the variable n. In this implementation, the
multiplication has been used as part of the parameter to the recursive call. Since the
multiplication occurs before the call, it performs a tail call.

public long factorialHelper (long n, long value) {
if (n < 2) {
return value;
} else {

[142]

Chapter 5

return factorialHelper (n - 1, n * value);

}

public long factorial (long n)
return factorialHelper (n, 1);

}

When to use recursion

There have been two main criticisms of recursion:

* It takes longer to execute than an iterative version

e Jtis hard to understand

In the early days of software development, the technique was even barred in some
organizations.

While a recursive version may take longer, for many problems this efficiency issue is
not a significant concern given the improved processing speed on modern machines.
Recursive efficiency issues lie with its typical implementation using a program stack.
It is the pushing and popping of the activation record during method invocation that
is expensive. This concept was detailed in Understanding the program stack.

Not all problems are suited for recursive solutions. Recursion should be used when:

* The problem lends itself to a recursive solution
* The number of recursive calls are not excessive

* Maintainability is important

Some problems are naturally solved by recursion. Most tree problems are of this
nature. For some problems, an iterative solution is not always that clear. When
this is the case, recursion is the best way to go.

The number of method invocations that can be considered to be excessive depends
on the platform used. For a platform with ample amounts of memory, then hundreds
of calls should not be a problem. Ultimately, the implementation and platform need
to be tested to ensure that adverse effects do not occur. In addition, the efficiency of
the program stack's implementation is a factor.

[143]

Recursion Techniques in Java 8

Premature optimization should be avoided. A correctly executing program should
be the first consideration. Once it is working correctly, then optimization may be
needed. Paramount to the efficiency of a program is its design and the algorithms
used. After that, code optimizations should be considered where techniques such as
profiling can help. Profiling provides a means of systematically addressing the real
performance bottlenecks in a program.

A more important factor than execution time is the maintainability of the code. A
complex iterative solution is more difficult to understand and to maintain than a
simple recursive version.

Recursion, once understood, is no more difficult to use than iteration. It is frequently
shorter and more elegant. When the recursive solution is easier to write and maintain
than an iterative solution, then recursion should be used. Recursion frequently uses
fewer local variables. Recursion is not any more difficult than most other complex
computer science topics. It takes a bit more time to learn, but once mastered, it
provides a life-long problem solving skill.

The correct choice depends on the nature of the problem and its implementation
environment. The lower the level of programming, the more iterative solutions are
favored. The more abstract the level of programming, the more recursion you see.
Iteration will often improve the performance of your program. Recursion will often
improve your performance as a programmer.

Recursion and humor

It is hard to resist passing on various recursion-related humor. This is a short
discussion of recursion and how humor has been applied to it. Sources of recursion
humor can be a found at:

* http://en.wikipedia.org/wiki/Recursion#Recursive humor
® https://recursivelyrecursive.wordpress.com/category/recursive-
humour/page/2/

® http://www.newpaltz.kl2.ny.us/cms/1lib/NY01000611/Centricity/
Domain/122/recursion%$20humor.html

[144]

http://en.wikipedia.org/wiki/Recursion#Recursive_humor
https://recursivelyrecursive.wordpress.com/category/recursive-humour/page/2/
https://recursivelyrecursive.wordpress.com/category/recursive-humour/page/2/
http://www.newpaltz.k12.ny.us/cms/lib/NY01000611/Centricity/Domain/122/recursion%20humor.html
http://www.newpaltz.k12.ny.us/cms/lib/NY01000611/Centricity/Domain/122/recursion%20humor.html

Chapter 5

For example, if you google the term, recursion, you can get the following response:

GO gle recursion “

Web Images Videos Apps Shopping Mare Search tools

About 6,6

0 results (0.19 seconds

Did you mean: recursion

In some books, an index for the term recursion will sometimes include the current
page number. You may find an entry for recursion which leads to itself:

Recursion - See Recursion

Found in several places, including some T-shirts, is the following;:
f@ "0%'%
£ °

3
é

1"*

y"\on, I

L4
‘“‘!saopﬂ“

Recursive acronyms are fairly common. One list can be found at
http://en.wikipedia.org/wiki/Recursive acronym. Perhaps one
of the best-known recursive acronyms is for GNU: GNU's Not Unix.

From a bumper sticker:

What we learn from history is that we don't learn from history

[145]

http://en.wikipedia.org/wiki/Recursive_acronym

Recursion Techniques in Java 8

Summary

Recursion can be a very useful technique to create elegant and maintainable code.
This technique involves a method or lambda expression calling itself either directly
or indirectly. While it may require more time and space than an equivalent iterative
solution, in many situations, it will be a better solution if these expenses do not
outweigh the benefits of using recursion.

Many data structures are recursive in nature. Such data structures are self-
referencing. They have references within the structure to same structure. For
example, a linked list node will have a reference to a linked list node such as to the
next node in the list. We used a left and right node reference in our tree examples
to illustrate a recursive data structure in several of our examples. Recursive data
structures lend themselves to recursive solutions.

The recursion technique involves breaking a problem down into smaller units,
making a recursive call and then combining the results. We demonstrated how
to create a recursion solution to a problem stated as a formula. We also examined
how to convert a loop to a recursion solution.

We illustrated how recursion is supported using the program stack and activation
records. When a method is invoked, an activation record for that method is created
and pushed onto the program stack. The activation record consists of the parameters
and local variables of the method. When the method returns, the activation record

is popped off the stack. Understanding how the program stack works gives the
programmer a better understanding of recursion and enables him to solve recursion
type problems when they occur.

There are several different types of recursion. When the recursive call is made at the
beginning of the method, it is called head recursion. When it occurs at the end of the
method, it is called tail recursion. Recursive calls can be made at in the middle of a
method and more than once within a method.

Wrapper methods and tail calls can be useful when writing recursive solutions.
These methods are used to handle special cases and exception handling. When a tail
call is used, tail call optimization is possible to avoid excessive method invocations
and yet use more readable code.

Recursion is not always the best solution to problems. Sometimes, iteration provides a
more efficient approach. We discussed how to decide when recursion should be used.

In the next chapter, you will examine Optional class and monads and learn how
they contribute to writing code in a functional style.

[146]

Optional and Monads

In functional languages, there is a data type called the option type, also called the
maybe type. Its purpose is to encapsulate a value, which is returned from a function.
This option return type may indicate that there is no return value. The problem with
returning a value such as zero or null is that these may be legitimate return values.
With an option type, we can return a good value or indicate that nothing is returned.

In Java 8, the Optional class has been added to serve as an option type. It is used
to wrap an object and possesses a number of methods that can reflect a non-value
and deal with these values. The calls allow us to handle null values and avoid the
dreaded null pointer exception. The optional class also plays an important role in
supporting fluent interfaces.

We will also examine the nature and use of monads. This is a technique to compose
functions using a fluent style. This concept is present in functional programming
languages and promotes more maintainable and resilient code.

Java 8 supports monads in the form of the Optional and Stream class. We will discuss
the nature of monads and provide numerous examples of how they are used.

Using the Optional class

In this section, we will examine the use of the optional class to make our programs
more robust and maintainable. The Optional class is useful for returning values
from a method and supporting fluent programming,.

We will examine these scenarios and illustrate the creation and use of various
Ooptional methods. These examples will illustrate how to handle situations
where an empty Optional instance is encountered.

[147]

Optional and Monads

The optional class is not intended to avoid all null pointer situations. Rather, it
provides a means of defining better API interfaces where the user can clearly see
when an empty value is possible.

There are also three classes that support specialized numeric versions of the
Optional class: OptionallInt, OptionalLong, and OptionalDouble. They possess
many of the same methods, but are designed to work with integer, double, and long
data types, respectively. However, they do not possess the map, f1atMap, and filter
methods found in the optional class. In addition, using them can incur the overhead
of boxing and unboxing. We will see several uses of these classes in this chapter.

Creating Optional instances

There are two methods used to create an Optional instance: of and ofNullable.
The of method requires a non-null value. If a null value is used, the method will
generate a NullPointerException exception.

In the following code sequence, the second use of the of method will throw this
exception:

String animal = "cat";
Optional<String> opt;

opt = Optional.of (animal) ;
System.out.println (opt) ;

animal = null;
opt = Optional.of (animal) ;
System.out.println (opt) ;

The ofNullable method will accept a null or non-null value. If null is used, it
returns an empty Optional instance. Otherwise, it will return an Optional instance
with the value wrapped inside of it. The following code illustrates its use:

animal = "cat";
opt = Optional.ofNullable (animal) ;
System.out.println (opt) ;

animal = null;
opt = Optional.ofNullable (animal) ;
System.out.println (opt) ;

The output of this sequence is as follows:

Optional [cat]
Optional.empty

[148]

Chapter 6

Using the Optional class to support return
values

The use of the optional class will reduce the number of null pointer exceptions and
promote fluent interfaces. Its use helps clarify the intent of the code. There is nothing
inherent in an Optional return value that indicates the meaning of the absent value.
The appropriate documentation needs to be consulted to determine its meaning.

So, why not use null? If the programmer has not read the method's documentation
carefully or has forgotten how it is intended to be used, returning a null value can
result in a null pointer exception. In addition, a null value may be a legitimate
return value.

We will use the customer and Customers classes to demonstrate the use of the
Optional class. The Customer class represents a simple customer. As shown here,
it uses an ID and name along with a few standard methods:

public class Customer {
private int id;
private String name;

public Customer (int id, String name)
this.id = id;
this.name = name;

public int getId() ({
return id;

}

public String getName () {
return name;

}

@Override
public String toString() {
return "Customer{" + "id=" + id + ", name=" + name + '}';

}

[149]

Optional and Monads

The customers class contains a collection of Customer instances. A HashMap instance
is used to maintain the collection. An addCustomer method will add a Customer
instance to the HashMap. Two methods are used to find a customer in the collection
given an ID:

e findCustomerWithID: This returns a Customer instance

* findOptionalCustomerWithID: This returns an Optional<Customers
instance

This class is shown here:

public class Customers {
private HashMap<Integer, Customer> customers;

public Customers() {
customers = new HashMap<> () ;

public void addCustomer (int id, Customer customer) {

customers.put (id, customer) ;

public Customer findCustomerWithID(int id) {
if (customers.containsKey (id))
return customers.get (id) ;
} else {
return null;

public Optional<Customer> findOptionalCustomerWithID(int id)
if (customers.containsKey (id))
return Optional.of (customers.get (id)) ;
} else {
return Optional.empty () ;

}

In the findoptionalCustomerWwithID method, the Optional class's static of method
is used to wrap a Customer instance inside of an Optional instance. Its static empty
method is used to indicate that there was no customer with the specified ID.

[150]

Chapter 6

An alternate shorter implementation of the findoptionalCustomerWithID method
follows using the ofNullable method:

public Optional<Customer> findOptionalCustomerWithID(int id)
return Optional.ofNullable (customers.get (id)) ;

}

We will use the following set of statements to initialize an instance of these classes:

Customer customerl = new Customer (123, "Sue");
Customer customer2 = new Customer (456, "Bob") ;
Customer customer3 = new Customer (789, "Mary");

Customer defaultCustomer = new Customer (0, "Default");

Customers customers = new Customers() ;

customers.addCustomer (defaultCustomer.getId (),

defaultCustomer) ;

customers.addCustomer (customerl.getId (), customerl) ;
customers.addCustomer (customer2.getId (), customer2);
customers.addCustomer (customer3.getId (), customer3);

The id and customer variables are used to return a Customer instance using the
findCustomerWithID method:

int id = 234;
Customer customer = customers.findCustomerWithID(id) ;

The problem with this approach is that we need to verify that null was not returned
by the method. In the next code sequence, we fail to perform this test:

if (customer.getName () .equals ("Mary")) {
System.out.println ("Processing Mary") ;

}

With an ID of 234, the method will return null and a NullPointerException will
be thrown. A better approach is shown next where we test for a null value. If the
method returns null, we will use the defaultCustomer instance. If we find Mary,
then we display a line to that effect. If it is not Mary, then we display that customer.

if (customer != null) {
if (customer.getName () .equals ("Mary")) {
System.out.println ("Processing Mary") ;
} else {

[151]

Optional and Monads

System.out.println (customer) ;

}

} else {
System.out.println(defaultCustomer) ;

}

We can use the findoptionalCustomerWithID method instead, as shown here.
This uses the identical logic presented in the previous solution, but uses various
Optional class methods to make the decisions. Its isPresent method will return
true if the Optional instance contains a Customer object. Its get method will return
the customer object:

Optional<Customer> optionalCustomer =
customers.findOptionalCustomerWithID (id) ;

if (optionalCustomer.isPresent()) {
if (optionalCustomer.get () .getName () .equals("Mary")) ({
System.out.println("Processing Mary") ;
lelse {

System.out.println (optionalCustomer.get()) ;

}

} else {
System.out.println(defaultCustomer) ;

}

This example does not do anything more than the findCustomerwithID method.
In addition, it takes as much code and appears more complex. While this is true, the
Optional class provides us with additional methods that can make related tasks
more difficult. We will illustrate a more succinct solution to this problem in the
Optional solution of Customer problem section.

For example, the ifPresent method accepts a lambda expression implementing the
Consumer interface as shown here. This can result in a more concise and reusable
code in many situations:

Consumer<Customer> consume = O -> {
if (o.getName().equals ("Mary")) {
System.out.println("Processing Mary") ;
} else {
System.out.println (optionalCustomer.get()) ;

Vi

optionalCustomer.ifPresent (consume) ;

[152]

Chapter 6

This approach is not possible with the findCustomerwithID method. This example
did not handle the case when an empty Optional instance is returned. We will
address this deficiency shortly.

The findOptionalCustomerWithID method could have returned null. However,
this defeats the purpose of using optional.

Handling missing values

The use of optional allows methods and functions to return a value that indicates
there is no return value. When there is no return value, then the three things that can
be done are as follows:

¢ Use a substitute value
e (Call a function to return a substitute value

* Throw an exception

The action to take when there is no return value is dependent on the state of the
program. Instead of letting the method decide which of the options to use, it is better
to let the user of the method make that decision. The optional class supports this
capability with three methods: orElse, orElseGet, or orElseThrow. Each of these
will be illustrated next.

Using the orElse method to get a substitute value

The earlier imperative approach used an if statement to select the defaultCustomer
instance if the findCcustomerwithID method returned null. The optional class's
orElse method can be used for the same purpose and avoids the if statement.

The following statement is used to return the defaultCustomer instance when
findOptionalCustomerWithID doesn't return a customer:

Customer current = customers
.findOptionalCustomerWithID (id)
.orElse (defaultCustomer) ;

This is simpler than the previous approaches.

[153]

Optional and Monads

Using the orElseGet method to use a function to get
a substitute value

The orElseGet method uses an instance of the Supplier interface
to obtain a substitute value. In the following statement, it uses the
findOptionalCustomerWithID method a second time using an ID of o:

current = customers
.findOptionalCustomerWithID (id)
.orElseGet (()- >

customers.findOptionalCustomerWithID(0) .get ()) ;

Using the orElseThrow method to throw an
exception

Exception handling in Java has been a controversial topic. The way exceptions are
handled has evolved from the simple try-catch blocks to the introduction of the more
elegant try-with-resources block.

In Java 8, we now have another way to throw an exception. This new approach
uses the orElseThrow method allowing us to avoid an if statement. A simple
NoCustomerFoundException exception class is defined here:

public class NoCustomerFoundException extends Exception {}
Its use is shown here where it is thrown when a customer is not returned:

try {
current = customers

.findOptionalCustomerWithID (id)
.orElseThrow (NoCustomerFoundException: :new) ;
System.out.println (current) ;
} catch (NoCustomerFoundException ex) {
// Handle exception

}

Using the optional class, in this manner, provides a more succinct and easier-to-use
technique. The programmer does not have to potentially throw exceptions from
several different places. It makes the intent of code sequences and exceptions clearer.

[154]

Chapter 6

Filter and transforming values

It is desirable to restrict or transform optional values. For example, while a method
may return an employee, we may want to further restrict the result to an employee
that meets a certain set of conditions such as pay grade or location. Having obtained
an Optional instance, we may want to transform it.

In this section, we will introduce the filter and map methods. The filter method
will limit the results, while the map method performs transformations on an object.
There is also a £1atMap method, which performs transformations similar to the map
method. We will provide more extensive examples of the map and f£latMap methods
when we discuss monads.

Using the Optional class’s filter method

The optional and Stream classes possess a £ilter method. Both of these methods
work in similar manner to restrict their results. However, most Stream class's
methods return a Stream instance, and the optional class's method returns an
Optional instance.

There are several stream class methods that return optional values: findany,
findFirst, max, min, and reduce. This means that no result may be present.

In the following example, the Stream class's £ilter method restricts its result
to those values greater than 10. The max method returns an optional instance
containing the largest value, if any. If such a value exists, the i fPresent method
will display it:

OptionalInt result = IntStream.of (1, 5, 12, 7, 5, 24, 6)
.filter(n -> n > 10)
.max () ;

result.ifPresent (0 -> System.out.println (o)) ;

In this example, 24 will be displayed.

In contrast, the optional filter method shown next will restrict its result to a
customer with an ID value greater than 400. The single Optional instance returned
will be empty or contain a customer. The . orElseGet method will return the
defaultCustomer instance if the £ilter method fails to return a value:

id = 456;
current = customers
.findOptionalCustomerWithID (id)

[155]

Optional and Monads

.filter(i -> i.getId() > 400)
.orElseGet (() ->
customers.findOptionalCustomerWithID(0) .get()) ;
System.out.println (current) ;

When executed, we get the following output:

Customer{id=456, name=Bob}

Using the Optional class's map method

Sometimes, it is desirable to perform a transformation on the value wrapped in an
Optional instance. In the next code sequence, an Optional<Customers> instance is
processed. We remove leading and trailing blanks from the customer class's name
field and assign it to the name variable, or we assign a default value to the variable:

id = 456;

String name;

Optional<Customer> optCustomer =
customers.findOptionalCustomerWithID (id) ;

if (optCustomer.isPresent()) ({

name = optCustomer.get () .getName ().trim() ;
} else {

name = "No Name";

}

System.out.println (name) ;
The output will be Bob.

The map method makes this type of operation easier. The method takes a Function
interface instance. This function takes a value, performs an operation on it, and
returns the transformed value. The method will return the value wrapped inside
of an Optional instance. The previous example is expressed more concisely as
implemented here:

name = customers
.findOptionalCustomerWithID (id)
.map (o->o0.getName () .trim())

.0orElse ("No Name") ;
System.out.println (name) ;

The map and flatMap methods will be discussed in more detail in the Monads in Java
8 section.

[156]

Chapter 6

Optional solution to the Customer problem

With a grasp of the fundamental optional class's methods, we can reexamine the
customer problem described in the Using the Optional class to support return values.
Here, we will demonstrate a simpler solution to the problem where exceptions are
also handled.

We will start with three functional lambda expressions used to process the
customer Mary. The processMary and processNotMary expressions handle
the situations where a non-empty Optional<Customers is returned from the
findOptionalCustomerWithID method. Two expressions are used to simplify
the logic. The third lambda expression, processCustomer, combines the logic
into one expression:

Function<? super Customer, Customer> processMary =

x -> {
if (x.getName().equals ("Mary"))
System.out.println ("Processing Mary") ;
}
return X;

}i

Function<? super Customer, Customers> processNotMary =

x -> {
if (!x.getName () .equals ("Mary")) ({
System.out.println (x) ;
}
return X;

}i

Function<? super Customer, Customers> processCustomer
=x -> {
if (x.getName().equals ("Mary"))
System.out.println ("Processing Mary") ;
} else {
System.out.println (optionalCustomer.get()) ;

}

return X;

}i

[157]

Optional and Monads

The try block that follows contains the Optional solution. It uses the
findOptionalCustomerWithID method in conjunction with two map methods and
the orElseThrow method. In the first map method, Mary is processed. In the second
map method, Mary is effectively ignored:

try {
id = 789;
current = customers

.findOptionalCustomerWithID (id)
.map (processMary)
.map (processNotMary)
.orElseThrow (NoCustomerFoundException: :new) ;
System.out.println (current) ;
} catch (NoCustomerFoundException ex) {
ex.printStackTrace () ;

}
The output is as follows:

Processing Mary

Customer{id=789, name=Mary}

We can replace the two map methods with the following one to achieve the
same results:

.map (processCustomer)

If we use an invalid id value, a NoCustomerFoundExcept ion will be thrown.
The last situation occurs when the id value is valid, but the customer is not named
Mary. We can test this scenario with this code sequence:

id = 789;
customer3.setName ("Mary Sue") ;

The output is as follows:

Customer{id=789, name=Mary Sue}

Customer{id=789, name=Mary Sue}

This solution allows us to reuse lambda expressions and uses an easier to use fluent
style of programming,.

[158]

Chapter 6

Disadvantages of the Optional class

The optional class does have a few drawbacks. The class will invoke some
overhead, since effort is required to wrap a value within it. This is not normally
a significant issue.

