
[1]

www.it-ebooks.info

http://www.it-ebooks.info/

Image Processing with ImageJ
Second Edition

Extract and analyze data from complex images with
ImageJ, the world's leading image processing tool

Jurjen Broeke

José María Mateos Pérez

Javier Pascau

BIRMINGHAM - MUMBAI

www.it-ebooks.info

http://www.it-ebooks.info/

Image Processing with ImageJ
Second Edition

Copyright © 2015 Packt Publishing

All rights reserved. No part of this book may be reproduced, stored in a retrieval
system, or transmitted in any form or by any means, without the prior written
permission of the publisher, except in the case of brief quotations embedded in
critical articles or reviews.

Every effort has been made in the preparation of this book to ensure the accuracy
of the information presented. However, the information contained in this book is
sold without warranty, either express or implied. Neither the authors, nor Packt
Publishing, and its dealers and distributors will be held liable for any damages
caused or alleged to be caused directly or indirectly by this book.

Packt Publishing has endeavored to provide trademark information about all of the
companies and products mentioned in this book by the appropriate use of capitals.
However, Packt Publishing cannot guarantee the accuracy of this information.

First published: September 2013

Second edition: November 2015

Production reference: 1241115

Published by Packt Publishing Ltd.
Livery Place
35 Livery Street
Birmingham B3 2PB, UK.

ISBN 978-1-78588-983-7

www.packtpub.com

www.it-ebooks.info

www.packtpub.com
http://www.it-ebooks.info/

Credits

Authors
Jurjen Broeke

José María Mateos Pérez

Javier Pascau

Reviewer
Jan Eglinger

Commissioning Editor
Neil Alexander

Acquisition Editor
Manish Nainani

Content Development Editor
Sumeet Sawant

Technical Editor
Parag Topre

Copy Editor
Karuna Narayanan

Project Coordinator
Shweta H Birwatkar

Proofreader
Safis Editing

Indexer
Monica Ajmera Mehta

Graphics
Disha Haria

Production Coordinator
Conidon Miranda

Cover Work
Conidon Miranda

www.it-ebooks.info

http://www.it-ebooks.info/

About the Authors

Jurjen Broeke has a PhD in neuroscience from Vrije Universiteit (VU) Amsterdam
and uses live-cell imaging techniques to study the fundamental processes of
neuronal function. As a neuroscientist, he studies the processes involved in neural
communication. Besides acquiring images, Jurjen also develops software to analyze
dynamics in ImageJ, MATLAB, and R. When not enjoying the outdoors and taking
pictures, he develops technical hardware and software solutions in the Department
of Functional Genomics at VU.

José María Mateos Pérez is a Spanish postdoctoral fellow at the Montreal
Neurological Institute (http://www.mcgill.ca/neuro/), where his main research
lines deal with neurodevelopment and machine learning applied to clinical
prediction. He has also been an experienced ImageJ user and has developed several
macros and plugins. One of them, jClustering, has been published in PLOS ONE, a
peer-reviewed journal. When he has enough time to procrastinate, he also likes to
develop data analysis tools in Python and R.

www.it-ebooks.info

http://www.mcgill.ca/neuro/
http://www.it-ebooks.info/

Javier Pascau received his PhD from Polytechnic University in Madrid in 2006
and is currently a visiting professor at Carlos III University, Madrid. He has been a
part of Biomedical Imaging and Instrumentation Group, a research laboratory with
a multidisciplinary team of engineers, physicists, biologists, and physicians located
both in the university as well as Hospital General Universitario Gregorio Marañón
(biig.uc3m.es). Javier's research and teaching cover areas such as medical image
processing, analysis, quantification, and multimodal registration, both in preclinical
and clinical environments. He has been involved in the development of small
animal PET and CT devices. In the last few years, Javier has led several projects on
intraoperative radiation therapy and image-guided surgery. He has authored more
than 40 papers published in peer-reviewed journals over the last 15 years.

I want to thank all my colleagues at the university and the hospital,
since my knowledge on image processing is the result of multiple
interactions in this multidisciplinary environment.

www.it-ebooks.info

http://www.it-ebooks.info/

About the Reviewer

Jan Eglinger works as an image processing specialist at Friedrich Miescher
Institute for Biomedical Research in Basel, Switzerland. Jan received a master's
degree in biotechnology from ESBS in Strasbourg, France, and a PhD in cell biology
from MPI-CBG in Dresden, Germany. He has been contributing to Fiji and ImageJ
development since 2010.

www.it-ebooks.info

http://www.it-ebooks.info/

www.PacktPub.com

Support files, eBooks, discount offers,
and more
For support files and downloads related to your book, please visit www.PacktPub.com.