The optional class is also not serializable. This is due to the effort that would be
required to maintain this feature (http://mail.openjdk.java.net/pipermail/
jdk8-dev/2013-September/003276.html). If you need to serialize an Optional
instance, then the following link provides a possible solution: http://blog.codefx.
org/java/serialize-optional/.

The optional instances cannot be sorted using the Arrays class's sort method. If
used, it throws a java.lang.ClassCastException. This is because an Optional
instance cannot be cast to Comparable. However, an array of Optional values
can be sorted manually.

The optional instances should not be used as constructor or method parameters.
Null and missing values are better handled using overloaded constructors and
methods. Overloaded constructors and methods permit variations in the number
and types of parameters. A missing parameter is one possibility. In this situation, one
version of the method can process it and the other version will not use the parameter.

To demonstrate why it is not a good idea to pass an Optional instance, consider the
use of the following constructors added to the Customer class:

public Customer (int id) {
this.id = id;
this.name = "Default Name";

public Customer (int id, Optional<String> name) {
this.id = id;
this.name = name.get();

}

The first constructor does not use a name parameter and a default name is provided.
This is the preferred approach. In the second constructor, an Optional instance

is passed and used to initialize the name field. However, if we used the following
statement, we will get a NoSuchElementException exception:

customerOptional = new Customer (123, Optional.empty());

[159]

http://mail.openjdk.java.net/pipermail/jdk8-dev/2013-September/003276.html
http://mail.openjdk.java.net/pipermail/jdk8-dev/2013-September/003276.html
http://blog.codefx.org/java/serialize-optional/
http://blog.codefx.org/java/serialize-optional/

Optional and Monads

Instead, we will need to modify the constructor to take into account an empty value
as shown here:

public Customer (int id, Optional<String> name)
this.id = id;

if (name.isPresent ())
this.name = name.get () ;

} else {
this.name = "Default Name";

}

The single argument constructor, combined with the original two argument
constructor, handles the empty name easier.

These disadvantages of the optional type are outweighed by the benefits of more
maintainable and robust applications.

Monads

A monad structure can be thought of as a chain of operations wrapped around
an object. These operations are executed against an object and return some value.
In this sense, monads support function composition.

The chaining sequence allows programmers to create pipelines, a sequence
of operations, to solve their problems. In addition, monads allow operations
against the contained values without having to extract them.

To illustrate the use of monads, we will be using a part class as defined here:

public class Part {
private int partNumber;
private String partName;
private boolean outOfStock;

public Part (int partNumber, String partName) {
this.partNumber = partNumber;
this.partName = partName;

public boolean isOutOfStock()
return outOfStock;

[160]

Chapter 6

public void setOutOfStock (boolean outOfStock)
this.outOfStock = outOfStock;

public Optional<Part> outOfStock (boolean outOfStock) {
this.outOfStock = outOfStock;
return Optional.of (this) ;

public Part setPartName (String partName)
this.partName = partName;
return this;

public Optional<Part> partName (String partName) {
this.partName = partName;
return Optional.of (this) ;

public int getPartNumber ()
return partNumber;

public String getPartName () {
return partName;

public Optional<Part> replicatePartMonad() {
// Replicate part
System.out.println ("Part replicated: " + this);
return Optional.of (this) ;

@Override
public String toString() {
return "Part{" + "partNumber=" + partNumber + ",
partName=" + partName + ", outOfStock=" + outOfStock +

!}!’.

[161]

Optional and Monads

Let's assume that we want to obtain a part, mark it as out-of-stock, and then
replicate in some potentially distributed system. Consider the following imperative
solution to this problem. We use HashMap to store our parts. In a more realistic
implementation, both the part ID and the parts will be obtained from another source,
such as a database. The part class's setOutofStock method marks the part as being
unavailable. The part name is augmented with the string " -out-0f-Stock". The
replicatePart method is then called to perform any replication:

private static void replicatePart (Part part) {
// Replicate part
System.out.println ("Part replicated: " + part);

}

Map<Integer, Part> parts = new HashMap<>() ;
parts.put (123, new Part (123, "bolt")) ;
parts.put (456, new Part (123,"nail"));
parts.put (789, new Part (123, "wire")) ;

int partId = 123;

Part part = parts.get (partId);
part.setOutOfStock (true) ;

part.setPartName (part.getPartName () +"-Out-0f-Stock") ;
replicatePart (part) ;

The output of this sequence is as follows:
Part replicated: Part{partNumber=123, partName=bolt, outOfStock=true}

There are several issues with this implementation. First, numerous exceptions can
occur which are not handled. For example, while we obtained a part number using
an integer literal, getting from a less reliable source may return one that is invalid.
The part may not be in HashMap. If the get method returns null, this will throw

a null pointer exception when used with the setoutofstock method.

Instead, the following illustrates how these operations can be performed
using a monad. We will delay a complete explanation of the solution until
the Using monads with the Part class section. The monad solution is simpler,
fluent, and easier to understand:

Optional<Part> optPart = Optional.of (parts.get (456)) ;
System.out.println (
optPart
.flatMap(x -> x.outOfStock (true))

[162]

Chapter 6

.flatMap(x -> x.partName (x.getPartName ()
+ "-Out-of-stock"))

.flatMap (Part: :replicatePartMonad)
.orElseThrow(() -> new RuntimeException())

% The use of monads can result in more resilient code, which
o does not break as easily.

Monads in Java 8

In Java 8, the Optional class is a monad. The Optional class is an example where

we take some value, such as a pPart instance, and return an Optional instance that
wraps the object inside of it. The optional class is an example of a maybe monad.
This is where the monad will contain either a value or nothing.

There are other types of monads besides the maybe monad. These include state,
environment, and continuation monads and are discussed at http://en.wikipedia.
org/wiki/Monad %28functional programming%29#Other examples.

Monads have their roots in category theory (https://reperiendi.wordpress.
com/2007/11/03/category-theory-for-the-j ava—programmer/). However,
it is not necessary for us to understand category theory in order to understand
and use monads.

A monad uses two operations:

* The unit operation: This takes some values and uses a constructor to
place it into a monadic container. A monadic container can be thought
of as a class in Java

* The bind operation: This uses a monadic value and a function
(which converts its argument into a monadic value) and returns
a new monadic value

The bind operation achieves chainability by returning an instance of the
monadic value.

[163]

http://en.wikipedia.org/wiki/Monad_%28functional_programming%29#Other_examples
http://en.wikipedia.org/wiki/Monad_%28functional_programming%29#Other_examples
https://reperiendi.wordpress.com/2007/11/03/category-theory-for-the-java-programmer/
https://reperiendi.wordpress.com/2007/11/03/category-theory-for-the-java-programmer/

Optional and Monads

The optional class's of method corresponds to the unit operation, and its map and
flatMap methods correspond to the bind operation. We will demonstrate uses of
these methods and the Optional class's map method using the Integer and String
classes first. In the Using monads with the Part class section, we will use a part class to
provide a more comprehensive example.

The Stream class is also a monad. Its unit function is the of method, and its bind
function is its £1atMap method. It differs from an optional in its return type.

Using the of method as the unit function

While we used the of method many times before, it is worth repeating it here in the
context of monads. In addition, the declarations set up other examples to follow:

Optional<Integer> one = Optional.of (1) ;
Optional<String> ostring = Optional.of ("go") ;

The integer, 1, has been contained inside of the Optional monad and the string,
"go", is contained in the ostring variable.

Using the flatMap method

We can use the flatMap method to transform a monad. The method takes a
Function interface instance. This instance is passed an Optional<Us> and returns a
transformation of it of type Optional<Us. The f£1atMap method returns this value. If
there is no result, then an empty Optional is returned.

In this example, we simply add 1 to the one monad:

Optional<Integer> plusOne = one.flatMap (
n -> Optional.of(n + 1)) ;
System.out.println (plusOne.get()) ;

This will display a result of 2. We can rewrite the example to use a variable to hold
the lambda expression:

Function<? super Integer, Optional<Integer>> plusOneFunction =
n -> Optional.of(n + 1);

plusOne = one.flatMap (plusOneFunction) ;

System.out.println (plusOne.get()) ;

This produces the same results, but it is more convenient if you need to reuse the
lambda expression.

[164]

Chapter 6

Using the map method

The optional class's map method takes a Function instance. This instance is passed
a T object and returns a transformation of it of type U. The map method will take the

function's return value and return it as an instance of Optional<Us. That is, the map
method returns an instance of <U> Optional<Us> wrapping the mapping function's

return value in it. If there is no result, then an empty optional is returned.

Both the map and flatMap methods may throw NullPointerException if:

* The mapping function passed is null

* The mapping function returns a null result

They both return an instance of <U> Optional<U> allowing the methods to be
chained. They differ in that the map method's Function instance is passed a U while
the £1atMap method's Function instance is passed an Optional<Us.

The following code sequence defines a function that duplicates the functionality of
the previous flatMap example. It adds 1 to its integer argument. The argument x is
implicitly of type Optional<Integers. The intvalue method is implicitly applied to
it returning an integer to which 1 is added. The resulting integer is then encapsulated
into an Optional<Integers instance:

plusOne = one.map (x->x+1) ;
System.out.println (plusOne.get()) ;

The output will be a 2. We can rewrite this code to use a lambda expression variable:

Function<? super Integer, ? extends Integers
plusOneMapFunction = n -> n + 1;

plusOne = one.map (plusOneMapFunction) ;

System.out.println(plusOne.get()) ;

The flatMap and map methods can be used together as demonstrated here:

plusOne = one

.map (x->x.intValue () +1)

.flatMap(n -> Optional.of(n + 1));
System.out.println (plusOne.get()) ;

As expected, this will display a 3.

[165]

Optional and Monads

Using the Optional class with strings

We will use variables of type Optional<Strings to provide further examples
of using monads. Two operations are defined. The first will concatenate the
string "ing" as a suffix and the second will convert all of the string's characters
to upper case.

Function<? super String, Optional<String>> toConcatString =
X -> Optional.of (x + "ing") ;

Function<? super String, Optional<String>> toUpperString =
X -> Optional.of (x.toUpperCase()) ;

The f1latMap method is used to transform a string:

ostring = Optional.of ("go");
result = ostring
.flatMap (toConcatString)
.flatMap (toUpperString) ;
System.out.println(ostring.get()) ;
System.out.println(result.get ())

’

The output is as follows. The original ostring value has not been modified:

go
GOING

The order of execution of the £1atMap methods is important. If they are reversed,
we get the following output:

go
GOing

The following iterative solution accomplishes the same tasks with less code:

String iterative ;
iterative = "go".toUpperCase () .concat ("ing") ;
iterative = "go".concat ("ing") .toUpperCase () ;

However, using lambda expressions with the optional class provides more
flexibility in the operations we can use.

[166]

Chapter 6

Using monads with the Part class

Having illustrated the use of the optional class with integers and strings, we will
now examine how to use it with the Part class. We will use a HashMap instance to
store parts as shown here:

Map<Integer, Part> parts = new HashMap<>() ;
parts.put (123, new Part (123, "bolt"));
parts.put (456, new Part (456, "nail"));
parts.put (789, new Part (789, "wire"));

We will use the optPart variable for these examples:

Optional<Parts> optPart;

The monad solution to the problem posted in the Using the Optional class section
is repeated here with a try-catch block added. This solution uses the f1atMap and
orElseThrow methods to process the part:

try {
optPart = Optional.of (parts.get (456)) ;
System.out.println (
optPart
.flatMap(x -> x.outOfStock (true))
.flatMap (x -> x.partName (
x.getPartName () + "-Out-of-stock"))
.flatMap (Part: :replicatePartMonad)
.orElseThrow(() -> new RuntimeException())
)
System.out.println (optPart) ;
} catch (RuntimeException ex) {
System.out.println ("Exception: " + optPart);

}
When executed, we get the following output:

Part replicated: Part{partNumber=456, partName=nail-Out-of-stock,
outOfStock=true}

Part{partNumber=456, partName=nail-Out-of-stock, outOfStock=true}

In the following statement, we try to retrieve a non-existent part:

optPart = Optional.ofNullable (parts.get (111)) ;

[167]

Optional and Monads

This will handle the exception and generate the following output:
Exception: Optional.empty
We can also define variable to hold our lambda expressions as follows:

Function<? super Part, Optional<Part>> setOOSState

= X -> x.outOfStock (true) ;
Function<? super Part, Optional<Part>> setOOSName

= x -> x.partName (x.getPartName () + "-Out-of-stock");
Function<? super Part, Part> setOOSNameMap

= X -> x.setPartName (x.getPartName () + "-Out-of-stock");

The next code sequence illustrates their use. However, instead of using the f1atMap
method, the map method is used. The output will be identical to earlier example
using this part:

optPart = Optional.of (parts.get (456));
System.out.println (
optPart
.flatMap(x -> x.outOfStock (true))
.map (setO0OSNameMap)
.flatMap (Part: :replicatePartMonad)
.orElseThrow(() -> new RuntimeException())

) ;

A formal discussion of monads

Monads are containers for values, which allow operations to be performed on

these values using chains or pipeline approach. The value is contained within the
monad. Operations are performed on the value within the monad without extracting
the value first. These operations can be chained together using a fluent style of
programming.

A monad needs a unit and a bind operation. A get type of operation to obtain the
contained value is also useful.

We can illustrate the concept of a monad using the following class adapted from
http://mttkay.github.io/blog/2014/01/25/your-app-as-a-function/. This
is a parameterized monad accepting a value of type T. The constructor and unit
method will create an instance of a Monad class.

[168]

http://mttkay.github.io/blog/2014/01/25/your-app-as-a-function/

Chapter 6

The f1latMap method is passed a function that is applied against the contained value.
The get method returns the monad's value:

public class Monad<T> {
private T value;

private Monad (T value) {
this.value = value;

public static <T> Monad<T> unit (T value) {
return new Monad<Ts> (value) ;

public <R> Monad<R> flatMap (Function<T, Monad<R>> func) {
return func.apply(this.value) ;

public T get() {
return value;

}

It is not necessary to use this class in order to use monads in Java 8. As mentioned
before, the optional class provides similar capabilities. The following are relevant
portions of the optional class implementation. It is useful to sometimes examine the
implementation of methods from time to time to further one's understanding of Java.
The optional class's implementation parallels the Monad class implementation:

public final class Optional<T> {

private static final Optional<?> EMPTY = new Optional<>();
private final T value;

private Optional (T value) {

this.value = Objects.requireNonNull (value) ;

public static <T> Optional<Ts> of (T value) {
return new Optional<s>(value) ;

[169]

Optional and Monads

public static <T> Optional<T> ofNullable (T value) {
return value == null ? empty() : of (value);

public T get() {
if (value == null) {

throw new NoSuchElementException ("No value present") ;

}

return value;

public<U> Optional<Us> map (Function<? super T, ? extends Us
mapper) {
Objects.requireNonNull (mapper) ;
if (!isPresent())
return empty () ;
else {

return Optional.ofNullable (mapper.apply(value)) ;

public<U> Optional<Us> flatMap (
Function<? super T, Optional<Us>> mapper) {
Objects.requireNonNull (mapper) ;
if (!isPresent())
return empty() ;
else {

return Objects.requireNonNull (mapper.apply (value)) ;

public static<T> Optional<T> empty() {
@SuppressWarnings ("unchecked")
Optional<T> t = (Optional<Ts>) EMPTY;
return t;

[170]

Chapter 6

In addition, monads support the following rules:

* Associativity
* Leftidentity
* Right identity

These are explained next.

Associativity

Associativity is concerned about the order of composition of the operations. It
implies that two different operations can be composed in either order without
affecting the outcome. However, this does not imply that the order of execution is
not important. This occurs quite often when the operations have side effects.

Left identity

Left identity means that the value within a monad can be transformed within the
monad. That is, it is not necessary to remove an object from a monad, transform it,
and then place it back into a monad.

We can see this with the string monad we used in the Using the Optional class

with strings section. The following creates an instance of monad1l where the
toConcatString operation has been applied to the ostring instance. The monad's
internal value is extracted using the get method, which is then used as an argument
to the apply method to create the monad2 instance:

ostring = Optional.of ("go");
Optional<String> monadl;

Optional<String> result;

monadl = ostring.flatMap (toConcatString) ;
result = toUpperString.apply (monadl.get()) ;
System.out.println(result.get()) ;

The output is as follows:

GOING

[171]

Optional and Monads

The extraction operation is not necessary as shown here:

Optional<String> result = ostring

.flatMap (toConcatString)

.flatMap (toUpperString) ;
System.out.println(result + " " + result.get());

We can invoke operations against a monads value without extracting it.

Monads are sometimes called programmable semicolons, as the
* operations between the semicolons are placed into a monad and
handled there. You can think of semicolons as operators to chain
g imperative statements together. The extra code and variables used
to connect these statements are eliminated with monads.

Right identity
The right identity law supports the chaining behavior of monads. One way of stating

this law is the application of the unit function against a monad has the same effect as
if the unit function was never applied.

This is demonstrated with the next code sequence. The £1atMap method is applied
using a lambda expression that returns an optional instance of itself. In the series of
print statements the equality operator and equals method test the relationship of the
variable and the results of the f1atMap method:

ostring = Optional.of ("right") ;
System.out.println (
ostring.flatMap(s->Optional.of (s)) == ostring) ;
System.out.println (
ostring.flatMap(s->Optional.of (s)) .equals (ostring)) ;
System.out.println (
ostring.flatMap(s->Optional.of (s)) +"==" + ostring);

The output is as follows:

false
true

Optional [right] ==Optional [right]

[172]

Chapter 6

While not the same object, they are equivalent.

A further demonstration of these laws for the optional class can be found at
https://gist.github.com/ms-tg/7420496#file-jdk8 optional monad laws-
java. While these three laws are important, as a programmer, you will not need

to deal with them explicitly. However, having a deeper understanding of basic
concepts is important.

Summary

The optional class provides a better way of dealing with null and missing values.
In many situations, it can be used to avoid the dreaded null pointer exceptions.
This class supports the fluent style of programming,.

We illustrated how to create and use Optional instances. The ability to
return default values was illustrated using the or else type of methods.

The orElseThrow method, in particular, is useful for dealing gracefully with
exceptions. We are able to transform and filter optional objects as illustrated
using the map and filter methods.

Monads were introduced, and are used to chain a series of functions together
using a fluent style. A monad encapsulates a value, allows that value to be
transformed using operations, and permits these operations to be cascaded
together. You learned that monads follow certain laws.

In the next chapter, we will investigate how the functional elements of Java 8 can be
used to implement various design patterns. This presents new and exciting ways to
construct Java applications.

[173]

https://gist.github.com/ms-tg/7420496#file-jdk8_optional_monad_laws-java
https://gist.github.com/ms-tg/7420496#file-jdk8_optional_monad_laws-java

Supporting Design
Patterns Using Functional
Programming

In this chapter, we will examine several design patterns and their possible
implementations. Under each design pattern, we will begin with a short discussion
of the pattern and follow it with an imperative solution and a functional solution.
This will highlight the differences between the two approaches and provide the
reader with additional experience implementing functional solutions in Java.

The intent of this chapter is not necessarily to provide a detailed explanation or
justification for each pattern, but rather to illustrate how these patterns can be
supported in Java 8.

The general approach is to identify a problem and then apply a design pattern
against it. However, this is not always easy. One approach to simplify this task is by
breaking an application down into smaller pieces, determine if that piece is a good
candidate for a specific design pattern, and then apply the pattern.

Overusing design patterns can make the system hard to understand when a simpler
solution is obfuscated by a more complex pattern implementation. Design patterns
are a good communication tool, but should not be treated as gospel. When the
problem doesn't match the proposed pattern, don't use the pattern. Choose the
right pattern for the right problem.

[175]

Supporting Design Patterns Using Functional Programming

You must understand a design pattern before you can apply it. Applying it using
functional approach requires experience with the functional programming style.

At this point, you have been exposed to many of the techniques Java 8 provides to
support functional programming. We will examine several commonly used design
patterns and how they can be implemented using a functional programming approach.
This will further your understanding and ability to use functional approaches in Java.

We will find that different Java 8 features allow us to enhance the implementation
of design patterns. Lambda expressions will allow an alternate means of expression
functionality. Streams will allow us to combine operations in a more flexible and
succinct way. Functional interfaces and default methods will allow us to reduce

the amount of coding required to implement a solution.

Design patterns are often specific to a specific programming paradigm. Some design
patterns support Java applications very well. However, many object-oriented design
patterns are irrelevant to some functional programming languages. For example,
the singleton pattern is not present in pure functional programming languages.
Object-oriented design patterns are not always useful when used with some
imperative implementations. Object-oriented features such as inheritance and
polymorphism are built into object-oriented languages. However, in an imperative
language, they can be considered a design pattern.

The introduction of functional features to Java allows you to avoid using some
object-oriented design patterns. However, functional languages have a need for

their own design patterns. Monads are an example of a functional design pattern
aimed at handling global state, which is not a problem when using an object-oriented
approach. The key is to use the appropriate paradigm for the problem at hand.

The intent of this chapter is to illustrate how some object-oriented design patterns
can be supported using the functional features provided by Java. Writing code that

is more terse and expressive will improve your productivity as a programmer. Using
lambda expression can result in more succinct ways to express solutions to problems.