Did you know that Packt offers eBook versions of every book published, with PDF
and ePub files available? You can upgrade to the eBook version at www.PacktPub.
com and as a print book customer, you are entitled to a discount on the eBook copy.
Get in touch with us at service@packtpub.com for more details.

At www.PacktPub.com, you can also read a collection of free technical articles, sign
up for a range of free newsletters and receive exclusive discounts and offers on Packt
books and eBooks.

TM

https://www2.packtpub.com/books/subscription/packtlib

Do you need instant solutions to your IT questions? PacktLib is Packt's online digital
book library. Here, you can search, access, and read Packt's entire library of books.

Why subscribe?
•	 Fully searchable across every book published by Packt
•	 Copy and paste, print, and bookmark content
•	 On demand and accessible via a web browser

Free access for Packt account holders
If you have an account with Packt at www.PacktPub.com, you can use this to access
PacktLib today and view 9 entirely free books. Simply use your login credentials for
immediate access.

www.it-ebooks.info

http://www.PacktPub.com
www.PacktPub.com
http://www.PacktPub.com
http://www.PacktPub.com
mailto:service@packtpub.com
http://www.PacktPub.com
https://www2.packtpub.com/books/subscription/packtlib
http://www.packtpub.com/
http://www.it-ebooks.info/

www.it-ebooks.info

http://www.it-ebooks.info/

[i]

Table of Contents
Preface	 vii
Chapter 1: Getting Started with ImageJ	 1

ImageJ distributions	 1
The uses of ImageJ	 3
The current state of ImageJ	 4

ImageJ2	 4
SciFIO and OME-XML	 5
Bio-formats	 5

Integrated environment for acquisition and processing	 5
Obtaining and installing ImageJ	 6

Installation of ImageJ	 6
Installing on Windows	 6
Installing on Mac OS X	 7
Installing on Linux	 8

The ImageJ folder structure	 8
Plugins folder	 9
Macros folder	 9

Configuring a fresh ImageJ installation	 10
Summary	 11

Chapter 2: Basic Image Processing with ImageJ	 13
Images in ImageJ	 13

Image types	 15
Grayscale images	 15
Color images	 15

Stacks and hyperstacks	 18
Color images and multichannel stacks	 18
Z-stack images and volumes	 20
Time series	 20
Multidimensional images	 20

www.it-ebooks.info

http://www.it-ebooks.info/

Table of Contents

[ii]

Extracting image and pixel information	 21
Loading and saving images	 22

Loading images and sequences	 22
Saving images	 23

Image calibration	 24
Viewing images in ImageJ	 24

Viewing multichannel images	 27
Viewing time series	 28

Summary	 28
Chapter 3: Advanced Image Processing with ImageJ	 29

Correcting images	 29
Technical background	 29
Correcting Shot noise	 30
Correcting dark noise	 30
Uneven illumination – background subtraction	 33
Image normalization	 36
Bleach correction	 38

Stack processing	 40
Processing Z-stacks	 40

Stack projections	 41
Volume viewing and rendering	 43

Processing time series	 46
Normalizing time series data	 46

Summary	 48
Chapter 4: Image Segmentation and Feature
Extraction with ImageJ	 49

Image segmentation	 49
Image thresholding	 50

Thresholding grayscale images	 50
Thresholding color images	 52

Morphological processing	 54
Morphological operators	 54

Erode and dilate	 54
Skeletonize and watershed	 57

Image filtering	 59
Filtering in the frequency domain	 60
Image filtering in the spatial domain	 65

Feature extraction	 69
Edge detection	 70

Summary	 71

www.it-ebooks.info

http://www.it-ebooks.info/

Table of Contents

[iii]

Chapter 5: Basic Measurements with ImageJ	 73
Selections and regions in ImageJ	 74

Area selections	 75
Line selections	 79
Point selections	 79

Basic measurements	 79
Area selections and measurements	 79

Oval selections	 80
Polygon selections	 83

Line selections and measurements	 86
Kymographs	 86
Line profiles	 91

Colocalization	 94
Semiquantitative colocalization	 94

Particle analysis	 95
Preprocessing and preparations	 96

Summary	 98
Chapter 6: Developing Macros in ImageJ	 99

Recording macros	 99
Recording a macro for conversion	 101

Modifying macros	 104
User input in macros	 106

Opening a specific file	 106
Saving an image to a folder	 107
Adding choices	 109
Performing input checking	 112

Showing progress in macros	 116
Processing the time series	 116

Running macros in batch process mode	 123
Installing macros	 125
Summary	 127

Chapter 7: Explanation of ImageJ Constructs	 129
Frameworks for macros and plugins	 129

Macros and scripting languages	 130
BeanShell scripting	 130
Saving and running your scripts	 134

Plugins for ImageJ	 135
ImageJ main class	 135
WindowManager	 136
ImagePlus	 136
ImageProcessor	 137
RoiManager	 137
The Roi class	 138

www.it-ebooks.info

http://www.it-ebooks.info/

Table of Contents

[iv]

The Application Programming Interface	 138
Setting up NetBeans IDE	 139

Gathering all components	 139
Setting up a project	 140
Building ImageJ	 144
Creating a plugin	 144
Creating documentation	 147

ImageJ Javadoc	 147
Plugin Javadoc	 147

Developing plugins using Maven	 149
Construction of the POM	 150
Creating a Maven plugin project	 152
Creating an ImageJ2 plugin	 158

Pros and cons of using an IDE	 159
Summary	 160

Chapter 8: Anatomy of ImageJ Plugins	 161
The basic anatomy of a plugin	 161

Legacy plugins	 162
The PlugIn type	 162
The PlugInFilter type	 162
The PlugInFrame type	 163
Implementing a legacy plugin	 163
Combining macros and legacy plugins	 164

SciJava plugins	 164
The @Plugin annotation	 165
Services	 166
Commands	 166

Running and debugging plugins	 167
Compiling plugins	 167

Compiling SciJava plugins	 168
Debugging plugins	 169

Examples of available plugins	 171
Example plugins available in ImageJ and Fiji	 172

MultipleKymograph	 173
ColorTransformer2	 175
MtrackJ	 177
Coloc2	 181
Goutte_pendante	 183

Summary	 188

www.it-ebooks.info

http://www.it-ebooks.info/

Table of Contents

[v]

Chapter 9: Creating ImageJ Plugins for Analysis	 189
Plugin background and goal	 189
Basic project setup	 190
Creating a basic PlugInFilter	 192

Testing our current implementation	 192
Implementing the setup method	 195

The return type and autocomplete	 196
Javadoc for methods	 196
Finishing the setup method	 199

Implementing the run method	 202
Detecting an object	 202
Refining the detection	 204
Detecting multiple objects	 206

Implementing the measurements	 209
Adding user interaction and preferences	 210

Settings and options dialog	 210
Adding external libraries	 212

Adding the dependency for Apache POI	 212
Creating an Excel file	 213

Sharing your plugin	 215
Creating a site	 216
Uploading your plugin	 217

Summary	 217
Chapter 10: Where to Go from Here?	 219

Basic development	 219
Additional tools	 222
Project management and feedback	 223
Other resources	 225
Summary	 225

Index	 227

www.it-ebooks.info

http://www.it-ebooks.info/

www.it-ebooks.info

http://www.it-ebooks.info/

[vii]

Preface
Advances in image processing are vital for the science and technology communities.
However, as images become larger and more complex, even more advanced
processing techniques are required. Automation becomes necessary too so that you
can perform simple tasks easily and focus on more sophisticated issues. ImageJ
is here to help—as one of the key powerful tools in the development of image
processing, it lets you extract even more useful data from your images.

What this book covers
Chapter 1, Getting Started with ImageJ, takes a look at the origin and use of ImageJ and
discusses how to download and install it on different platforms. We will also take a
look at the basic folder structure of ImageJ installation and configure it to be used.

Chapter 2, Basic Image Processing with ImageJ, discusses the different image types
that are supported by ImageJ. You will also learn how to load images from a disk
or URL. We will take a look at the anatomy of an image window in ImageJ and the
information that can be viewed. It will also deal with image scaling, calibration,
lookup tables, adjusting image size, and adjusting channels.

Chapter 3, Advanced Image Processing with ImageJ, investigates the processing of
different types of images. We will take a look at different sources of noise that can
corrupt images and degrade their quality. You will also learn how to apply different
corrections to images to fix these problems.

Chapter 4, Image Segmentation and Feature Extraction with ImageJ, looks at the ways to
separate an image into a foreground and background. We will consider different
methods to set the threshold in grayscale and color images.

www.it-ebooks.info

http://www.it-ebooks.info/

Preface

[viii]

Chapter 5, Basic Measurements with ImageJ, considers some methods to measure the
parameters within images and time series. We will apply some of the techniques
discussed in previous chapters to extract data from our images. You will also learn
how to visualize dynamic data in a single image (kymographs).