In this chapter, we will cover only a few of the many design patterns you may see
used. These include the following:
* Execute-around: This supports the reuse of boilerplate code
* Factory: This assists in the creation of complex objects
* Command: This groups operations, so they can be stored and used later
* Strategy: This provides a means of using different algorithms over a collection
* Visitor: This applies an operation on a common set of elements

* Template: This supports implementations based around a common
problem structure

[176]

Chapter 7

Implementing the execute-around-method
pattern

The execute-around-method pattern is intended to make it easy to reuse boilerplate
code. For example, every time we modify a key value, we may want to log the result.
Perhaps, we want to make sure resources are cleaned up after particular operations
are performed.

Sometimes code needs to be executed before or after a method executes. To illustrate
this pattern, we will examine how to determine the time required to perform an
operation. We will obtain the time before and after an operation to calculate its
execution time.

Object-oriented solution to the

execute-around-method pattern

A simplistic approach is to copy and paste the code before and after the method
call. Consider the situation where we have a complex computation, which we
would like to time. We can use the currentTimeMillis method before and after
the computation to determine its duration.

In the following method, we perform this operation. However, to keep the example
simple, we will only compute the square of an integer and delay the operation

for 500 milliseconds to simulate a more complex operation. All of the code in the
method is boilerplate exception for where value passed is squared.

public int executeImperativeSquareSolution (int value) {

long start = System.currentTimeMillis() ;
int result = 0;
try {

// Perform computation
result = value * value;
Thread.sleep(500) ;
} catch (InterruptedException ex) {
ex.printStackTrace () ;
}
long end = System.currentTimeMillis() ;
long duration = end - start;
System.out.print ("Duration: " + duration + " - ");

return result;

[177]

Supporting Design Patterns Using Functional Programming

If we wanted to perform a different computation (such as cubing an integer)
we would have to duplicate the method's code with the exception of the actual
computation. A method that cubes an integer follows and differs only in the
computation of result:

public int executelmperativeCubeSolution (int value)

result = value * value * value;

}

However, this is not a good approach because it clutters the code making it harder to
read. In addition, if the boilerplate code changes we have to remember the location of
the code and replace it with the new version. Encapsulating the functionality in two
methods will help but we will still need to explicitly insert the method calls.

Functional solution to the
execute-around-method pattern

A functional approach uses a method that is passed the computation to be performed
and a value to be used with the computation. In the following executebDuration
method, we pass a Function instance and a value to use with the function. The
apply method executes the function with the data. Otherwise, the code is identical

to the imperative solution:

public int executeDuration (
Function<Integer, Integer> computation, int value) {

long start = System.currentTimeMillis() ;
int result = 0;
try {

result = computation.apply(value) ;

Thread.sleep(500) ;

} catch (InterruptedException ex) {
ex.printStackTrace () ;

}

long end = System.currentTimeMillis() ;

long duration = end - start;

System.out.print ("Duration: " + duration + " - ");

return result;

[178]

Chapter 7

The next code sequence uses both the imperative and functional solutions:

System.out.println (executeImperativeSquareSolution(5)) ;

System.out.println (executeImperativeCubeSolution(5)) ;

System.out.println (executeDuration(x -> x * x, 5));

System.out.println (executeDuration(x -> x * x * x, 5));

The output is as follows:

Duration: 501 - 25

Duration: 501 125

Duration: 500 - 25
Duration: 500 - 125

Instead of using lambda expressions as an argument of the functional methods, we
can use the variables as defined here:

Function<Integer, Integer> computeSquare = xX -> X * X;
Function<Integer, Integer> computeCube = x -> x * x * Xx;
System.out.println (executeDuration (computeSquare, 5)) ;
System.out.println (executeDuration (computeCube, 5));

To further illustrate this design pattern, the following methods will perform a
logging operation. The withLog method simply performs the logging process, while
the executewWithLog method logs the value and performs the desired operation.
Having both of these methods will provide flexibility in how functions can be
combined to support the execute-around-method pattern:

private static int withLog(int value) {
System.out.print ("Operation logged for " + value + " - ");
return value;

private static int executeWithLog(
Function<Integer, Integer> consumer, int value) {
System.out.print ("Operation logged for " + value + " - ");
return consumer.apply(value) ;

}

The executewithLog method will execute the supplied function and perform
logging as shown here:

System.out.println (executeWithlLog(x -> x * x, 5));
System.out.println (executeWithLog (computeSquare, 5)) ;

[179]

Supporting Design Patterns Using Functional Programming

The output of this sequence is as follows:

Operation logged for 5 - 25
Operation logged for 5 - 25

While the withLog method will log a value, it does not perform an operation as
illustrated here:

System.out.println (withLog(5)) ;

It will display the following;:

Operation logged for 5 - 5

However, what if we want to perform the logging operation and the duration
operation on the same function? One approach will use an intermediate variable to
hold the result of the executebDuration method, and then use it with the withLog
method as shown here:

int result = executeDuration(x -> X * x, 5);

System.out.println(withLog (result)) ;
This will display:
Duration: 500 - Operation logged for 25 - 25

There is an easier way. The withLog method can use the output of the
executeDuration method to achieve the same results:

System.out.println(withLog(executeDuration(x -> x * x, 5)));

An alternative approach that produces the same results is shown here:

System.out.println(executeDuration(x -> x * x, withLog(5)));

We can use a more generic approach to support the execute-around-method pattern.
The following method takes two Function instances and a value. One instance
represents the function to be executed and the second represents either a before

or after operation:

public int executeBefore (
Function<Integer, Integer> beforeFunction,
Function<Integer, Integer> function,
Integer value) ({
beforeFunction.apply (value) ;
return function.apply(value) ;

[180]

Chapter 7

public int executeAfter (
Function<Integer, Integer> function,
Function<Integer, Integer> afterFunction,
Integer value) {
int result = function.apply(value) ;
afterFunction.apply(result) ;
return result;

}

These can be used as shown next. The withLog method is used as a method reference
where the enclosing class is Chapter?7.

System.out.println (
executeBefore (Chapter7: :withLog, computeSquare, 5)) ;
System.out.println (
executeAfter (computeSquare, Chapter7: :withLog, 5));

The output of this sequence is shown here:

Operation logged for 5 - 25
Operation logged for 25 - 25

Using the execute-around-method pattern
with a stream

We may need to use the pattern with specific steps in a stream. This can be
accomplished using the map method. In the next example, the computeDuration
variable's function will perform the duration operation and square a number. It is
then used as the map method's argument:

Function<Integer, Integer> computeDuration =
X -> executeDuration (computeSquare, Xx);

Integer arr[] = {1, 2, 3, 4, 5};
Stream<Integer> myStream = Arrays.stream(arr) ;
myStream

.map (computeDuration)
.forEach(x -> System.out.println(x));

This code sequence generates the following output:

Duration: 501 -
Duration: 500 - 4
Duration: 501 - 9
Duration: 500 - 16
Duration: 501 - 25

[181]

Supporting Design Patterns Using Functional Programming

Alternatively, we can use the following:

.map (x -> executeDuration(v -> v * v, X))

We cannot create a withDuration type method, which would mirror the previous
withLog method, because this operation requires code to be executed before and
after the function is executed. We need to maintain a duration type variable, but
these variables need to be effectively final, meaning that we cannot modify them.

If we need to perform some action other than those handled by the java.util.
function interface, we can always define our own functional interface.

Implementing the factory pattern

A common way of creating objects is using the new keyword with a constructor.
However, if this is done repeatedly in many places in a program, the code used to
create the object will need to be modified in each location should this process change.
Using a factory method will simplify this process. The factory pattern is used to
create different instances of different classes of the same base type.

The factory pattern is used to assist in the creation of objects. Where the use of the
new keyword is not advisable, this technique should be used. This includes situations
where context-dependent information is needed to create an instance and where we
wish to have more control over the creation process.

In the former case, creating a connection to an external resource such as a database
may be dependent on several factors. These can include the availability of the server
hosting the database, type of database support required, and potentially legal issues
such as whether the license is current or can be used in a specific country.

The life cycle management of objects is frequently concerned with the number and
types of objects created. A server will typically have limits on the number of objects
it can support at one time. Some objects may be clustered to support common
operations against them.

The pattern typically does not support the new operation and provides methods such
as getInstance or create instead. Making constructors private or protected,
forces a user to use a get Instance type method. This pattern is used in several
places in the Java SE SDK. The DriverManager class's getConnection and the

URL class's openConnection methods are examples of such use.

To illustrate the factory pattern, we will demonstrate how to create instances of
a vacuum cleaner. For example, a VacuumCleaner factory will create instances
of objects that implement a vacuumCleaner interface. The details of creating a
VacuumCleaner instance will be contained within the get Instance method.

[182]

Chapter 7

Object-oriented solution to the factory pattern

We will demonstrate this pattern with two classes that implement the
VacuumCleaner interface. The interface, as shown here, uses two methods:
vacuum and clean. The intent of the clean method is to clean a vacuum cleaner:

public interface VacuumCleaner {
public void vacuum() ;
public void clean() ;

}

Two classes are declared that implement the VacuumCleaner interface:
DirtVacuumCleaner and WaterVacuumCleaner as shown here. While the constructors
are declared as public in this example, to hide them we can use a more restricted
constructor modifier:

public class DirtVacuumCleaner implements VacuumCleaner

public DirtVacuumCleaner () {
System.out.println ("Creating DirtVacuumCleaner") ;

@Override
public void vacuum()
System.out.println ("Vacuuming dirt") ;

@Override
public void clean() {
System.out.println("Cleaning Dirt Vacuum Cleaner") ;

public class WaterVacuumCleaner implements VacuumCleaner {

public WaterVacuumCleaner () {
System.out.println ("Creating WaterVacuumCleaner") ;

@Override
public void vacuum()
System.out.println ("Vacuuming water") ;

[183]

Supporting Design Patterns Using Functional Programming

@Override
public void clean() {
System.out.println("Cleaning Water Vacuum Cleaner") ;

}

A VacuumCleanerFactory class is declared next. It provides a static getInstance
method that takes a string indicating the type of vacuum cleaner needed. While
the creation of the two vacuum cleaner classes is simple, the process of creating
an instance for a different class may be more involved:

public class VacuumCleanerFactory
public static VacuumCleaner getInstance (String type) {
VacuumCleaner vacuumCleaner = null;
if ("Dirt".equals (type))
vacuumCleaner = new DirtVacuumCleaner () ;
} else if ("Water".equals (type)) {
vacuumCleaner = new WaterVacuumCleaner () ;
} else {
// Handle bad type

}

return vacuumCleaner;

}
The following code sequence demonstrates the creation of the factory:

VacuumCleaner dvc =
VacuumCleanerFactory.getInstance ("Dirt") ;

dvc.vacuum() ;

dvc.clean() ;

VacuumCleaner wvc =
VacuumCleanerFactory.getInstance ("Water") ;

wvc.vacuum() ;

wvc.clean() ;

The output of this sequence is as follows:

Creating WaterVacuumCleaner
Vacuuming water

Cleaning Water Vacuum Cleaner
Creating WaterVacuumCleaner
Vacuuming water

Cleaning Water Vacuum Cleaner

[184]

Chapter 7

Functional solution to the factory pattern

Using lambda expressions provided by Java 8 eliminates the need for an explicit
factory class. The next sequence illustrates the definition and use of two Supplier
lambda expressions to support the creation of the DirtvVacuumCleaner and
WaterVacuumCleaner instances. The variable, dvcSupplier, represents an object
that supports the supplier interface's get method, which returns an instance of a
DirtVacuumCleaner. The constructor reference will return an object of this type.
The wvcSupplier variable works the same way:

Supplier<DirtVacuumCleaner> dvcSupplier =
DirtVacuumCleaner: :new;

dvc = dvcSupplier.get() ;

dvc.vacuum() ;

dvc.clean() ;

Supplier<WaterVacuumCleaner> wvcSupplier =
WaterVacuumCleaner: :new;

wvc = wvcSupplier.get() ;
wvc.vacuum() ;
wvc.clean() ;

The use of the lambda expressions avoids creating a new factory class.

Implementing the command pattern

The command pattern is useful for storing an arbitrary set of operations that can
be executed at a later time. It has been used to support GUI action controls such as
buttons and menus, recording macros, and supporting undo operations.

It is a behavioral design pattern where an object encapsulates the information
needed to perform an operation at a later time. We will illustrate this pattern using
a macro-like facility where a character can walk, run, or jump. A sequence of these
actions can be saved and executed as needed.

[185]

Supporting Design Patterns Using Functional Programming

Object-oriented solution to the command
pattern

We start with the declaration of the Command interface as shown next. It has a single
method, execute, whose intent is to execute some command and return whether it
was successful or not.

public interface Command {
public boolean execute() ;

}
The Move interface details the actions that will be supported:

public interface Move
public boolean walk() ;
public boolean run() ;
public boolean jump() ;

}

The next three classes: WalkCommand, RunCommand, and JumpCommand, implement
the command interface by displaying simple messages. They differ in which Move
interface method is used:

public class WalkCommand implements Command{
private final Move move;

public WalkCommand (Move move) {
this.move=move;

@Override
public boolean execute() {
return move.walk() ;

public class RunCommand implements Command {
private final Move move;

public RunCommand (Move move) {

this.move=move;

@Override
public boolean execute() {

[186]

Chapter 7

return move.run() ;

public class JumpCommand implements Command{
private final Move move;

public JumpCommand (Move move) {
this.move=move;

@Override
public boolean execute() {
return move.jump () ;

}

However, it is the Character class that actually implements the moves for
a character:

public class Character implements Move

@Override

public boolean walk() {
System.out.println("Walking") ;
return true;

}

@Override

public boolean run() ({
System.out.println ("Running") ;
return true;

}

@Override

public boolean jump()
System.out.println ("Jumping") ;
return true;

}

The commands class supports the macro functionality. It uses an ArrayList instance
to hold the commands to be executed as shown next. The addcommand method adds
a new command to the list, and the executeCommand method will execute those
commands in the order they were added:

public class Commands {
private final List<Command> commands = new ArrayList<>();

[187]

Supporting Design Patterns Using Functional Programming

public void addCommand (Command action)
commands .add (action) ;

public void executeCommand () {
commands . forEach (Command: : execute) ;

}
The next code sequence illustrates the use of these classes:

Character character = new Character() ;
Commands commands = new Commands () ;

commands . addCommand (new WalkCommand (character)) ;
commands .addCommand (new RunCommand (character)) ;
commands . addCommand (new JumpCommand (character)) ;
commands . executeCommand () ;

The output is as follows:

Walking
Running

Jumping

An alternate series of commands can be easily supported.

Functional solution to the command pattern

Here, we will create a better version of this implementation using lambda
expressions. We start with a replacement of the Commands class with the
FunctionalCommands class as shown next. The primary difference is the use of the
Supplier interface instead of the command interface. This allows us to potentially
use the new class with other "commands." We can use any method that matches
Supplier<Booleans:

public class FunctionalCommands {
private final List<Supplier<Boolean>> commands =
new ArrayList<>();

public void addCommand (Supplier<Boolean> action) {
commands .add (action) ;

[188]

Chapter 7

public void executeCommand () {
commands . forEach (Supplier: :get) ;

}
}

The walkCommand, RunCommand, and JumpCommand classes are no longer needed. We
can replace them with lambda expressions as shown here:

Character character = new Character() ;
FunctionalCommands fc = new FunctionalCommands () ;

fc.addCommand (() -> character.walk()) ;
fc.addCommand (() -> character.run()) ;
fc.addCommand (() -> character.jump());

fc.executeCommand () ;

The output is as follows and is identical to the previous solution:

Walking
Running

Jumping
We can use method references instead, as shown next to achieve the same results:

fc.addCommand (character: :walk) ;
fc.addCommand (character: :run) ;
fc.addCommand (character: : jump) ;
fc.executeCommand () ;

The functional implementation uses fewer classes and is more flexible since it uses
the supplier interface and lambda expressions to define a command.

Implementing the strategy pattern

The strategy pattern allows an algorithm to be selected at runtime based on the
needs of the application. Instead of using the if type statements to select an
algorithm, the algorithm's implementation is contained in classes that implement an
interface depicting the desired operation. This allows the algorithm executed to vary
depending on the client it is applied against.

The pattern does not use inheritance, but rather encapsulates the behavior in another
class. This composition approach decouples the behavior from the classes that use
the behavior. Changing the behavior does not affect the class that uses it.

[189]

Supporting Design Patterns Using Functional Programming

Let's assume that a list of tasks needs to be processed. However, there are various
task ordering algorithms that can be used. The idea is to associate a list of tasks with
a specific algorithm. The algorithm can then be applied to decide which task should
be used executed next.

We will illustrate this pattern by showing how to implement scheduling algorithms
for tasks. The algorithms are kept simple to focus on the strategy pattern. We will
begin with an object-oriented implementation, and then show how to use Java 8 to
implement it in a more succinct and elegant manner.

Object-oriented solution to strategy pattern

A Task class holds the name and duration of a task. These tasks are managed by a
Tasks class. This class possesses methods to add tasks, hold a specific scheduling
strategy, and return the next task to perform. These two classes are shown next:

public class Task
private String name;
private int duration;

public Task (String name, int duration) {
this.name = name;
this.duration = duration;

public String getName () {
return name;

}

public void setName (String name) {
this.name = name;

}

public int getDuration() {
return duration;

}

public void setDuration (int duration) {
this.duration = duration;

}

@Override
public String toString() {
return "Task{" + "name=" + name + ", duration="

[190]

Chapter 7

+ duration + '}';

public class Tasks {
private List<Task> tasks;
private SchedulingStrategy strategy;

public Tasks() {
tasks = new ArrayList();

public void addTask (Task task) {
tasks.add (task) ;

public void setTasks (List<Task> tasks) {
this.tasks = tasks;

public void setStrategy(SchedulingStrategy strategy) {
this.strategy = strategy;

public Task getNextTask()
return strategy.nextTask (tasks) ;

}

The schedulingStrategy interface shown next will be implemented by the various
scheduling algorithms. Each algorithm will use a different approach to select the next
task to be performed. The nextTask method will return this task:

public interface SchedulingStrategy {
public Task nextTask(List<Task> tasks) ;

}

For this example, we will use three different algorithms: first-come-first-serve,
shortest-task-first, and longest-task-first. These reflect common approaches
to scheduling tasks. These algorithms are implemented in the FCFSStrategy,
STFStrategy, and LTFStrategy classes, respectively. Each of these classes
implement the schedulingStrategy interface.

[191]

Supporting Design Patterns Using Functional Programming

For these scheduling implementations, the tasks are not removed from the list. The
need for removal depends on the nature of the application. For an operating system,
the task may represent processes which may execute for a short interval but are not
completed and thus need to remain on the list.

The FcFsstrategy class is shown first. It simply returns the first task in the list:

public class FCFSStrategy implements SchedulingStrategy

@Override
public Task nextTask (List<Task> tasks) {
return tasks.get (0);

}

The STFStrategy class searches for the task with the shortest duration. In this
implementation, the shortest task is assumed to be the first task. If this is not
the case, then the shortest task will eventually be found:

public class STFStrategy implements SchedulingStrategy

@Override
public Task nextTask (List<Task> tasks) {
Task shortest = tasks.get (0);
for (Task task : tasks) {
if (shortest.getDuration() > task.getDuration()) ({
shortest = task;

}

return shortest;

}

The LTFStrategy class shown here is very similar to the STFStrategy class. It
selects the task with the longest duration instead:

public class LTFStrategy implements SchedulingStrategy

@Override
public Task nextTask (List<Task> tasks) {
Task longest = tasks.get(0);
for (Task task : tasks) {
if (longest.getDuration() < task.getDuration()) ({
longest = task;

[192]

Chapter 7

return longest;

}

With all of the pieces of the pattern created, we can now demonstrate its use. We
start with the declaration of four tasks as shown here:

Task tasks[] = {new Task ("Quick",25), new Task ("Longest",200),
new Task ("Shortest",2), new Task("Slow",35)};

To use the pattern, we create an instance of the Tasks class and initialize its list using
the setTasks method. The setstrategy method will specify that the STFStrategy
class be used to select a task as shown here:

Tasks taskListl = new Tasks() ;
taskListl.setTasks (Arrays.asList (tasks))
taskListl.setStrategy (new STFStrategy()) ;
System.out.println(taskListl.getNextTask()) ;

7

This code will produce the output shown here where the task with the shortest
duration is selected:

Task{name= Shortest, duration=2}

We can use a second Tasks instance to select and use the other two scheduling
strategies:

Tasks taskList2 = new Tasks() ;
taskList2.setTasks (Arrays.asList (tasks)) ;
taskList2.setStrategy (new FCFSStrategy()) ;
System.out.println(taskList2.getNextTask()) ;
taskList2.setStrategy (new LTFStrategy()) ;
System.out.println(taskList2.getNextTask()) ;

These will choose the first and longest tasks as shown here:

Task{name=Quick, duration=25}

Task{name=Longest, duration=200}

[193]

Supporting Design Patterns Using Functional Programming

Functional solution to the strategy pattern

The functional implementation uses less code and is easier to follow. We will reuse
the Task and Tasks class. The SchedulingStrategy interface is the same, except
we use the FunctionalInterface annotation to explicitly state it is a functional
interface as shown here:

@FunctionalInterface
public interface SchedulingStrategy
Task nextTask (List<Task> tasks) ;

}

The FCFSStrategy, STFStrategy, and LTFStrategy classes are no longer needed.
Instead, we will use lambda expressions to implement their functionality. We will
reuse the code used to set up the taskList1 instance as duplicated here:

Task tasks[] = {new Task("Quick", 25),
new Task ("Longest", 200), new Task("Shortest", 2),
new Task ("Slow", 35)};

Tasks taskListl = new Tasks();

taskListl.setTasks (Arrays.aslList (tasks)) ;

The schedulingStrategy variable, STF, is initialized with a lambda expression that
is essentially a duplicate of the STFStrategy class logic:

SchedulingStrategy STF = t -> {
Task shortest = t.get(0);
for (Task task : t) {
if (shortest.getDuration() > task.getDuration()) {
shortest = task;

}

return shortest;

}i
We then use this variable in the same way we did for the class:

taskListl.setStrategy (STFStrategy) ;
System.out.println(taskListl.getNextTask()) ;

This generates the same output:

Task{name= Shortest, duration=2}

[194]

Chapter 7

However, the lambda expression does not take advantage of the full power of Java 8.
We can rewrite it using the Comparator interface and a stream class as shown in the
following example. Since the nextTask method is passed an instance of List<Task>,
we can use the List interface's stream method to obtain an instance of type
Steam<Task>. The min method is then used with the Comparator interface instance
to find the task with the smallest duration. The get method will return this instance:

Comparator<Task> comparator =

(x,y) -> x.getDuration()-y.getDuration() ;
SchedulingStrategy STFStrategy =

t -> t.stream() .min(comparator) .get () ;

This is a much simpler implementation than the previous lambda expression. The
other two scheduling strategies can be implemented in similar fashion:

SchedulingStrategy FCFSStrategy = t -> t.get(0);
SchedulingStrategy LTFStrategy =
t -> t.stream() .max(comparator) .get () ;

The following code sequence produces the same output as the object-oriented solution:

taskListl.setStrategy (STFStrategy) ;
System.out.println(taskListl.getNextTask()) ;

Tasks taskList2 = new Tasks() ;
taskList2.setTasks (Arrays.asList (tasks));
taskList2.setStrategy (FCFSStrategy) ;
System.out.println(taskList2.getNextTask()) ;

taskList2.setStrategy (LTFStrategy) ;
System.out.println(taskList2.getNextTask()) ;

The functional programming solution eliminated the need for the three strategy
classes and facilitated the implementation of simpler strategy algorithms.

Using the Function interface

We can further simplify the solution by eliminating the SchedulingStrategy
interface all together and using the Function interface instead. The signature of the
SchedulingStrategy interface's nextTask method is a variation of the Function
interface's apply method. All we need to do is replace SchedulingStrategy with
Function<List<Task>, Task> and the nextTask method with the apply method in
the Task class as shown here:

public class Tasks {

private Function<List<Task>,Task> strategy;

[195]

Supporting Design Patterns Using Functional Programming

public void setStrategy (Function<List<Task>,Task> strategy)
this.strategy = strategy;

}

public Task getNextTask()
return strategy.apply (tasks);

}
}

In the declarations of the strategy class's lambda expressions, replace
SchedulingStrategy with Function<List<Task>, Task> as shown here:

Function<List<Task>, Task> FCFSStrategy = t -> t.get(0);
Function<List<Task>, Task> STFStrategy =

t -> t.stream() .min(comparator) .get () ;
Function<List<Task>, Task> LTFStrategy =

t -> t.stream() .max (comparator) .get () ;

The solution is shorter and uses standard functional interfaces found in the java.
util.function package. The intent of the apply method is not as clear as using
the nextTask method. This is a small price to pay for losing an interface.

Implementing the visitor pattern

The visitor pattern is useful when you need to use different algorithms to apply to
elements of a collection at different times. For example, you may have a collection
of components of a train engine. Periodically, maintenance checks will need to be
performed against each element. You may also want to occasionally display the
status of each component. The collection does not necessarily change, only the
operations performed against the components.

The visitor pattern is a way of structuring your data to facilitate the application
of different algorithms against the structure without a new algorithm impacting
the components.

The structure of the visitor pattern uses a base element interface or collection
representing the collection of interest. For the train engine example, this base might
represent the engine itself and its derived components will be elements such as
wheels, engine, horn, and windows.

A visitor interface is added, which defines a visit method that is applied against
each potential component of the collection. The argument of the visit method is
code that implements the desired functionality such as check status. A component
may have a method that allows other subcomponents to be added.

[196]

Chapter 7

We will use a graphic scene used in many game engines to hold the elements that
make up a scene. This can include elements such as characters, buildings, plants,
and similar elements. Given a scene, we will apply either of two operations against
the scene. The first will be to refresh each element. A second operation will print
information about each elements. When we implement the functional version of
this pattern, we will introduce a third operation.

Object-orient solution to the visitor pattern

We will start with the definition of the base element — ISceneElement. This interface
defines two methods. The getName method returns the name of an element and the
accept method initiates the application of a visit operation against its elements:

public interface ISceneElement (
public String getName () ;
void accept (ISceneElementVisitor visitor) ;

}

The I1SceneElementVisitor interface defines a visit method which takes an
ISceneElement instance and "visits" it:

public interface ISceneElementVisitor {
public void visit (ISceneElement element) ;

}

We will use three classes that implement the ISceneElement interface: Scene,
BuildingElement, and PlantElement. The Scene class represents the scene to be
rendered. It maintains an array of ISceneElement elements. Its constructor will
supply a name for the scene and initialize the array of scene elements. Its accept
method will apply a visitor operation against each element of the scene and the
scene itself:

public class Scene implements ISceneElement
ISceneElement [] elements;
private String name;

public Scene (String name) {
this.name = name;
this.elements = new ISceneElement [] {
new BuildingElement ("Tool Shed"),
new BuildingElement ("Brick House"),
new PlantElement ("Oak Tree") ,
new PlantElement ("Lawn") };

[197]

Supporting Design Patterns Using Functional Programming

public void accept (ISceneElementVisitor visitor) {
for (ISceneElement elem : elements) {
elem.accept (visitor) ;

}

visitor.visit (this) ;

@Override
public String getName ()
return this.name;

}

The BuildingElement and PlantElement classes also implement the
ISceneElement interface and provide similar capabilities. Two distinct classes are
defined to clearly differentiate the types of elements that can be added to a scene.
Their implementations are as follows:

public class BuildingElement implements ISceneElement {
private String name;

public BuildingElement (String name) {
this.name = name;

public String getName () {
return this.name;

@Override
public void accept (ISceneElementVisitor visitor) {
visitor.visit (this) ;

public class PlantElement implements ISceneElement
private String name;

public PlantElement (String name)

this.name = name;

public String getName () {
return this.name;

[198]

Chapter 7

@Override
public void accept (ISceneElementVisitor visitor) {
visitor.visit (this) ;

}

The two visitor algorithms are implemented by the SceneElementRefreshVisitor
and SceneElementPrintVisitor classes as shown here. These are simple
implementations that indicate that the element has been refreshed or printed. In a
more sophisticated implementation, they will perform more detailed operations.
An element is passed to the visit method where the operation is performed:

public class SceneElementRefreshVisitor implements
ISceneElementVisitor {

@Override
public void visit (ISceneElement element) {
System.out.println("Refreshing " + element.getName()) ;

}

public class SceneElementPrintVisitor implements
ISceneElementVisitor {

@Override
public void visit (ISceneElement element) {
System.out.println("Printing " + element.getName()) ;

}

A simple demonstration of this solution follows where a primary scene is created
and the two visitors are used as arguments to the accept method. The accept
method will then apply the visitor to each element of the scene:

public class SceneVisitorDemo
public static void main(String[] args) {
ISceneElement scene = new Scene ("Primary Scene') ;
scene.accept (new SceneElementPrintVisitor()) ;
scene.accept (new SceneElementRefreshVisitor()) ;

[199]

Supporting Design Patterns Using Functional Programming

The output of this example is shown here:

Printing Tool Shed
Printing Brick House
Printing Oak Tree
Printing Lawn

Printing Primary Scene
Refreshing Tool Shed
Refreshing Brick House
Refreshing Oak Tree
Refreshing Lawn

Refreshing Primary Scene

Functional solution to the visitor pattern

We will make several modifications to the object-oriented solution. The
ISceneElement interface will be converted to a functional interface. Making the
getName method abstract will allow us to access the name of an element that we will
display in a visitor lambda expression implementation. The accept method is the
same for each element, so we can convert it to a default method:

@FunctionalInterface
public interface ISceneElement {
public String getName () ;
public default void accept (ISceneElementVisitor visitor) {
visitor.visit (this) ;

}

The interface's implementation is the same, except that we added the
FunctionalInterface annotation to it:

@FunctionalInterface
public interface ISceneElementVisitor (
public void visit (ISceneElement element) ;

}

The PlantElement class is left as a class to contrast it with the BuildingElement
interface. The original class is duplicated here for your convenience:

public class PlantElement implements ISceneElement {

private String name;

[200]

Chapter 7

public PlantElement (String name)
this.name = name;

@Override
public String getName () {
return this.name;

}

We will replace the BuildingElement class with the following functional interface.
All of its required functionality is provided by the base interface I1SceneElement
and the lambda expression that uses it as we will see in the scene class shortly:

@FunctionalInterface
public interface BuildingElement extends ISceneElement {}

The SceneElementPrintVisitor and SceneElementRefreshvisitor classes have
not been modified.

The scene class differs in how the element's array is initialized. We use lambda
expressions to provide the functionality for several scene elements. The building
lambda expression variable illustrates how the lambda expression can be reused if
needed. The creation of the brick house uses a lambda expression directly:

public class Scene implements ISceneElement {
ISceneElement [] elements;
private String name;

public Scene (String name) {
this.name = name;

BuildingElement building = ()->"Tool Shed";
this.elements = new ISceneElement[] ({
building ,

() ->"Brick House",
new PlantElement ("Oak Tree"),
new PlantElement ("Lawn") };

@Override
public void accept (ISceneElementVisitor visitor) {
for (ISceneElement elem : elements) {
elem.accept (visitor) ;

[201]

Supporting Design Patterns Using Functional Programming

visitor.visit (this) ;

@Override
public String getName () {
return this.name;

}
}

The following example shows how this functional implementation can be used to
create a scene. The two visitor classes are used as before:

ISceneElement scene = new Scene ("Primary Scene') ;
scene.accept (new SceneElementPrintVisitor()) ;
scene.accept (new SceneElementRefreshVisitor()) ;

However, we can add a new visitor operation on the fly using a lambda expression
that implements the ISceneElementVisitor functional interface. This requires the
lambda expression to match the visit method, which is a method that is passed

an ISceneElement instance and returns void. Here, the ISceneElement interface's
getName method is called, and like the previous visitors implementations, a message
is displayed:

scene.accept (t -> System.out.println(
"Another visitor operation on " + t.getName()));

If we need to implement different visitor functionality, we can use a different
abstract method other than the getName method. The method can easily return
an object containing information to be processed.

Implementing the template pattern

The template pattern is based around the idea that certain problems have structures
that are reflected in a core method. This method uses the same set of operations to
perform a task. This can be seen in a loading task where the basic steps to load a
container is essentially the same whether the container is a box or a truck.

The steps are the same, such as prepared item to be loaded, but the specific
preparation will vary depending on the container. A box may require that the item
be wrapped in paper while the truck may require the application of a plastic wrap.

[202]

Chapter 7

We will use a game engine to illustrate this template. The basic steps include:

1. Rendering an image.
2. Updating the game.

3. Terminating the game when it is over.

Object-oriented solution to the template
pattern

This approach uses an abstract Game class that contains a template method

and abstract methods for the initialization, rendering, and updating steps. Its
implementation follows where an infinite loop is used to render an image, update
the game, and then break out of the loop. The logic for game termination will be
more complex than suggested by this implementation:

public abstract class Game (
abstract void initialize(String name) ;
abstract String render () ;
abstract int update (String name) ;

// Template method
public final void run(String name) {
initialize (name) ;
while (true) {
String image = render () ;
System.out.println("Rendering " + image) ;
int status = update (name) ;
// Evaluate termination conditions
System.out.println("...");
break;

}

The run method is declared as final. This is the template method and does not need
to be overridden.

Two games are based on the Game class: a first-person shooter game and a strategy
game. They override the abstract methods of the Game class and provide similar but
slightly different implementations:

public class FPSGame extends Game {

public FPSGame ()
run ("FPS Game") ;

[203]

Supporting Design Patterns Using Functional Programming

}

@Override
void initialize (String name) {
System.out.println("Starting " + name);}

@Override

String render () {
System.out.println ("Generating FPS Image") ;
return "FPS Image";}

@Override

int update (String name) {
System.out.println ("Updating " + name) ;
return O0;

public class StrategyGame extends Game

public StrategyGame ()
run ("Strategy Game") ;

@Override
void initialize (String name) {
System.out.println("Starting " + name);}

@Override

String render () {
System.out.println("Generating Strategy Image") ;
return "Strategy Image";}

@Override

int update (String name) {
System.out.println ("Updating " + name) ;
return O0;

}

Using the games requires the creation of a new instance of each class as shown here:

FPSGame td = new FPSGame () ;
StrategyGame sg = new StrategyGame() ;

[204]

Chapter 7

This will produce the following output:

Starting FPS Game
Generating FPS Image
Rendering FPS Image
Updating FPS Game

Starting Strategy Game
Generating Strategy Image
Rendering Strategy Image
Updating Strategy Game

New games can be added by extending the Game class.

Functional solution to the template pattern

In this functional implementation of this pattern, we use a class that contains
functional interface reference variables to hold the implementation of the
initialization, rendering, and updating functionality. We cannot replace the Game
class with a functional interface because we will have multiple abstract methods in
a single class, which is not permitted in a functional interface. Using these reference
variables requires a derived class to supply the functionality needed in a constructor
or possibly setter methods.

The implementation of the Game class follows, which uses the same logic as the
object-oriented solution:

public class Game
Consumer<Strings> initialize;
Supplier<String> render;
Function<String, Integer> update;

// Template method
public final void run(String name) {
initialize.accept (name) ;
while (true) {
String image = render.get () ;
System.out.println("Rendering " + image) ;
int status = update.apply (name) ;
// Evaluate termination conditions
System.out.println("...");

[205]

Supporting Design Patterns Using Functional Programming

break;

}

The implementation of the FPSGame and StrategyGame classes is identical,
suggesting that they can be combined. The constructor is used to initialize
the abstract methods of the Game class:

public class FPSGame extends Game {

public FPSGame (

Consumer<String> initialize,
Supplier<String> render,
Function<String, Integer> update)

this.initialize = initialize;

this.render = render;

this.update = update;

run ("FPS Game") ;

public class StrategyGame extends Game {

public StrategyGame (

Consumer<String> initialize,
Supplier<String> render,
Function<String, Integer> update)

this.initialize = initialize;

this.render = render;

this.update = update;

run("Strategy Game") ;

}

To use these classes, we need to develop methods or lambda expressions to provide
the abstract method's functionality. We will illustrate both these approaches. The
following methods that are used support both the games with the exception of the
render method, which is specific to the FPS game:

public static void initializeGame (String name) {
System.out.println("Starting " + name) ;

[206]

Chapter 7

public String render() {
System.out.println ("Generating FPS Image") ;
return "FPS Image";

int update (String name) {
System.out.println ("Updating " + name) ;
return O0;

}

This code, and the previous methods, are found inside of a driver class called
TemplateDriver. In the next statements, an instance of the driver and FPSGame
classes are created. The initialization functionality is provided by a static method
reference to the initializeGame method. An instance method reference is used
for the rendering functionality, and a lambda expression supports the update
functionality:

TemplateDriver td = new TemplateDriver () ;
FPSGame fps = new FPSGame (
TemplateDriver::initializeGame,
td: :render,
name -> {
System.out.println ("Updating " + name) ;
return O0;

3N

An instance of the StrategyGame is created next. Lambda expressions are used
for the initialization and rendering operations. An instance method reference
implements the update logic for the game:

StrategyGame sg = new StrategyGame (
n -> System.out.println("Starting " + n),
O ->{
System.out.println("Generating Strategy Image") ;
return "Strategy Image";

b

td: :update) ;

The output of this implementation is identical to the object-oriented solution.
While the same number of classes is used, functional interfaces provide more
implementation flexibility.

[207]

Supporting Design Patterns Using Functional Programming

Summary

We examined how the functional programming features of Java can simplify the
implementation of object-oriented design patterns. Lambda expressions were used
as an alternate means of expression functionality. Streams allowed us to combine
operations. Functional interfaces and default methods allowed us to reduce the
amount of coding required to implement a solution. However, functional interfaces
can limit how problems can be addressed since it supports a single abstract method.

We looked specifically at the execute-around-method, factory, command, strategy,
visitor, and visitor patterns. Each of these patterns is designed to address a specific
problem. An object-oriented approach was presented and then followed up with a
functional solution.

In the next chapter, we will discuss how IDEs can provide support for refactoring
object-oriented code to a functional approach, how to debug lambda expressions,
and how the functional implementations can be tested.

[208]

Refactoring, Debugging,
and Testing

There is more to software development than simply writing code. Among other
things, we may need to modify or reuse existing code to correct bugs and enhance
the product. As we create code, we will need to uncover errors using various
debugging approaches. We will need to test our application at various points in the
development process to ensure it meets its business and technical requirements.
There are other activities required when developing software, but these are the
ones of interest to us in this chapter. Here, we will focus on three major activities:
refactoring code, debugging, and testing.

Whether we are writing new code or modifying old code, refactoring is a powerful
tool in your programming arsenal. With the support of IDEs, you can quickly and
safely transform code to address a particular design concern. There are a number of
refactoring operations supported by IDEs, including simple support for consistent
and comprehensive renaming variables to extracting methods, classes, and
interfaces.

In this chapter, we will examine how to refactor code to convert older code to use
lambda expressions and how to refactor lambda expressions. You will learn how
particular refactoring operations can be applied to all of the code in a project. These
techniques will improve your ability to create readable and maintainable Java 8 code.
Specifically, we will cover:

* The IDE support provided by NetBeans and Eclipse to support refactoring
* Techniques for debugging lambda expressions

* Approaches for testing functional programs

[209]

Refactoring, Debugging, and Testing

As we code, we are bound to introduce errors that will need to remove. While the old
school approach of inserting print statements may be sufficient for simple problems,
more sophisticated debugging techniques are required for more complex problems.
The process of debugging in IDEs has been enhanced to support lambda expression
evaluation. In addition, we will demonstrate the use of the Stream interface's peek
method to assist in debugging streams.

Testing is essential to ensure that an application has met its requirements. Not only
are we interested in learning how the functional programming techniques added

to Java 8 can be tested, but also we will examine the new opportunities to perform
testing using Java 8. Much of the testing section will use JUnit to demonstrate testing
techniques. We do not assume that you used JUnit and provided introductions to the
key aspects of this testing approach.

By exploring the techniques that IDEs provide to support refactoring, debugging,
and testing, you will develop new skills that will improve your ability to create
robust and maintainable programs in Java.

IDEs, such as NetBeans and Eclipse, provide editor support for refactoring,
debugging, and testing code to utilize functional programming techniques. In this
chapter, we will show how NetBeans and Eclipse provide such support. We will be
using NetBeans IDE 8.0.2 and Eclipse IDE for Java developers, Mars Release Version
4.5.0 in these examples.

Other IDEs also provide support but are not addressed. You are encouraged
to explore those IDEs' documentation for specifics regarding their refactoring
capabilities.

Refactoring functional code

Refactoring code is the process of reworking the code to improve its readability and
the maintainability of the program. In this section, we will examine the refactoring
support provided by NetBeans and Eclipse. This support can be categorized
as follows:

* Converting anonymous inner classes to lambda expressions

* Refactoring multiple instances of code

* Miscellaneous refactoring support

[210]

Chapter 8

In Chapter 2, Putting the Function in Functional Programming, we demonstrated how to
convert the following anonymous inner class to a lambda expression:

List<String> list = Arrays.asList ("Huey", "Dewey", "Louie");
list.forEach (new Consumer<Strings>() {
@Override
public void accept (String t) {
System.out.println(t) ;

}
3N

We will use this example to demonstrate refactoring.

NetBeans support for refactoring

We will examine how refactoring can be achieved in NetBeans. This IDE provides
the basic functionality needed for most of the common refactoring needs related
to lambda expressions.

Converting anonymous inner classes to lambda
expressions

Anonymous inner classes can be readily converted to lambda expressions. In
NetBeans, the editor will display a yellow lightbulb symbol in the left margin on lines
where it supports refactoring among other possible actions. Using the list example,
we can either convert the code to a lambda expression or a member reference, as
shown next. The menu is brought up with a single click on the lightbulb symbol:

[8]

List<S5tring> list = Arravys.asList("Huey", "Dewey”™, "Louis");
listc.forEach (new Consumer<String>() {

& Use member reference »
[* Use lbds expression | SN SETSSEERANE
System.cut.println(t);

co-]m@)kgjm

[T o T

Converting the inner class to a lambda expression will change the code to this
sequence:

list.forEach((String t) -> {
System.out.println(t) ;

3N

[211]

Refactoring, Debugging, and Testing

Converting the code to a member reference produces even more succinct code:

list.forEach (System.out: :println) ;

Another common use of an inner class is in support of button events. In the
following code sequence, a JavaFX Button class instance is created and the handle
method of the EventHandler class is overridden:

Button button = new Button("Ok");
button.setOnAction (new EventHandler<ActionEvents () {
@Override
public void handle (ActionEvent e) {
System.out.println("Ok button clicked.");

1
After conversion, the anonymous inner class is replaced, as shown here:

button.setOnAction((ActionEvent e) -> {
System.out.println ("Ok button clicked.");

13N

This refactoring operation can save time when converting older code to use Java 8.

Refactoring multiple code instances

Refactoring can be applied to multiple code instances at once. If we expand the
previous menu, we can select the Run Inspect& Transform on... submenu item,
as shown here:

Lo button.setOnAction (new EventHandler<hActionEvent> () {
1
49_ @ Disable "Convert to Lambda or Member Reference” Hint
@ DUBLIT VOIS @ Configure "Conwvert to Lambda or Member Reference” Hint
51 System.| @ Run Inspect on...
52 -
53 i @ Suppress Warning - Convert2Lambda
L=, |

[212]

Chapter 8

Selecting the menu item will bring up this dialog box:

Inspect: ||@ Current File (Chapterg. java)

Use: (") Configuration: |Defﬁult | Manage. ..

(@) Single Inspection: | Convert to Lambda or Member Reference v| | Browse... |

Selecting the Inspect button will display an intermediate box:

The following warnings and errors were found. You can continue only with warnings.

List of Errors

A More than ane fix for: This anonymous inner dass creation can be turned into a lambda
expression. at Chapterd.java: 19, only the first one will be used.

) Error /b, Warring

Refactor

[213]

Refactoring, Debugging, and Testing

Selecting Inspect will display a new tab at the bottom of the window showing the
code to be modified and the result. Selecting the Do Refactoring button, found in
the lower left-hand corner of the window, will make the modifications:

| {%) packt.Chapters » &) refactoringExamples x
OQutput - Chapter_8 (cleanjar) | Refactoring X | —
@ @I"Spg:ta;dg’a”s“’"" [2 occurrences] Chapter8.java 12 Refactored Chapter8.java
PN E, @?Eha’mrs e List<String> list = Arzays.asList("]19 16 N
& (9] Use memten reference Tist.forEach (new Consumez<String>() 20 17 private static void refactoringExam
(] Use lambda expression goverride 21 18 Before conversion
E3 public void aceept(String ©) { 22 13 List<String> list = Arrays.asLi:
7y System.out.println(c) ; 23 20 1ist.fozEach (System.out::printli
)
1) 22 L e:
26 23 list.forZach((Okbject t) —» { E
te ionn to lambda expre|27 24 System.out.printla(c): v
Do Refactoring Cancel
< > 28 25 < >

This is useful for converting all instances of anonymous inner classes and being able
to see the changes before they take effect.

Support of other refactoring operations

Navigating to the Tools | Options menu will bring up the Options dialog box,
as shown here. The dialog box allows you to control how the editor works with
your application, including which lambda expression suggestions to use. Most of
the lambda-related suggestions are found in the Hints tab under the Suggestions
category. However, the convert to lambda or method reference support is found
under the JDK Migration Support category:

% E’ @ =lava C‘:: I_FIJE:i_, IJE

General |Editor | Fonts & Colors Keymap Java

CjC++ Team Appearance Miscelaneous

General | Folding | Formatting | Code Completion | Code Templates | Hints | Highlighting | Macros | On Save | Spellchecker

Language: Java w

Search:

Suggestions

Assign Return Value To New Variable

Assign Unused Conséructor Parameter io Feld
Combine nested if statements

Convert Ananymous to Member

Convert Lambda Body to Use a Block

Convert Lambda Expression to Anonymous Innerclass
Convert Lambda Expression to Member Reference
Convert Lambda to Use Explict Parameter Types
Convert Member Reference to Lambda Expression
Convert integer constant to different base
Create Subdass

Create Test Class

Dedaration for instanceof

Expand Enhanced For Loop

Fill Missing Cases to Switch

Flip .2quals

<

Show As: |Warning on Current Line

Description:

Q, |Filter (Cirl+F)

Converts lambda bodies to use blocks rather than expressions

[214]

Chapter 8

A lambda expression can take on various forms. NetBeans provides support for
altering these expressions. Assume that we remove the string parameter type
from the previous list example, as shown here:

list.forEach((t) -> {
System.out.println(t) ;

13N

We are then presented with the Use explicit parameter types suggestion:

= list.forEach(ic) -> {

33 @ Use member reference b Flnit);
34 ® Use explicit parameter types

35 @ Use anonymous inner class 3

Selecting this option modifies the code to use a String parameter:

list.forEach((String t) -> {
System.out.println(t) ;

I3F;

Eclipse support for refactoring

We will examine how refactoring can be achieved in Eclipse. This IDE supports
several functional programming refactoring operations.

Converting anonymous inner classes to lambda
expressions

We will demonstrate this type of conversion using the list example duplicated here:

List<String> list = Arrays.asList ("Huey", "Dewey", "Louie");
list.forEach (new Consumer<Strings() {
@Override
public void accept (String t) {
System.out.println(t) ;
}
1)

[215]

Refactoring, Debugging, and Testing

Clicking on the accept method and using Quick Assist, the Ctrl + 1 key combination
will bring up the menu shown here:

[xa]

List<String> list = Arrays.aslist("Huey", "Dewey”, "Louie");
list.forEach{new Consumer<String>() {

2 @override

3 public void accept(String t) {

4 System.out.

:) YEEEM-OUT-P 1 Rename in file (Ctrl+2, R)

5 3% 1= Rename in workspace (Alt+Shift+R

= Convert to lambda expression

[I S U ST TR T SR S

[=1]

Selecting the Convert to lambda expression menu item will transform the code:

list.forEach(t -> System.out.println(t)) ;

Eclipse also allows you to preview the proposed changes. If we click on the lambda
operator (->) and use the Ctrl + 1 keyboard sequence, you will be presented with
several menu options. Single clicking on each option will preview the changes in
the box to the right of the menu. Here, the option to use a block for the lambda
expression body is shown:

31 list.forEach(t -> System.ewt.println(t));

32 .

- @ Change body expression to block . list.forEach(t -> |

34 @ Convert to anonymous class creation System.out.printIn(t);
35 @ Extract to local variable (replace all eccurrences) i

- @ Extract to local variable

=

38

39

[216]

Chapter 8

Refactoring multiple code instances

When there are a number of potential places in code where lambda expressions are
an option, Eclipse's cleanup option is available to simplify this task. Start by right-
clicking on the source code and then navigating to the Source | Clean up... popup
menu item. This will bring up the Clean Up dialog box:

Clean Up
Cleaning up 1file in 1 project

Project Profile Configure...
Eclipse Chapter 8 Eclipse [built-in]

() Use custom profile

Change non static accesses to static members using declaring type Configure...
Change indirect accesses to static members to direct accesses (accesses through subtypes)

Remove unused imports

Add missing '@0verride’ annotations

Add missing "@0verride’ annetations to implementations of interface methods

Add missing '@Deprecated’ annotations

Remove unnecessary casts

Remove unnecessary 'SNON-NLSS' tags

Go to the Clean Up preference page to hide this wizard in the future

® §

By default, the cleanup process does not support the conversion to lambda
expressions. This must be enabled for a profile. In this dialog box, the Eclipse [built-
in] profile is being used. We can either change this profile, create a new profile, or
modify the properties for this project's cleanup profile using the Use custom profile
radio button option.

[217]

Refactoring, Debugging, and Testing

Selecting the Configure... button enabled in the previous image will start the process
of creating a new profile. However, we will select the Use custom profile radio
button and then its Configure... button instead. This will bring up the Custom
Clean Up dialog box, as shown next. Select the Code Style tab and then the

Convert functional interfaces instances checkbox:

Profile name: | Eclipse [Lambda]

Code Organizing| CodeStyle| Member Accesses| Missing Code | Unnecessary Code

Control staterments
[1Use blocks in if fwhile/for/do statements
® Always
Always gxcept for single ‘return’ or ‘throw' statements
Only if necessary

[[] Convert 'for' loops to enhanced

Expressions
[]Use parentheses in expressions

Always ® Only if necessary

Variable declarations
[[1Use modifier 'final' where possible

| Private fields Parameter | Local variables

Functional interface instances
Convert functional interface instances

(®) Use lambda where possible () Use anonymous class

9 of 31 clean ups selected

® @ Anew profile will be created.

Preview:

if (obj == null) {
throw new IllegalArgumentException();

1
if (ids.length > B)
System.out.println(ids[@]);
T else
return;

for (int i = @; 1 < ids.length; i++) {
double value= ids[i] / 23
System.out.println(value);

}
boolean b= (i > @ && i < 18 || i == 58);

private int i= @;

public void foo(int j) {
int k, h;
h= @;

}

IntConsumer c = i -» {
System.out.println(i);

[218]

Chapter 8

Select OK, which brings us back to the Clean Up dialog box. Selecting Next will
show the changes that will be made if the Finish button is pressed:

Clean Up

The following changes are necessary to perform the refactoring.

Changes to be performed

Chapter8,java - Eclipse Chapter Wsrdpackt|

[J] Chapter java

Original Source

Refactored Source

public static void main(String[] args

List<String> list = Arrays.aslist

public static wvoid main(String[]J A

list.forEach(new Consumer<String>
@0verride
public void accept({String t)

List<5tring> list = Arrays.a
list.forEach(t -» System.out.|

// After conversion

O
0

System.out.println(t); list.forEach(t -»> System.out

0

Button button = new Button("d .,

>

Mext >

Cancel

Support of other refactoring operations

We can also hover over a lambda expression to determine which functional interface
method is implemented. This can be useful when learning how to use a new method.

list.forEach(t -»> System.out.println(t));

&' void java.util.function.Consumer.accept(String t)

accept
void accept(T t)

Perfarm

s this operation on the given argument.

Press 'F2° for focus

[219]

Refactoring, Debugging, and Testing

When the lambda expression is highlighted, the Quick Assist command will provide
other options, as shown here:

list.forEach(.println(t)H

> - .
Convert to method reference list.forkachit -> System.out.printin(t));
& Extract to local variable (replace all cccurrences) list.ferEach(System.outzprintin;

& Extract to local variable

@ Extract to method (Ctrl+2

@ Add inferred lambda parameter types
Change body expression to block

@ Convert to anonymous class creation

(k. Add parentheses around lambda parameter

If we convert it to a method reference, we get:

list.forEach(System.out: :println) ;

Holding the Ctrl button and hovering over the lambda or method reference operator
will provide options for either showing a method's declaration or its implementation:

list.forEach(System.out: :println);

Open Declaration

Open Implementation

There are several other Eclipse IDE support options available, including support for
controlling how lambda expressions are formatted, searching for method references,
and displaying lambda expression that implement a specific functional interface. A
more detailed coverage of these topics can be found at https://www.eclipse.org/
community/eclipse newsletter/2014/june/articlel.php.

Debugging lambda expressions

Both NetBeans and Eclipse support debugging lambda expressions. While it is
always possible to create multiline lambda expressions and use print statements

to display the values of variables, it is better to use a debugger when possible. Not
only do we have to add additional statements which would have to be removed in
the production version of the application, but debuggers also provide additional
information about the state of the program and frequently allow some variables to be
modified while the debugger is executing.

[220]

https://www.eclipse.org/community/eclipse_newsletter/2014/june/article1.php
https://www.eclipse.org/community/eclipse_newsletter/2014/june/article1.php

Chapter 8

We will demonstrate how to debug a lambda expression that takes a string and
returns the string concatenated with its lowercase equivalent. This operation is
shown here:

List<String> list = Arrays.asList ("Huey", "Dewey", "Louie");
list.stream()

.map(s -> s + "-" + s.toLowerCase())

.forEach(s -> System.out.println(s));

When this code executes, you will get the following output:

Huey-huey
Dewey-dewey

Louie-louie

We will use it for the debugging examples in this section.

Using the printin method to assist
debugging

While not necessarily the best debugging approach, using print statements will be

sufficient for some problems. The next code sequence rewrites the previous lambda
expression to use print1n methods before and after the concatenation operation:

list.stream()
.map (s -> {

System.out.println ("Before: " + s);
s += "-" 4+ s.toLowerCase() ;
System.out.println ("After: " + s);

return s;

3]

.forEach(s -> System.out.println(s));

The output of this code sequence behaves as you would expect:

Before: Huey
After: Huey-huey
Huey-huey

Before: Dewey
After: Dewey-dewey
Dewey-dewey
Before: Louie
After: Louie-louie

Louie-louie

[221]

Refactoring, Debugging, and Testing

However, this is awkward and requires adding a body to the expression, a return
statement, and the print statements. Using a debugger will eliminate the need for
this extra work.

Using the peek method to assist debugging

Before we illustrate these debuggers, the use of the Stream interface's peek method
can be useful at times. The peek method takes an object that implements the
Consumer interface. It is similar to using print type statements but is more convenient
and is not necessarily limited to displaying information. It could also be used for
logging type operations.

In the next code sequence, the peek method is used twice. In its second use, the
length of the string is also displayed:

list.stream()
.peek (s -> System.out.println("First peek-" + s))

.map(s -> s + "-" + s.toLowerCase())
.peek (s -> System.out.println(
"Second peek-" + s + ":" + s.length()))

.forEach(s -> System.out.println(s));

This method helps provide insight into how a specific stream works.

Debugging lambda expressions using
NetBeans

Breakpoints are set in NetBeans by single clicking on the left margin of the code
editor. The breakpoint is indicated by the red square. To remove the breakpoint,
single click on the left margin of the line a second time:

T& list.stream(})
O mapf{s -> 3 + "-" + s.toLowerCase())
T8 .forEach(s ->» System.cut.println(s)):

To start debugging, select the Debug Project toolbar button, as shown next. It is the
second button from the right. You can also use the Ctrl + F5 key combination:

File Edit View Mavigate Source Refactor Run Debug Profile Team Tools Window Help

EI]:___I E % @ @‘:I <default config= W BIEF BE:“}J D M N (,_T[fi N

[222]

Chapter 8

The program will then start and execute up to the breakpoint where it will pause.
That statement has not been executed yet. Below the code window you should see a
debugging window with several tabs. On the left-hand side is the Output window
for the program. As shown next, the Variables tab has been selected, which shows
the variables for the lambda expression. In this case, the s variable shows the value
"Huey" assigned to it:

£ packt.Chapter » &[) debuggingExamples
Output | Variables X |Call Stack | Breakpoints |
&7 || Name Type Value
71 [static
s String .| Huey™
B
=

Above the code window a set of toolbar debug buttons are enabled, as shown next.
The square red button is used to stop the program. The button with the green circle
with the white right arrow is the Continue button. Selecting this button will cause
the program to continue running until the next breakpoint is encountered:

ls Window Help

P-B-B- 00 O O @& & &5 i <l . ik O

Select the Continue button. The program advances to the same breakpoint, but the s
variable has changed to "Dewey". Each use of the Continue button will advance the
program. Selecting the green right arrow Run Project button will cause the program
to run to completion without stopping at breakpoints.

You can also change the values of certain variables while debugging. As shown next,
the value of the s variable has been changed to "Donald" by clicking on the old value
and entering the new value:

Output | Variables X | Call Stack | Breakpoints
&7 || Name Type Value
® 7 () static

s String | Donald|
E=l

[223]

Refactoring, Debugging, and Testing

The Call Stack tab will display the state of the class stack, as shown next. This
shows which methods have been called. For a more sophisticated example, a
hierarchy of method calls will be displayed showing how the program arrived
at its current position:

Output Variables Call S5tack X | Breakpoints

MName

1 Chapter8.lambdasdebuggingExamples$6:77
[]870698190.5pply

[|ReferencePipelines351. accept: 193

| SpliteratorsSarraySpliterator. forBachRemaining: 548

] AbstractPipeline,copyInto: 512

One of the drawbacks of using streams and lambda expression

is the larger call stacks that are frequently generated to support
"~ these features.

NetBeans allow you to set breakpoints for lambda expressions. However, it is better
if each lambda expression is on a line by itself. For example, if we used the following
form of the stream where everything is on one line, the breakpoint may not be as
useful. This statement has been split over two lines here for formatting purposes:

list.stream() .map(s -> s + "-" + s.toLowerCase())
.forEach(s -> System.out.println(s));

Each use of the Continue button results in the return value being displayed,
as shown here:

Output Variables X | Call Stack Breakpoints
@ MName Type Value
® 7) static
<>s String .| Huey-huey™

For more complicated lambda expressions, it can be useful to extract the expression
and move it to a method. A static method reference can then be used to invoke the
method, as shown here:

private static String tolLower (String token)
String lowerCase;

[224]

Chapter 8

lowerCase = token + "-" + token.toLowerCase() ;
return lowerCase;

}

list.stream()
.map (Chapter8: :toLower)
.forEach(s -> System.out.println(s));

Setting a breakpoint within the method can give us a better understanding of how
the method works. For this simple lambda expression, it does not help us much. For
a more complex lambda expression, using a debugger can make all the difference in
the world.

Debugging lambda expressions using Eclipse

Debugging with Eclipse provides similar debugging functionality to NetBeans.

One difference is the use of Debug View, which presents different sets of windows
to those used in Java View. The Eclipse toolbar is also different where the Debug
toolbar button uses a bug icon. In the next image, it is the third button from the right:

File Edit Scurce Refactor Navigate Search Project Run Window Help

NrErLE | KRNy RS

To set a breakpoint, we double-click on the margin to the left of the code window,
as shown here:

list.stream()
.map{s -» s + "-" + s.toLowerCase())
.forEach(s -» System.out.println(s));

The debugging buttons are enabled when the debugger starts. These are the set of
buttons underneath the Navigate and Project menu items in the previous toolbar
image. The Resume button is the left most of these. Selecting this button will cause
the program to run until it encounters a breakpoint, as shown here:

list.stream()
.map(s -* 5 + "-" + s.tolLowerCase())
.forEach(s -» System.out.println(s));

[225]

Refactoring, Debugging, and Testing

The Step Into button will move the execution of the program statement by
statement. Select this button until the debug line is selected and the Variables
window in the upper right-hand corner of Eclipse shows the s variable. As with
NetBeans, it is possible to modify the value of a variable while debugging;:

(x)=Variables &7 | ®g Breakpoints tE@ Y = O

Marme Value
B s "Huey" (id=43)

When the Variables window is present, hovering over the variable will display the
same information:

list.stream()

.map(s -> s + "-" + s.tolowerCase())

.forEach(s 2 0 = "Huey' (1d=48)
list.stream() @ hash= D.

.map (Chapt . of value= (id=58)

.forEach(s|

list.stream().map(Huey

Using a combination of the Step Over, Step Into, and Step Return buttons will allow
you to move through the program watching the variables and call stack change. The
Eclipse Debug window is found in the top left-hand corner of Eclipse:

%5 Debug &3 | = =0
4 [T] Chapter? [Java Application]
a {12 packt.Chapter? at localhost:60517
a4 f Thread [main] (Suspended (breakpoint at line 66 in Chapterd))
= Chapter8.debuggingExamples() line: 66
= Chapterf.main(5tring[]] line: 16
s Ch\Program Files\Java\jre1.8.0_31\bin\javaw.exe (Jun 26, 2013, 4:41:43 PM)

Selecting other frames in the call stack will show their corresponding variables in
the Variables window. This will permit you to see what other variables hold at that
point in the program.

[226]

Chapter 8

Debugging recursive lambda expressions

Recursion was discussed in detail in Chapter 5, Recursion Techniques in Java 8. This
can be a confusing topic to programmers who have not used this technique before.
Understanding how the program stack is used will improve your ability to debug
recursive lambda expressions and methods. In this section, we will use the recursive
lambda expression we created in Chapter 5, Recursion Techniques in Java 8, to illustrate
how it works with the program stack.

The lambda expression was used to perform an inorder traversal of a tree of Node
objects. The code for this expression is duplicated here:

static Consumer<Node> inorder; // Instance variable

inorder = (Node node) -> {
if (node == null) {
return;
} else {

inorder.accept (node.left ()) ;
System.out .print (node.getValue() + " ");
inorder.accept (node.right ()) ;

}i

Node root = new Node (12) ;

root .addLeft (8) .addRight (9) ;
root.addRight (18) .addLeft (14) .addRight (17) ;
inorder.accept (root) ;

We will use NetBeans to illustrate this recursion example. Eclipse works in a very
similar manner. Start by setting a breakpoint on the following line:

inorder.accept (node.left ()) ;

[227]

Refactoring, Debugging, and Testing

Execute the program in debug mode. It will stop at this line. Examine the call
stack, and you will see that the program has stopped on this line, as shown in the
next image. In this case, the method containing the lambda expression was called
recursionExample and the statement was on line number 150:

Qutput |‘\.|’ariab|es |Cal| Stack X | Breakpoints

|Test Results |

MName

|| 874088044.accept
[] Chapters.recursionExample: 158
[] Chapters.main: 17

[Chapterg.lambdasrecursionExample$16:150

Next, examine the Variables tab. Expand the node variable to examine its contents.

As shown next, you can see the values of each node:

Output | Variables X | Call Stack | Breakpoints TestResults |
@ MName Type
& 145> node Mode
@ value int
®© @ left Node
@ value int
= @ left
= @ right Node
@ value int
@ left

Select the Continue button. This will advance the program until the statement is
reached again. As shown next, the recursionExample method has been pushed

into the program stack a second time:

Output | Variables | Call Stack X | Breakpoints

|Test Results |

Mame

[874088044, accept

[]|874088044.accept

| Chapterg.recursionExample: 158
[| Chapterd.main: 17

] Chapter8.lambda$recursionExample$16:150

[| Chapterg.lambdaSrecursionExamples 16: 150

[228]

Chapter 8

You can continue executing the program until it completes examining the variables
and the content of the program stack as it runs. The call stack and variable windows
can be very useful for understanding how recursion works in general and how

to solve specific recursive problems when they occur.

Debugging parallel streams

When parallel streams are used, the debugging process becomes more difficult due
to the nondeterministic nature of concurrent operations. It is not possible to predict
which operation will be executed or which processor will be used. Care must be
taken in writing and debugging these types of operations.

There are limited tools for assisting with this debugging task. However, we can
always display the current thread in use to provide a clue into how a stream is
being processed. In the following statement, a parallel stream is created:

list.parallelStream/()
.map (Chapter8: :toLower)
.forEach(s -> System.out.println(s));

We can modify the toLower method to use the Thread class's currentThread
method to display the thread being used, as shown here:

private static String toLower (String token) {
String lowerCase;

lowerCase = token + "-" + token.toLowerCase() ;
System.out.println("Thread: " + Thread.currentThread()
+ " token: " + token);

return lowerCase;

}
One possible output sequence is shown as follows:

Thread: Thread[main,5,main] token: Dewey

Dewey-dewey

Thread: Thread[main,5,main] token: Louie

Louie-louie

Thread: Thread[ForkJoinPool.commonPool-worker-1,5,main] token: Huey

Huey-huey

Re-executing the example will generate a potentially different order of execution
and thread use.

[229]

Refactoring, Debugging, and Testing

Testing functional programs

Testing is a complex yet important aspect of software development. Java 8 has
impacted how testing can be conducted. The intent of this section is not to explore all
of the possible ways of testing Java 8 code, but to provide some insight into possible
testing approaches.

JUnit is the standard for testing Java applications and is used to test the functional
aspects of Java. Typically, a JUnit test is created to test a method by passing it data
and comparing the return value to determine if the method executed properly. In
this section, we will examine various testing approaches.

Testing lambda expressions

A significant consideration is whether to test a lambda expression at all. If it is too
simple to break, then there is no need to test it. The question is, what is too simple?
The answer to this depends on the situation. A simple lambda expression, such as,
n -> 2*n,is easy to understand and probably not worth the effort to test it.
However, a more complicated multiline expression may need extensive testing.

Some developers suggest you shouldn't test private methods separately but rather
test their effects. Lambda expressions can be considered to be a private method,
since they are not visible outside of their context. This impacts how they are tested.

Since lambda expression do not have a name, it is not possible to directly call them.
To test them you can either:

* Copy the lambda expression into the test case and test it there

* Move the expression into a method and call the method

* Refactor the expression into a simpler one and test it
The first approach doesn't really test the lambda expression in the context of where
it is used. It only tests the expression. Potential problems may be missed with this
approach. The second approach allows us to test it in its context but requires us

to restructure the code. The third approach is a general guideline that should
always be followed.

[230]

Chapter 8

Simplify the expression when possible. While we tend to hang on to old habits,
the new features of Java 8 can make our life a lot easier if we let it. Instead of using
nested loops, a stream using the £1atMap method may suffice. A stream and the
filter method can replace decision statements. If you are dealing with a complex
lambda expression, then breaking it apart into smaller chunks can simplify the
testing process.

JUnit (http://junit.org/) is a technology that assists in the testing of Java
applications. Typically, a class is created that consists of test methods that test
other methods of an application. These test methods are preceded with the @Test
annotation. Within these methods, specialized methods are used in the testing
process, as we will see shortly. Most IDEs provide support for the creation and
management of these tests.

We will place our test methods in the ExampleTest class:

public class ExampleTest

}

We will use the @Test annotation to designate a test method. The assertThat and
equalTo methods will be used to support the test operation found in the org. junit.
Assert and org.hamcrest . CoreMatchers packages, respectively. For NetBeans and
Eclipse, these packages should be available without adding libraries to a project.

The next method demonstrates the essence of the approach. Code is inserted into the
method that tests some piece of code. The assertThat method will return a failed
test if resultvalue does not match correctvalue. The equalTo method handles
testing for equality and is useful for more complex data types:

@Test
public void testSomething() {
// Code to be tested

assertThat ("Bad results", resultValue,
equalTo (correctValue)) ;

[231]

http://junit.org/

Refactoring, Debugging, and Testing

Should the test fail using NetBeans, we will get results similar to those shown in the
next image where one of eight tests failed:

Qutput |Test Results X |

packt,ExampleTest

uﬁ 7 tests passed, 1 test failed.(0.443s)
—_ E‘.L. packt.ExampleTest Failed

L

W, testSomething Failed: Bad results Expected: <5.01% got: <5.0%

E----Bad resultsExpected: <5.01> got: <5.0=
junit. framework, AssertionFailedError
it packt. ExampleTest. testSomething (ExampleTest, java: 40)

=

Success would appear as shown here:

Qutput |Test Results x |

packt.ExampleTest X

% &ll 8 tests passed.{0.076 s)

Copying the lambda expression

Copying the lambda expression to a test method is a simple way of testing the
expression. In the next example, we use a lambda expression to either double or
square a number depending on whether it is even or odd:

IntStream stream = IntStream.of (3, 15, 16, 12, 3);

int result = stream
.map (n -> {

if (n % 2 == 0) {
return n * 2;
} else {

return n * n;

[232]

Chapter 8

3]

.sum() ;

The expression is extracted and used in two test methods:

Function<Integer, Integer> function = n -> {

if (n % 2 == 0) {
return n * 2;
} else {

return n * n;

Vi

@Test
public void testEven() {
int result = function.apply(22);
assertThat ("Not even", result, equalTo(44));

@Test
public void testodd() {
int result = function.apply(3);
assertThat ("Not odd", result, equalTo(9));

}

As mentioned earlier, this does not test the expression within its execution context.
In addition, it does not provide the flexibility to test various combination of
integer values.

Using a method reference

Another approach is to copy the lambda expression to a method and use a method
reference instead. In the next example, the body of the lambda expression has been
moved to a method:

public static int processNumber (int number) {

if (number % 2 == 0) {
return number * 2;
} else {

return number * number;

[233]

Refactoring, Debugging, and Testing

A method reference is then used to perform the test:

@Test
public void testMethodReference () {
IntStream stream = IntStream.of (3, 15, 16, 12, 3);
int result = stream
.map (ExampleTest : :processNumber)
.sum() ;
assertThat ("Bad", result, equalTo(299));

}

The advantage of this approach is that we split the test of the stream into two
sections. One for the stream and the second for the lambda expression. In addition,
we can create a more flexible set of tests, as shown in the next section.

Reorganizing the test class

Ideally, we would like to test various combination of integers. We can facilitate this
by reorganizing the previous set of methods. First, the stream is moved to a method
called computesum where it is passed a stream to process:

public int computeSum(IntStream stream) {
int result = stream
.map (ExampleTest : :processNumber)
.sum() ;
return result;

}

The actual test cases are created using a testPositiveNumbers method and
a testNegativeNumbers method, as shown here:

@Test
public void testPositiveNumbers () {
IntStream stream = IntStream.of (3, 15, 16, 12, 3);
int result = computeSum(stream) ;
assertThat ("Positive number failure", result, equalTo(299));
}
@Test

public void testNegativeNumbers () {
IntStream stream = IntStream.of (-4, -13, -16, -2, -3);
int result = computeSum(stream) ;
assertThat ("Negative number failure", result, equalTo(134));

[234]

Chapter 8

The advantage of this approach is that it allows a specialized test to be created and
reuses many of the computations.

We can rework these examples to perform tests on a slightly different problem. Let's
assume that we have a series of lambda expressions we need to test. We can test
them against the same set of data, as shown in the following code sequence. The
testLambdaExpression method is passed a lambda expression, which is executed
against a stream of numbers. The two test methods invoke the method using
different lambda expressions:

@Test
public void testDouble() {
int result = testLambdaExpression(n->2*n);
assertThat ("Bad double results", result, equalTo(98)) ;

@Test
public void testSquare()
int result = testLambdaExpression(n->n*n) ;
assertThat ("Bad square results", result, equalTo(643)) ;

public int testLambdaExpression (IntUnaryOperator function)
IntStream stream = IntStream.of (3, 15, 16, 12, 3);
int result = stream
.map (n->function.applyAsInt (n))
.sum();
return result;

}

Additional flexibility is achieved using a method that is passed both a Stream and
IntUnaryOperator instance, as shown here:

public int testAll (IntStream stream, IntUnaryOperator
function)
int result = stream
.map(n -> function.applyAsInt (n))
.sum();
return result;

[235]

Refactoring, Debugging, and Testing

The following test method illustrates how to use this method:

@Test

public void testStreamAndLE()
IntStream stream = IntStream.of (3, 15, 16, 12, 3);
int result = testAll(stream, n -> 2 * n);
assertThat ("Bad results", result, equalTo(98)) ;

}

Passing streams and lambda expressions makes it easier to create more succinct and
useful test methods.

Testing exceptions using a fluent style

Methods will frequently throw exceptions that need to be tested. This is sometimes
performed using the catch-exception library found at https://github.com/
Codearte/catch-exception. However, as detailed at http://blog.codeleak.
pl/2014/07/junit-testing-exception-with-java-8-and-lambda-
expressions.html?spref=tw, this technique can be replaced using a fluent style
of interface. We will not try to duplicate this post, but rather point out the essence
of this approach.

The post creates a class called ThrowableAssertion where a series of methods

are implemented such as isInstanceOf, hasMessage, and hasNoCause. Each of
these methods uses the assertThat method to perform some action and returns an
instance of ThrowableAssertion, so as to support the fluent style of programming.

This allows test cases to be written as shown here. A method is invoked with a
parameter or set of parameters, which throws exceptions. The ThrowableAssertion
class's method will use the assertThat method and a matcher to test the method:

@Test
public void performTest () {
assertThrown(() -> new SomeClass () .someMethod (parameter))

.1sInstanceOf (RuntimeException.class)
.hasMessage ("Runtime exception occurred")
.hasCauseInstanceOf (IllegalStateException.class) ;

}

The reader is encouraged to read this post. It not only offers insight into how
exception handling can be tested, but also demonstrates the advantages of
using a fluent style of programming.

[236]

https://github.com/Codearte/catch-exception
https://github.com/Codearte/catch-exception
http://blog.codeleak.pl/2014/07/junit-testing-exception-with-java-8-and-lambda-expressions.html?spref=tw
http://blog.codeleak.pl/2014/07/junit-testing-exception-with-java-8-and-lambda-expressions.html?spref=tw
http://blog.codeleak.pl/2014/07/junit-testing-exception-with-java-8-and-lambda-expressions.html?spref=tw

Chapter 8

Summary

We demonstrated techniques for refactoring, debugging, and testing code using
NetBeans and Eclipse. Tools and techniques such as these make our lives as
developers much easier.

Several refactoring techniques were explored. Converting an anonymous inner
class to a lambda expression is a common technique when converting older code to
use Java 8. This operation is easy to achieve and the IDEs provide several options
for controlling the ultimate appearance and form of the results. The conversion

of multiple occurrences of anonymous inner classes was demonstrated. We also
illustrated other refactoring techniques in support of Java 8.

There are numerous application debugging approaches available. We illustrated
several of these using IDEs. When in debug mode, the IDEs display the program
stack and variables as it executes. This can be particularly useful when debugging
recursion methods and lambda expressions. We also demonstrated the use of the
peek method to help debug streams.

Testing is an important aspect of program development. We explored the use of
JUnit and how it can be used to test functional programs. We also saw how several
of Java's functional techniques can assist in developing test cases. We also saw how
fluent interfaces can be used to make testing more readable.

In the last chapter, we will develop a program that ties together many of the new
and old Java 8 features in an integrated manner. This will provide further examples
of why Java 8 is an important advance.

[237]

Bringing It All Together

Now that we have examined the functional aspects of Java 8, we can use them to
create more elegant and succinct applications. In this chapter, we will demonstrate
many of the concepts discussed in this book to build a game engine. This application
is simple enough to develop quickly, at least our version of a game engine, and has
enough features to permit the use of functional programming techniques.

The game engine developed in this chapter is a Zork-like, text-based game. It will
not be full featured, but will provide enough framework to demonstrate functional
programming techniques and can serve as a basis for a more complete game should
you desire to expand it.

We will begin with a discussion of the features of this game, which we will call
functional Zork. The discussion is followed by a detailed explanation of the various
parts of the game.

Functional Zork

In this game, there is a single character that moves around in a world. In this world,
the player is able to examine the current location, move between locations, pickup
objects, and drop objects. The list of commands are as follows:

* wWalk: This moves from one location to another

* Look: This views the current location

* Ppickup: This picks up an object

* Drop: This drops an object

* Inventory: This sees what the player is holding

* Directions: This determines the possible directions from the current
location

[239]

Bringing It All Together

Most commands have synonyms to make it easy to enter commands. These will
be detailed as they occur and are quite easy to add or remove. A variation of the
command pattern as developed in Chapter 7, Supporting Design Patterns Using
Functional Programming is incorporated. As we will see, a Map class and lambda
expressions are used to eliminate the need for individual command classes.

The world is made up of a series of locations. Each location has a name, a
description, can hold items, and Non-Player Characters (NPC). There is no limitation
on things such as how many items a player can hold at a time. These enhancements
can be added, but were not included to simplify the presentation of the functional
features of the game.

The locations, items, and NPCs making up the world are read from a text file.
The file uses a simple format and is easy to modify.

Playing the game

A simple demonstration of the game follows. This will give you a feeling of how the
game is played and some of the command variations possible. The game and the
data file the game uses can be downloaded from Packt's website. The world defined
in the file consists of four locations, as shown here:

Woods East »| Small Hills
P West
« Key

South 5 South 3

I North I North

House East » Emerald Blue Lake
P West

Axe Stone « Orge

The game does not limit the locations to simply north, south, east, or west. As we
will see in the Initializing the commands section, almost any text string can represent
a command including directions such as up, down, backwards, or even quack if you
choose.

When the game starts, the following will be displayed:

Welcome to Functional Zork!

[240]

Chapter 9

You are standing outside a house sitting in the middle of a meadow. There
is a path leading north to the woods and a path leading east to a lake.

On the ground you see: Axe Stone

>>

You can use the command, 100k, to see where you are and what is around you.
When you issue the command at the starting locations you get the following;:

>> look

You are standing outside a house sitting in the middle of a meadow. There
is a path leading north to the woods and a path leading east to a lake.

On the ground you see: Axe Stone

>>

We can move about in the game using the walk command. There is one alias for
walk: go. We use this command to move north, as shown here:

>> go North

You are standing in the middle of a dense woods. There is a path leading
south to a meadow and a path leading east to some small hills.

>>

The commands are case sensitive. If we use the following command instead, it will
not work. Depending on the alias case may not be important. For items, directions,
and NPCs, the case is significant:

>> Go north

Bad commmand

>>

We can get to the small hill by going east from the forest:

>> go East

You are standing on the top of a small hill. To the west you see a path
leading to a vast forest. To the south is a path leading to an emerald
blue lake.

On the ground you see: Key

One feature of the game is how it handles command arguments. Their use depends
on the command. In the case of the walk command, using multiple directions can
avoid issuing multiple walk commands to get to a location.

[241]

Bringing It All Together

From the small hill, we can use the following command to get back to the house:

>> go West South

You are standing in the middle of a dense woods. There is a path leading
south to a meadow and a path leading east to some small hills.

You are standing outside a house sitting in the middle of a meadow. There
is a path leading north to the woods and a path leading east to a lake.

On the ground you see: Axe Stone

>>

The pickup command will pick up items and add them to the player's inventory. In
the following command sequence, we pick up the Axe and eventually the stone. The
example illustrates how bad commands are handled, including the use of multiple
arguments with the pickup command. As we will see later, certain words are
ignored in commands. In this case, the word and was ignored:

>> pickup Axe

Picking up Axe

>> pickup Axe

Cannot pickup Axe

>> drop Axe

Dropping Axe

>> pickup Axe and Stone
Picking up Axe

Picking up Stone

>>

The inventory and directions commands are shown next. Both have aliases to
make it easy to enter the command. The directions command is useful if you forget
the paths leading out of a location:

>> inv

You are holding: Axe Stone

>> dir

If you go North you can get to Woods

If you go East you can get to Emerald Blue Lake

>>

The quit command terminates the game:

>> quit

Thank you for playing!

[242]

Chapter 9

Now that we have a feel for how the game's commands work, we can explore how
the game is constructed.

The game's architecture

The game uses several classes and interfaces. These are summarized here:

* Character: This represents the player
* command: This represents a command and its arguments

e Direction: This holds a direction, such as north or south, and the
corresponding location you will arrive at for the direction

* FunctionalCommands: This holds commands and executes them

* FunctionalZork: This is the main class containing much of the game
mechanics

* GameElements: This holds collections of game elements and the current
location

* Item: This represents an item
* Location: This represents a location in the game

* NpcC: This represents an NPC

We will explore how each of these classes is implemented. For a few of the classes,
we will not show the getter/setter methods. Otherwise, the critical elements of the
classes will be explained.

Understanding the GameElements class

The GameElements class is composed of HashMaps for the game's locations, items,
NPCs, and commands. In addition, the class holds a reference to the current location.

When a game element, such as items, is needed, it can be stored as a collection of
Item objects or as a collection of strings holding the name of the item. When an item
is referenced from a command, such as pickup Axe, the item is a string that needs to
be associated with the actual Item instance.

We can either find the corresponding item in a collection of Item instances or
maintain a list of string representing the item until the item is actually needed. For
example, when picking up or dropping an item, it is not necessary to use the actual
object. The name of the item is sufficient. We decided to maintain a list of HashMap of
Item instances and look them up when needed. A location or the player maintains a
collection of strings representing the items.

[243]

Bringing It All Together

The GameElements class is shown next. The class has a few helper methods that
are used when developing the game. They are not shown with the exception of the
displayView method, which is used later:

public class GameElements
public static Map<String, Location> locations =
new HashMap<>() ;
public static Map<String, Item> items = new HashMap<>() ;
public static Map<String, NPC> npcs = new HashMap<> () ;
public static final Map<String, Supplier<Booleans>
commands = new HashMap<>() ;
public static Location currentLocation;

public static void displayView(Location location) {
System.out.println(location.getDescription()) ;
GameElements.currentLocation.displayItems () ;
GameElements.currentLocation.displayNPCs () ;

Introducing the Item, Direction, and NPC
classes

There are several classes which represent game elements, including the Item,
Direction, and NpC classes. These classes contain string variables for their fields.
They also use a fluent style for many of their methods, as shown next:

public class Item {
private String name;
private String description;

public Item name (String name)
this.name = name;

return this;

public Item description(String description)
this.description = description;
return this;

[244]

Chapter 9

@Override
public String toString() {
return "Name: " + this.name + " Description: "
+ this.description;

public class Direction {
private String direction;
private String location;

public Direction() {
this.direction = "";
this.location = "";

public Direction(String direction, String location) {
this.direction = direction;
this.location = location;

public Direction direction(String direction) {
this.direction = direction;
return this;

public Direction location(String location) {
this.location = location;
return this;

public class NPC {
private String name;
private String description;

public NPC name (String name) {
this.name = name;
return this;

[245]

Bringing It All Together

public NPC description(String description) {
this.description = description;
return this;

}

@Override
public String toString() {
return "Name: " + name + " Description: " + description

+ " Location: " + location;

}

With these element classes behind us, we can focus on the FunctionalZork class.

Implementing the FunctionalZork class

This is the heart of the application. The initialization of the game takes place here,
and the player's commands are processed. The class is declared as follows:

public class FunctionalZork {

private final Scanner scanner;

private Character character = null;

private final FunctionalCommands fc;

private final Command command = new Command () ;

}

The instance variables are summarized here:

* scanner: This variable is used to access the keyboard
* character: This variable holds a reference to the class presenting the player
* fc: This will be used to control the execution of commands

* command: A single Command object is used for the game
The class uses several other instance variables that we will introduce when needed.

The main method is shown next. It initializes the game by creating an instance of
FunctionalZork and then enters a loop that terminates when the user enters the
quit command. The player's commands are returned in a Stream<String> instance
and then passed to the parseCommandStream method, which sets up the command
variable. The executeCommand method processes the command and then returns

a string indicating which command was executed. The command string is used to
control the while loop:

[246]

Chapter 9

public static void main(String[] args) {

String command = "";

Stream<String> commandStream;

FunctionalZork game = new FunctionalZork() ;

while (!"Quit".equalsIgnoreCase (command))
System.out.print (">> ") ;
commandStream = game.getCommandStream() ;
game . parseCommandStream (commandStream) ;
command = game.executeCommand () ;

Initializing the game

The game's initialization process starts with the creation of a Functionalzork
instance. Its constructor is shown next where the scanner variable is initialized
along with the fc and character variables. The initializeGame method executes
and initializes the currentLocation variable, which is used when the Character
instance is created:

public FunctionalZork ()
scanner = new Scanner (System.in) ;
fc = new FunctionalCommands () ;
initializeGame () ;
character = new Character (GameElements.currentLocation) ;

}

The currentLocation method displays a welcome message, reads the data.txt
file containing the specifics of the game's world, and then initializes the
currentLocation variable.

Before we examine this method, let's examine the structure of the game's data file.
The file is organized using a set of locations. Each location has a name, description,
directions, and an optional list of items and NPCs located at that location. Each

of these elements are found on separate lines. For example, the House location is
organized as shown here:

Location

House

You are standing outside a house sitting in the middle of a meadow. There
is a path leading north to the woods and a path leading east to a lake.

Direction
North
Woods

[247]

Bringing It All Together

Direction

East

Emerald Blue Lake

Item

Axe

A shape wooden handle axe
Item

Stone

A small round rock

The initializeGame method follows and expects the file to be in a specific order.
Once the name of the location and its description are read in, one or more directions
are processed. Following this is zero or more Item and NpC fields. The last section of
the file should contain a StartingLocation field, which specifies where the game is
to start. The last statement calls the initializeCommands method, which initializes
the commands for the game. A fluent style of method invocation was used for
several classes:

public void initializeGame() {
System.out.println("Welcome to Functional Zork!\n") ;
File file = new File("data.txt");
try (FileInputStream fis = new FileInputStream(file) ;
BufferedReader br =
new BufferedReader (
new InputStreamReader (fis))) {
String line = br.readLine() ;
while ("Location".equalsIgnoreCase (line)) {
Location location = new Location ()
.name (br.readLine())
.description (br.readLine()) ;
line = br.readLine () ;
while ("Direction".equalsIgnoreCase(line)) {
// Add direction
location.addDirection (new Direction ()
.direction (br.readLine())
.location (br.readLine())
)
line = br.readLine () ;
}
while ("Item".equalsIgnoreCase(line)) {
// Add items
Item item = new Item()
.name (br.readLine())

[248]

Chapter 9

.description (br.readLine()) ;
location.addItem(item.getName ()) ;
GameElements.items.put (item.getName (), item) ;
line = br.readLine() ;

}

while ("NPC".equalsIgnoreCase(line)) {
// Add NPC
NPC npc = new NPC ()

.name (br.readLine ())

.description (br.readLine()) ;
location.addNPC (npc.getName ()) ;
GameElements.npcs.put (npc.getName (), npc) ;
line = br.readLine() ;

}

GameElements.locations.put (location.getName (),
location) ;
if ("StartingLocation".equalsIgnoreCase(line)) ({
GameElements.currentLocation =
GameElements.locations.get (br.readLine()) ;

GameElements.displayView
(GameElements.currentLocation) ;

} else {
System.out.println("Missing Starting Location") ;
}
initializeCommands () ;
} catch (IOException ex) {
ex.printStackTrace () ;

}

The 1tem, NPC, and Location classes support a fluent style interface. However, the
previous code sequence using this style made it easier to read the code, but does not
reduce the code size. For example, assume that we add the following setter methods
to the NpC class:

public class NPC {
private String name;
private String description;

public void setName (String name) {
this.name = name;

[249]

Bringing It All Together

public void setDescription(String description) {
this.description = description;

}
Using this traditional approach, we can replace the previous fluent segment of code:

npc = new NPC()
.name (br.readLine())
.description (br.readLine()) ;

With the following sequence:

NPC npc = new NPC() ;
npc.setName (br.readLine ()) ;
npc.setDescription (br.readLine()) ;

The fluent style is easier to read, but uses the same number of lines of code. The best
approach in this case is dependent on the preference of the programmer.

Initializing the commands

The initializeCommands method will initialize the commands used for the game.
A series of Supplier<Booleans instances hold specific commands. Each command
is added to the GameElements command's HashMap instance. This declaration is
duplicated here:

public static final Map<String, Supplier<Booleans>
commands = new HashMap<s>() ;

The game uses a variation of the command pattern. A command is added to the
FunctionalCommands class and then executed. This class is shown next and was
detailed in Chapter 7, Supporting Design Patterns Using Functional Programming. The
clear method has been added to remove older commands, since there is a single
Command instance used for the application.

public class FunctionalCommands {

private final List<Supplier<Boolean>> commands = new
ArrayList<>();

public void addCommand (Supplier<Boolean> command) {

commands .add (command) ;

public void executeCommand () {
commands . forEach (Supplier: :get) ;

[250]

Chapter 9

commands.clear () ;

When we use the term, command, it can be found in several forms.
* There is the text form as entered by the user such as: drop Axe. There
is the Command class that is created from the text command and
//~' . .
consists of the command word and any arguments. Lastly, there is the
command implementation in the form of a lambda expression.

Each command is implemented as a lambda expression. These commands are shown
next and are declared as the FunctionalZork instance variables. Several of them use
methods of the Character class and others use GameElements methods:

private Supplier<Boolean> dropCommand =
() -> character.drop (command) ;

private Supplier<Boolean> pickupCommand =
() -> character.pickup (command) ;

private Supplier<Boolean> walkCommand =
() -> character.walk (command) ;

private Supplier<Boolean> inventoryCommand =
() -> character.inventory (command) ;

private Supplier<Boolean> lookCommand = () -> {

GameElements.displayView (GameElements.currentLocation) ;
return true;

}i

private Supplier<Boolean> directionsCommand = () ->
GameElements.currentLocation.displayPaths () ;
return true;

Vi

private final Supplier<Boolean> quitCommand = () ->
System.out.println ("Thank you for playing!");
return true;

}i

[251]

Bringing It All Together

The initializeCommands method follows where they are added to the GameElements
command's map. The key is a string, and the value is a Supplier<Booleans> instance.
More than one command word is associated with a command. For example, the words
walk and go are associated with the walkCommand command. This is an easy way of
establishing aliases for commands:

public void initializeCommands () {
commands .put ("drop", dropCommand) ;
commands .put ("Drop", dropCommand) ;
commands .put ("pickup", pickupCommand) ;
commands .put ("Pickup", pickupCommand) ;
commands .put ("walk", walkCommand) ;
commands .put ("go", walkCommand) ;
commands .put ("inv", inventoryCommand) ;
commands .put ("look", lookCommand) ;
commands .put ("directions", directionsCommand) ;

"dir", directionsCommand) ;

(
(
(
(
(

commands .put ("inventory", inventoryCommand) ;
(
(
(
commands . put (
(

commands .put ("quit", quitCommand) ;

}

The Boolean value returned by these commands is not used in this version of the
game. The return value has been retained for potential use in future versions of the
game. With the commands initialized, we will see how the user input is processed.

Getting a command from the console

The input file structure used to initialize the game does not readily lend itself to
parsing using a stream. However, for console input, we can use a stream. The
getCommandStream method processes one command line at a time.

For each command, we will split it into tokens and then remove stop words. Using a
stream makes this easier and permits other specialized operations to be performed if
desired, such as converting each token to its lowercase equivalent.

Stop words are words that sound more natural to us, but are not necessarily
important in a command. For example, the command, pickup the Axe, is more
natural than pickup Axe. If we remove these stop words, it allows the player
flexibility in how the command is expressed.

[252]

Chapter 9

The regular expression, \\s+, is used with the compile method to tokenize the
command line input. The splitAsStream method returns a Steam<String>
instance. We can use this instance to remove stop words:

public Stream<String> getCommandStream() {
String commandLine = scanner.nextLine() ;

// Stop words

List<String> toRemove = Arrays.asList("a", "an", "the",
n andll) ;

Stream<String> commandStream = Pattern
.compile ("\\s+")
.splitAsStream (commandLine)
//.map (s -> s.toLowerCase())
.filter(s -> !toRemove.contains(s)) ;

return commandStream;

}

We did not convert the words to lowercase. If we had, then we could not match
a command to pick up an item if the word for the item is stored using uppercase.
Case-insensitive matching is possible, but will require modifications to how the
data is stored.

The return value of this method is then passed to the parseCommandstream method.

We could have provided a similar imperative solution, as shown next:

public List<String> processCommand (String commandLine) {

List<String> toRemove = Arrays.asList("a", "an", "the",
n andll) ;

List<String> tokens = new ArrayList<>();
for (String token : commandLine.split ("\\s+")) {
if (!toRemove.contains (token)) {
tokens.add (token) ;
//tokens.add (token.toLowerCase ()) ;

}

return tokens;

[253]

Bringing It All Together

It is about the same size and returns a List instance instead of a stream. Returning
a List instance does not provide as much flexibility as a stream does. The List
interface does support a stream method if we wanted to use a stream instead. The
most significant advantage the functional solution has over the imperative solution
is its ability to add additional functionality more conveniently.

For example, if we wanted to perform additional processing if the token is "drop".
We can use the following method to encapsulate this processing;:

public String additionalProcessing(String token) {
if (token.equalsIgnoreCase ("drop")) {
// Additional processing

}

return token;

}

To incorporate this processing in the imperative solution, we can use a number of
approaches. Two possible approaches are shown next. The first approach uses a
temporary variable, while the second technique uses the output of the lowercase
method as input to the additionalProcessing method:

// First appraoch

String tmp = token.toLowerCase() ;
tmp = additionalProcessing (tmp) ;
tokens.add (tmp) ;

// Second approach
tokens.add (additionalProcessing (token.toLowerCase())) ;

While the second approach is shorter, if we needed to perform more work, using the
second approach results in a lengthy and harder to read solution.

To add the same processing to the functional solution requires adding a map method,
as shown here:

.map (s->additionalProcessing(s))

If more work needs to be performed, then another map method can be used again.
This results in a more readable and flexible approach, as opposed to the imperative
solution.

[254]

Chapter 9

Parsing the command

The purpose of parsing a command is to set up a Command object to hold the
command and its arguments. The parseCommandstream command does this as
shown next. A single Command instance variable is used and is cleared to erase any
previous commands. If a command is found, it is assigned to the Command object.
Otherwise, it assumes the remaining tokens are arguments to the command:

public void parseCommandStream(Stream<Strings> tokens)
command.clear () ;
tokens
.map (token -> {
if (commands.containsKey (token)) {
command . setCommand (token) ;
} else {
command .addArgument (token) ;
}
return token;
3]
.allMatch(token ->
I"quit".equalsIgnoreCase (token)) ;

}

The player can enter more than one command such as pickup Axe and go North.
However, go is recognized as a command and will replace the initial assignment of
pickup to the Command object. This results is an invalid command.

However, if a new Command instance is created each time a command is encountered,
then the player will be able to enter multiple commands per line of input. This
enhancement is left as a potential game enhancement.

Executing the command

The executeCommand method determines which lambda expression implementing
the command is to be executed. It does this using the GameElements command's map
to look up the expression using the name of the command. If the expression is found,
then it is added to the FunctionalCommand instance, fc, and executed. The name of
the command is then returned:

public String executeCommand ()
Supplier<Boolean> nextCommand =
commands .get (command.getCommand ()) ;
if (nextCommand != null) ({
fc.addCommand (nextCommand) ;
fc.executeCommand () ;

[255]

Bringing It All Together

return command.getCommand () ;

} else {
System.out.println ("Bad commmand") ;
return "";

}

When the quit command is entered, the main method's loop will terminate.

By storing the command implementation as lambda expression, we eliminate the need
for individual classes for each command. The use of the hash map, as implemented
using the commands variable, eliminates the need for a series of if-then-else statements
to select the command. The command's get method returns the corresponding
command implementation without using if type statements. This makes the selection
and execution of commands easier and succinct.

In contrast, if we had used an imperative approach instead, we would have needed
to use a series of if-then-else statements similar to those shown here:

String cmd = command.getCommand () ;
if (cmd.equalsIgnoreCase ("drop")) {
// Setup drop command
} else if(cmd.equalsIgnoreCase ("pickup"))
// Setup drop command
} else if (cmd.equalsIgnoreCase("go")) {
// Setup drop command
} else {
// Bad command

}
However, even this uses the lambda-based functions, as defined here:

private Supplier<Boolean> dropCommand =
() -> character.drop (command) ;

private Supplier<Boolean> pickupCommand =
() -> character.pickup (command) ;

These commands were added to the commands variable's hash table of
Supplier<Booleans> entries. If we didn't use the supplier interface, then
we would need to rework the way we processed commands.

[256]

Chapter 9

For example, the following method assumes a command line is passed to it. The
command line is then tokenized and the first token is assumed to be the command.
Only the code to process the drop command is provided. The equalsIgnoreCase
method tests each command to determine which command was entered. The
argument line arguments are then added to an arguments array. The command
string and the arguments array are then passed to the executeDropCommand method
for execution:

public void executeCommandImperative (String commandLine)

}

String tokens[] = commandLine.split ("\\s+");
String arguments[] = new String[tokens.length-1];
int index = 0;
String cmd = tokens[0];
if (cmd.equalsIgnoreCase ("drop")) {
// Setup drop command
while (index+1 < tokens.length) {
arguments [index] = tokens[index+1];
index++;
}
executeDropCommand (cmd, arguments) ;
} else if (cmd.equalsIgnoreCase ("pickup")) {
// Setup drop command
} else if (cmd.equalsIgnoreCase("go")) ({
// Setup drop command
} else {
// Bad command

The executeDropCommand method follows where we simply display the command.
In an actual implementation, we will need to use a more involved solution:

public void executeDropCommand (String command, String

arguments[]) {
// Execute command
System.out.print ("Command: " + command) ;
for (String arg : arguments) {
System.out.print (" " + arg);

}

System.out.println() ;

[257]

Bringing It All Together

This approach requires more code and is more difficult to follow and maintain. In
addition, we have not attempted to handle any errors that could occur, such as an
invalid argument list.

The functional approach using a lambda expression for the commands and a hash
table provides a more elegant and maintainable solution.

Implementing the Character class

Several of the commands are implemented by the Character class. We will examine
each of these methods. The character class maintains a list of items and its current
location. As shown next, its constructor establishes this location and as we will see
shortly, the walk method will change the location:

public class Character {
private final List<String> items = new ArrayList<>();
private Location location;

public Character (Location currentLocation) {
this.location = currentLocation;

}
}

Each of these methods is passed a Command instance. Not all of the commands will
use arguments, but when needed they use the following statement to access them:

List<String> arguments = command.getArguments () ;

If not needed, the statement is not used.

Implementing the pickup method

The pickup method converts the list to a stream by using the stream method. The
filter method is used to determine if the item is available. If the item is available,
then the method returns true passing the string to the forEach method. Otherwise,
the method displays an error message and returns false, meaning that the string is
not passed to the forEach method.

The lambda expression in the forEach method adds the item to the player's current
inventory and removes it from the current location. A message is then displayed
indicating success. The method easily handles multiple items, as shown next:

public boolean pickup (Command command) {
List<String> arguments = command.getArguments () ;
arguments.stream()

[258]

Chapter 9

.filter (itemName -> {
if (this.location.getItems ()

.contains (itemName))
return true;
} else {
System.out.println ("Cannot pickup " +
itemName) ;

return false;

)

.forEach (itemName ->
items.add (itemName) ;
this.location.getItems () .remove (itemName) ;
System.out.println("Picking up " + itemName) ;

3N

return true;

Implementing the drop method

The drop method also works for multiple items. If the argument list is empty, an
error message is displayed. For each item listed that can be dropped, the item is
removed from the player's inventory and added to the current location. If an invalid
item is encountered, an error message is displayed. The method is as follows:

public boolean drop (Command command) {
List<String> arguments = command.getArguments () ;
if (arguments.isEmpty()) {
System.out.println ("Drop what?") ;
return false;

} else {
boolean droppedItem = false;
for (String itemName : arguments) {

droppedItem = items.remove (itemName) ;

if (droppedItem) {
this.location.addItem(itemName) ;
System.out.println ("Dropping " + itemName) ;
droppedItem = true;

} else {
System.out.println ("Cannot drop " + itemName) ;

}

}

return droppedItem;

[259]

Bringing It All Together

For the else clause, we can use the following functional solution instead:

arguments.stream()
.map (itemName -> {
if (items.remove (itemName)) {
this.location.addItem(itemName) ;
return "Dropping " + itemName;
} else {
return "Cannot drop " + itemName;
}
})

.forEach(System.out: :println) ;

This is similar to the imperative solution, but it has the shortcoming of not modifying
the droppedItem variable indicating whether any items were dropped or not. It

is not able to use the variable without declaring effectively final, which defeats its
intended use. In this case, the imperative solution is better.

Implementing the walk method

The walk method will move the player between locations in the game. It accepts
multiple arguments allowing the player to move more than one location per
command. If there are no arguments, an error is displayed. For each invalid
direction, an error message is presented. For each valid direction, the current
location is updated and the description of the new location is displayed.

The Location class's getLocation method returns an instance of Optional<Strings,
as shown next. This object is assigned to the locationName variable. This is a
functional feature, which assists in handling null references. Each direction is passed
to this method. The map and orElse methods are applied to locationName, which
returns a string. In the map method, the Location object is obtained and assigned as
the current location. The description for the new location is displayed. In the orElse
method, an error message is displayed indicating that you can't go that way:

public boolean walk (Command command) {
List<String> directions = command.getArguments () ;
if (directions.isEmpty())
System.out.println("Go where?") ;
return false;
} else {
directions.forEach((direction) -> {
Optional<String> locationName =
GameElements.currentLocation.getLocation (direction) ;
System.out.print (locationName

[260]

Chapter 9

.map (name -> {
Location newLocation =
GameElements.locations.get (name) ;
this.location = newLocation;

GameElements.currentLocation =
newLocation;

GameElements.displayView (
GameElements.currentLocation) ;
return "";
)
.orElse ("However, you can't go "
+ direction + "\n"));
1)

return true;

}

The use of the optional class requires us to think explicitly about null references
and their consequences.

Implementing the inventory method

The inventory method simply displays the items the player is holding. It uses a
forEach method instead of a for-each loop:

public boolean inventory (Command command)

List<String> arguments = command.getArguments () ;
if (items.isEmpty())

System.out.println("You are holding nothing") ;
} else {

System.out.print ("You are holding:") ;

this.items.forEach((item) -> {

System.out.print (" " + item);
3N
System.out.println() ;

}

return true;

}

The last class to examine is the Location class, which has a number of interesting
features.

[261]

Bringing It All Together

Implementing the Location class

The Location class is responsible for maintaining information regarding each
location in the game. As seen in the following declaration, in addition to a name and
description, the class maintains a list of items, NPCs, and directions for that location.
The directions list the paths from this location and normally does not change.
However, the items and NPCs lists found at a location can change:

public class Location {
private String name;
private String description;
private final List<String> items = new ArrayList<>();
private final List<String> npcs = new ArrayList<>();
private final Map<String, Direction> directions = new
HashMap<> () ;

public Location name (String name) {
this.name = name;
return this;

}
The getLocation method used earlier returns an optional instance:

public Optional<String> getLocation(String direction) {
if (this.directions.containsKey(direction))
return Optional.of (this
.directions.get (direction)
.getLocation()) ;
} else {
return Optional.empty () ;

}
The description method is written in a fluent style:

public Location description(String description) {
this.description = description;
return this;

[262]

Chapter 9

Handling items
There are three methods dealing with items. The displayItems method uses a
stream to list the items at a location:

public List<String> getItems() {
return this.items;

public void addItem(String item) {
this.items.add(item) ;

public void displayItems() {
if (items.isEmpty())

} else {
System.out.print ("On the ground you see:");

items.stream()
.forEach(item -> {
System.out.print (" " + item);

3N

System.out.println() ;

Handling NPCs
There are three methods that assist with NPCs. With the displayNpcs method, the
forEach method uses a method reference to display the NPCs at the location:

public void addNPC(String npc)
this.npcs.add (npc) ;

}

public List<String> getNPCs()
return npcs;
}

public void displayNPCs ()
if (npcs.isEmpty())

} else {
npcs.forEach (System.out: :println) ;
}

[263]

Bringing It All Together

Handling directions

There is one method to add a direction and another one to display paths from the
location. The forEach method in the displayPaths method requires two arguments,
since it is used against a Map instance:

public void addDirection (Direction direction)
directions.put (direction.getDirection (), direction) ;

public void addDirection(String direction, String location) {
Direction newDirection = new Direction(direction,
location) ;
directions.put (direction, newDirection) ;

public void displayPaths() ({
directions.forEach((way, direction) -> {
System.out.print ("If you go " + way);
System.out.println(" you can get to "
+ direction.getLocation()) ;
I3
}

This concludes the discussion of the game. There are many features that can be
added to make the game more complete and playable. These are left as potential
enhancements.

[264]

Chapter 9

Summary

In this chapter, we demonstrated several of the Java 8 functional features to create a
Zork-like game. Using console input, a player can navigate through a world picking
up and dropping items along the way. New worlds can be configured using a file
containing the description of the world.

We showed how to use the command pattern to handle commands. The commands
were implemented using a combination of lambda expressions and other methods.
Adding command aliases involved adding a different keyword to a hash map of
commands.

Streams were used in a number of places to simplify processing and make the code
more readable. Also used in conjunction with lists and maps was the forEach
method, which replaced the need for imperative loops.

At several places in the chapter, we provided either an equivalent imperative
solution or an equivalent functional solution for certain problems. In general,

the functional approach was the better solution, as it was often cleaner and more
maintainable. However, there are times where the best approach was imperative.
By contrasting alternative approaches, you should be better able to select the best
approach for future problems.

The application developed is a good start to a full-fledged Zork-like game. The use of
the functional programming features will allow the application to be enhanced with
less effort than a more imperative implementation.

[265]

Bringing It All Together

Epilogue

Using a functional programming style often results in simpler and more elegant
solutions to problems. We covered a number of different functional programming
features available in Java 8. Lambda expressions provide the foundation for better
ways of expressing application logic. Streams and the fluent style of method
invocation make a program more readable and maintainable. Many of the other
Java 8 additions complement and support functional programming in Java. It is
hoped that you will apply this style to your future programming efforts.

[266]

A

associativity, monads 171

B

Binary Search Tree (BST) 129
bounded recursion 120

C

catch-exception library
URL 236
Character class, Functional Zork game
drop method, implementing 259, 260
implementing 258
inventory method, implementing 261
pickup method, implementing 258
walk method, implementing 260, 261
classes, Functional Zork game
Character 258
Direction 244
FunctionalZork 246
GameElements 243
Item 244
Location 262
NPC 244
closure 5, 38, 39
Collection interface 20
command pattern
about 176, 185
functional solution 188
implementing 185
object-oriented solution 186, 187
commands, Functional Zork game
directions 239
drop 239

Index

inventory 239
look 239
pickup 239
walk 239
composite functions
creating 56-58
creating, in Java 8 58
functional interface, using for function
composition 59
concurrent processing 109
considerations, stream parallel
non-inference 109, 110
ordering, of elements 109, 113
side effects 109, 112
stateless operations 109-112
constructor references 18,19
count-distinct problem
reference link 86
currying process 5, 40-42

D

default method
about 16, 80, 81
in Java 8 81-83
static default methods 81
URL 81
using 16,17

design patterns
about 175,176
command 176, 185
execute-around 176, 177
factory 176,182
strategy 176, 189
template 176, 202
visitor 176, 196

[267]

Direction class, Functional Zork game 244
direct recursion

about 120

using 120, 121
dynamic programming

reference link 131

E

eager evaluation 106
Eclipse
URL 220
used, for debugging lambda
expressions 225, 226
Eclipse support, for refactoring
about 215
anonymous inner classes,
converting to 215, 216
multiple code instances,
refactoring 217-219
other refactoring operations 219, 220
execute-around-method pattern
about 176,177
functional solution 178-180
implementing 177
object-oriented solution 177, 178
using, with stream 181

F

factory pattern
about 176,182
functional solution 185
implementing 182
object-oriented solution 183, 184
filter method, Optional class
using 155, 156
filter methods, Stream class
about 96
filter method, using 97
skip method, using 98
first-class functions 31, 32
first-come-first-serve algorithm 191
fixed length streams 90
flatMap method 231
fluent interfaces 7, 8, 56, 64

function
about 3-5, 80, 81
composition 6, 7
pure function 4
returning 29, 30
functional code
Eclipse support, for refactoring 215
NetBeans support, for refactoring 211
refactoring 210
functional interface
about 17,18, 47
and method cascading, contrasting 67
cascading 65, 66
consumer-type functional interfaces 48-50
creating 47, 68-72
extending 76-80
function-type functional interfaces 47, 48
in Java 8 64
instances, passing 61-63
method chaining 65-67
operator-type functional interfaces 48-52
predicate-type functional interfaces 47-49
supplier-type functional interfaces 48, 51
used, for function composition 59, 60
used, for hiding older
interfaces/classes 72-74
used, for supplementing methods 60, 61
using 68-72
using, with Properties class 74, 75
functional Java
URL 56
functional method 47
functional programming
about 1
aspects 2,3
fluent interfaces 7, 8
function 1-5
function composition 6, 7
monads 13, 14
Optional class 13
parallelism 11,12
persistent data structures 9
recursion 10
strict, versus non-strict evaluation 8
functional programming concepts, Java 8
about 26
closure 38

[268]

currying 40
first-class functions 31, 32
function, returning 29, 30
high-order functions 26-28
pure function 33
referential transparency 37
functional programs
exceptions, testing with fluent style 236
lambda expressions, copying 233
lambda expressions, testing 230-232
testing 230
functional solution, to
command pattern 188
functional solution, to execute-around-
method pattern 178-180
functional solution, to factory pattern 185
functional solution, to
strategy pattern 194,195
functional solution, to template
pattern 205-207
functional solution, to visitor
pattern 200-202
FunctionalZork class
command, executing 255-258
command, obtaining from
console 252-254
command, parsing 255
commands, initializing 250-252
implementing 246
initialization process 247-250
Functional Zork game
about 239, 240
classes 243
commands 239
interfaces 243
playing 240-243
function composition 55, 56
Function interface
using 195, 196

G

GameElements class, Functional
Zork game 243
generate method
used, for creating infinite stream 94, 95

H

head and tail recursion
using 128

head recursion
about 120-122
using 126

high-order functions 26-28

IDEs 210
infinite streams

about 90

creating, generate method used 94, 95

creating, iterate method used 91-94
inorder 124
intermediate methods 88
Item class, Functional Zork game 244
iterate method

used, for creating infinite stream 91-94
iterative factorial solution 119
iterative loop

converting, to recursive solution 131
iterative solution

about 119

reference link 119

J

Java
closure 38

Java 8
collections 20
composite functions, creating 58, 59
constructor references 18, 19
default method 16, 17, 81-83
functional interface 17, 18, 64
functional programming concepts 26
lambda expressions 15, 16
method 18, 19
multiple inheritance 83, 84

JUnit
URL 231

[269]

L

lambda expressions
about 4, 15, 16, 43, 44
copying 232
debugging 220
debugging, with Eclipse 225, 226
debugging, with NetBeans 222-224
exception handling 46
Java 8 type inference 44-46
method reference, using 233, 234
recursive lambda expressions,
debugging 227-229
test class, reorganizing 234-236
testing 230-232
using 24, 25
lazy evaluation
about 106
demonstrating 106-108
lazy loading 106
left identity, monads 171,172
lists
merging 132
reference link 132
Location class, Functional Zork game
directions, handling 264
implementing 262
items, handling 263
NPCs, handling 263
longest-task-first algorithm 191

map method, Optional class
using 156

mapping methods, Stream class
about 100
flatmap method, using 103-106
mapping operation 100
map-reduce paradigm,

implementing 101-103

map-reduce paradigm
implementing 101-103

maybe monad 163

maybe type 147

memoization 33

Memoizer
about 35
URL 35
monads
about 13, 14, 160-162, 168-171
associativity 171
bind operation 163
left identity 171,172
reference link 163, 168
right identity 172,173
unit operation 163
monads, in Java 8
about 163
flatMap method, using 164
map method, using 165
of method, using as unit function 164
Optional class, using with string 166
using, with Part class 167
multi-recursion 120
mutual recursion 120

N

NetBeans
used, for debugging lambda
expressions 222-224
NetBeans support, for refactoring
about 211
anonymous inner classes, converting to
lambda expressions 211, 212
multiple code instances,
refactoring 212-214
other refactoring operations,
support 214, 215
Node class
using 124,125
Non-Player Characters (NPC) 240
NPC class, Functional Zork game 244
N-Queens problem 119

(0

object-oriented solution, to command
pattern 186, 187

object-oriented solution, to execute-around-
method pattern 177,178

[270]

object-oriented solution, to factory
pattern 183,184
object-oriented solution, to strategy
pattern 190-193
object-oriented solution, to template
pattern 203, 204
object-oriented solution, to visitor
pattern 197-199
Optional class
about 13,147
disadvantages 159, 160
filter method, using 155, 156
map method, using 156
missing values, handling 153
orElseGet method, used for obtaining
substitute value 154
orElse method, used for obtaining
substitute value 153
orElseThrow method, used for throwing
exception 154
reference link 159
solution, to Customer problem 157, 158
used, for supporting return
values 149-152
using 147, 148
values, filtering 155
values, transforming 155
Optional instances
creating 148
option type 147

P

parallelism 11,12
parallel streams

debugging 229
peek method

used, for assisting debugging 222
persistent data structures 9
pipelines 160
postorder 124
preorder 124
println method

used, for assisting debugging 221, 222
program stack 133-136

Properties class
fluent interfaces, using with 74, 75
URL 74
pure function
about 4, 33
advantages 4, 33
dependencies, eliminating between
functions 36, 37
lazy evaluation, supporting 37
support repeated execution 33-36

R

recursion
about 10,117,123
criticisms 143
Node class, using 124, 125
recursion humor
about 144
references 144
recursion implementation techniques
about 139
converting, to tail call 142
short circuiting, using 140, 141
tail call optimization 141, 142
wrapper method, using 140
recursion types
about 120
direct recursion 120, 121
head recursion 120-122, 126, 127
multi-recursion 120
mutual recursion 120
tail recursion 120-122, 127
recursive acronyms
about 145
reference link 145
recursive data structure
about 118
examples 119
recursive descent parsers
reference link 120
recursive lambda expressions 137
recursive solution
about 118,119
base case 121
creating, based on formula 129, 131

[271]

iterative loop, converting to 131 T
recursive case 121

reference link 119 tail call 141, 142
recursive solutions, issues tail call optimization 141

about 137 tail recursion

absence, of base case 138 about 120-122

instance variables, using 138, 139 using 127

post-increment operators, using 139 template pattern

pre-increment operators, using 139 about 176, 202

static variables, using 138, 139 functional solution 205-207
refactoring 209 implementing 202
referential transparency 4, 37, 38 object-oriented solution 203, 204
return values terminal methods 88

supporting, Optional class used 149-152 terminating method 67
right identity, monads 172,173 testing 210

type inference 18

U

S

short circuiting

using 140, 141 unbounded recursion 120
short-circuiting methods 108
shortest-task-first algorithm 191 \)
state full 109
strategy pattern variable capture 38

about 176, 189 visitor pattern
functional solution 194, 195 about 176,196
implementing 189 functional solution 200-202

object-oriented solution 190-193 1mplemepting 196
Stream class object-oriented solution 197-199
about 86
benefits 86, 87 W
filter methods 96
intermediate methods 88
mapping methods 100
terminal methods 88
stream processing 109
streams
about 85
creating 89
execute-around-method pattern,
using with 181
fixed length streams 90
infinite streams 90
sorting 99
strict evaluation
versus non-strict evaluation 8, 9

wrapper method
using 140

[272]

open source

community experience distilled

PUBLISHING

Thank you for buying
Learning Java Functional Programming

About Packt Publishing

Packt, pronounced 'packed’, published its first book, Mastering phpMyAdmin for Effective
MySQL Management, in April 2004, and subsequently continued to specialize in publishing
highly focused books on specific technologies and solutions.

Our books and publications share the experiences of your fellow IT professionals in adapting
and customizing today's systems, applications, and frameworks. Our solution-based books
give you the knowledge and power to customize the software and technologies you're using
to get the job done. Packt books are more specific and less general than the IT books you have
seen in the past. Our unique business model allows us to bring you more focused information,
giving you more of what you need to know, and less of what you don't.

Packt is a modern yet unique publishing company that focuses on producing quality,
cutting-edge books for communities of developers, administrators, and newbies alike.
For more information, please visit our website at www . packtpub . com.

About Packt Open Source

In 2010, Packt launched two new brands, Packt Open Source and Packt Enterprise, in order
to continue its focus on specialization. This book is part of the Packt Open Source brand,
home to books published on software built around open source licenses, and offering
information to anybody from advanced developers to budding web designers. The Open
Source brand also runs Packt's Open Source Royalty Scheme, by which Packt gives a royalty
to each open source project about whose software a book is sold.

Writing for Packt

We welcome all inquiries from people who are interested in authoring. Book proposals should
be sent to authorepacktpub . com. If your book idea is still at an early stage and you would
like to discuss it first before writing a formal book proposal, then please contact us; one of our
commissioning editors will get in touch with you.

We're not just looking for published authors; if you have strong technical skills but no writing
experience, our experienced editors can help you develop a writing career, or simply get some
additional reward for your expertise.

open source

community experience distilled

PUBLISHING

Learning Reactive
Programming with Java 8

Learning Reactive

Programming with Java 8
ISBN: 978-1-78528-872-2 Paperback: 182 pages

Learn how to use RxJava and its reactive Observables
to build fast, concurrent, and powerful applications
through detailed examples

1. Learn about Java 8's lambdas and what reactive
programming is all about, and how these
aspects are utilized by RxJava.

2. Build fast and concurrent applications
with ease, without the complexity of Java's
concurrent API and shared states.

3. Explore a wide variety of code examples to
easily get used to all the features and tools
provided by RxJava.

Java EE 7 with GlassFish 4
Application Server

Java EE 7 with GlassFish 4

Application Server
ISBN: 978-1-78217-688-6 Paperback: 348 pages
A practical guide to install and configure the

GlassFish 4 application server and develop Java EE 7
applications to be deployed to this server

1. Install and configure GlassFish 4.

2. Covers all major Java EE 7 APIs and includes
new additions such as JSON Processing.

3. Packed with clear, step-by-step instructions,
practical examples, and straightforward
explanations.

Please check www.PacktPub.com for information on our titles

open source

community experience distilled

PUBLISHING

Oracle Data Integrator Essentials

[Video]

ISBN: 978-1-78217-048-8 Duration: 02:08 hours

Develop, deploy, and maintain your own data
integration projects with a clear view of Oracle Data
Oracle Data Integrator essentials and best practices

Integ rator Essentials 1. Develop the necessary skills for effectively
carrying out data integration and

transformations in ODI interfaces.

Andre lobbmann

2. Understand the use of ODI development
objects with methods and concepts illustrated
from real projects.

3. Master the key concepts of ODI's physical and
logical architecture and the use of Knowledge
Modules and data models.

7/ =L Learning Java by Building
SSSSS Android Games
ISBN: 978-1-78439-885-9 Paperback: 392 pages

Get ready for a fun-filled experience of learning Java
by developing games for the Android platform

1. Acquaint yourself with Java and object-oriented
programming, from zero previous experience.

g Java by Building 2. Build four cool games for your phone and
droid Game tablet, from retro arcade-style games to
memory and education games, and gain the
knowledge to design and create your own
games too.

3. Walk through the fundamentals of building
games and use that experience as a springboard
to study advanced game development or just
have fun.

Please check www.PacktPub.com for information on our titles

	Cover

	Copyright
	Credits
	About the Author
	About the Reviewers
	www.PacktPub.com
	Table of Contents
	Preface
	Chapter 1: Getting Started with Functional Programming
	Aspects of functional programming
	Functions
	Function composition
	Fluent interfaces
	Strict versus non-strict evaluation
	Persistent data structures
	Recursion
	Parallelism
	Optional and monads

	Java 8's support for functional style programming
	Lambda expressions
	Default methods
	Functional interfaces
	Method and constructor references
	Collections

	Summary

	Chapter 2: Putting the Function in Functional Programming
	Lambda expressions usage
	Functional programming concepts in Java
	High-order functions
	Returning a function
	First-class functions
	The pure function
	Support repeated execution
	Eliminating dependencies between functions
	Supporting lazy evaluation

	Referential transparency
	Closure in Java
	Currying

	Lambda expressions revisited
	Java 8 type inference
	Exception handling in lambda expressions

	Functional interfaces revisited
	Creating a functional interface
	Common functional interfaces
	Function-type functional interfaces
	Predicate-type functional interfaces
	Consumer-type functional interfaces
	Supplier-type functional interfaces
	Operator-type functional interfaces

	Summary

	Chapter 3: Function Composition
and Fluent Interfaces
	Introduction to function composition
	Creating composite functions prior to Java 8
	Creating composite functions in Java 8
	Using the Function interface for function composition
	Using the Functional interface to supplement methods
	Passing instances of the Functional interface

	Fluent interfaces
	Fluent interfaces in Java 8
	Method chaining and cascading
	Contrasting method cascading and fluent interfaces
	Creating and using fluent interfaces
	Using fluent interfaces to hide older interfaces/classes
	Using fluent interfaces with the Properties class
	Extending fluent interfaces

	Default methods and functions
	Static default methods
	Default methods in Java 8
	Multiple inheritance in Java 8

	Summary

	Chapter 4: Streams and the Evaluation of Expressions
	The Stream class and its use
	Intermediate and terminal methods

	Creating streams
	Fixed length streams
	Infinite streams
	Using the iterate method to create an infinite stream
	Using the generate method to create an infinite stream

	Using the Stream class methods
	Filter methods
	Using the filter method
	Using the skip method

	Sorting streams
	Mapping methods
	Understanding the mapping operation
	Implementing the map-reduce paradigm
	Using the flatmap method

	Lazy and eager evaluation
	Stream and concurrent processing
	Understanding non-inference
	Understanding stateless operations
	Understanding side effects
	Understanding the ordering

	Summary

	Chapter 5: Recursion Techniques in Java 8
	Recursive data structures
	Types of recursion
	Using direct recursion
	Head and tail recursion

	Understanding recursion
	The Node class
	Using head recursion
	Using tail recursion
	Using the head and tail recursion
	Creating a recursive solution based on a formula
	Converting an iterative loop to a recursive solution
	Merging two lists
	Understanding the program stack
	Recursive lambda expressions
	Common problems found in recursive solutions
	Absence of a base case
	Using static or instance variables
	Using the pre- and post-increment operators

	Recursion implementation techniques
	Using a wrapper method
	Using short circuiting
	Tail call optimization
	Converting to a tail call

	When to use recursion
	Recursion and humor
	Summary

	Chapter 6: Optional and Monads
	Using the Optional class
	Creating Optional instances
	Using the Optional class to support return values
	Handling missing values
	Using the orElse method to get a substitute value
	Using the orElseGet method to use a function to get a substitute value
	Using the orElseThrow method to throw an exception

	Filter and transforming values
	Using the Optional class's filter method
	Using the Optional class's map method
	Optional solution to the Customer problem

	Disadvantages of the Optional class

	Monads
	Monads in Java 8
	Using the of method as the unit function
	Using the flatMap method
	Using the map method
	Using the Optional class with strings
	Using monads with the Part class

	A formal discussion of monads
	Associativity
	Left identity
	Right identity

	Summary

	Chapter 7: Supporting Design Patterns Using Functional Programming
	Implementing the execute-around-method pattern
	Object-oriented solution to the execute-around-method pattern
	Functional solution to the execute-around-method pattern
	Using the execute-around-method pattern with a stream

	Implementing the factory pattern
	Object-oriented solution to the factory pattern
	Functional solution to the factory pattern

	Implementing the command pattern
	Object-oriented solution to the command pattern
	Functional solution to the command pattern

	Implementing the strategy pattern
	Object-oriented solution to strategy pattern
	Functional solution to the strategy pattern
	Using the Function interface

	Implementing the visitor pattern
	Object-orient solution to the visitor pattern
	Functional solution to the visitor pattern

	Implementing the template pattern
	Object-oriented solution to the template pattern
	Functional solution to the template pattern

	Summary

	Chapter 8: Refactoring, Debugging,
and Testing
	Refactoring functional code
	NetBeans support for refactoring
	Converting anonymous inner classes to lambda expressions
	Refactoring multiple code instances
	Support of other refactoring operations

	Eclipse support for refactoring
	Converting anonymous inner classes to lambda expressions
	Refactoring multiple code instances
	Support of other refactoring operations

	Debugging lambda expressions
	Using the println method to assist debugging
	Using the peek method to assist debugging
	Debugging lambda expressions using NetBeans
	Debugging lambda expressions using Eclipse
	Debugging recursive lambda expressions
	Debugging parallel streams

	Testing functional programs
	Testing lambda expressions
	Copying the lambda expression
	Using a method reference
	Reorganizing the test class

	Testing exceptions using a fluent style

	Summary

	Chapter 9: Bringing It All Together
	Functional Zork
	Playing the game

	The game's architecture
	Understanding the GameElements class
	Introducing the Item, Direction, and NPC classes
	Implementing the FunctionalZork class
	Initializing the game
	Initializing the commands
	Getting a command from the console
	Parsing the command
	Executing the command

	Implementing the Character class
	Implementing the pickup method
	Implementing the drop method
	Implementing the walk method
	Implementing the inventory method

	Implementing the Location class
	Handling items
	Handling NPCs
	Handling directions

	Summary
	Epilogue

	Index