Chapter 6, Developing Macros in ImageJ, discusses how to create a macro using a
recorder to discover the commands and functions that we can apply. Next, we will
take a look at processing a folder full of images and saving the resulting images to
the hard disk. Finally, we will look at the Batch Process mode, which allows ImageJ
to process a folder in a similar way.

Chapter 7, Explanation of ImageJ Constructs, looks at the framework of macros and
plugins that are available in ImageJ. We will discuss some of the constructs that
the ImageJ API exposes for use in scripting and plugins. Finally, we will describe
how to set up an IDE to develop ImageJ and plugins using it as a standalone or
Maven-based project.

Chapter 8, Anatomy of ImageJ Plugins, takes a look at the anatomy of plugins for
ImageJ1.x and ImageJ2. We will also take a look at some of the specific constructs
that are used in plugins for both frameworks. This chapter examines how to compile,
run, and debug plugins using the IDE or tools provided by ImageJ.

Chapter 9, Creating ImageJ Plugins for Analysis, develops a plugin from scratch using
the Maven system and NetBeans IDE. We will discuss how to add a basic user
interface to our plugin, allowing the user to change some of the parameters that
influence the way the plugin functions. We will also add an external library to
provide additional functionality that was not present in ImageJ.

Chapter 10, Where to Go from Here, sums up the topics that are discussed in previous
chapters and provides further resources that are available for you to continue
developing your own plugins. The chapter also looks at some of the more advanced
techniques that are available for developers.

What you need for this book
You'll need the following software for the book:

ImageJ 1.4x or Fiji

•	 NetBeans 8.0.2+

www.it-ebooks.info

http://www.it-ebooks.info/

Preface

[ix]

Who this book is for
This book is created for engineers, scientists, and developers eager to tackle
image processing with one of the leading tools in the field for image processing
and analysis. No prior knowledge of ImageJ is needed. Familiarity with Java
programming will be needed for readers to code their own routines using ImageJ.

Conventions
In this book, you will find a number of styles of text that distinguish between
different kinds of information. Here are some examples of these styles, and an
explanation of their meaning.

Code words in text, database table names, folder names, filenames, file extensions,
pathnames, dummy URLs, user input, and Twitter handles are shown as follows:
"The two most important folders are the macros and plugins folders."

A block of code is set as follows:

varmyTools = newMenu("My awesome tools",
newArray("Macro_1", "Macro_2", "-", "Macro_3"));

macro"My awesome tools - C037T0b11MT7b09aTcb09t" {
 cmd = getArgument();
 if(cmd== "Macro_1")
 runMacro("/PATH/TO/Macro_1_tool");
 else if(cmd == "Macro_2)"
 runMacro("/PATH/TO/some_other_tool");
}

New terms and important words are shown in bold. Words that you see on the
screen, in menus or dialog boxes for example, appear in the text like this: "We can
now perform the particle analysis by selecting Analyze | Analyze Particles… from
the menu."

Warnings or important notes appear in a box like this.

Tips and tricks appear like this.

www.it-ebooks.info

http://www.it-ebooks.info/

Preface

[x]

Reader feedback
Feedback from our readers is always welcome. Let us know what you think about
this book—what you liked or may have disliked. Reader feedback is important for us
to develop titles that you really get the most out of.

To send us general feedback, simply send an e-mail to feedback@packtpub.com,
and mention the book title via the subject of your message.

If there is a topic that you have expertise in and you are interested in either writing
or contributing to a book, see our author guide on www.packtpub.com/authors.

Customer support
Now that you are the proud owner of a Packt book, we have a number of things to
help you to get the most from your purchase.

Downloading the example code
You can download the example code files for all Packt books you have purchased
from your account at http://www.packtpub.com. If you purchased this book
elsewhere, you can visit http://www.packtpub.com/support and register to have
the files e-mailed directly to you.

Errata
Although we have taken every care to ensure the accuracy of our content, mistakes
do happen. If you find a mistake in one of our books—maybe a mistake in the text or
the code—we would be grateful if you would report this to us. By doing so, you can
save other readers from frustration and help us improve subsequent versions of this
book. If you find any errata, please report them by visiting http://www.packtpub.
com/submit-errata, selecting your book, clicking on the errata submission form
link, and entering the details of your errata. Once your errata are verified, your
submission will be accepted and the errata will be uploaded on our website, or
added to any list of existing errata, under the Errata section of that title. Any existing
errata can be viewed by selecting your title from http://www.packtpub.com/
support.

www.it-ebooks.info

www.packtpub.com/authors
http://www.PacktPub.com
http://www.PacktPub.com/support
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.it-ebooks.info/

Preface

[xi]

Piracy
Piracy of copyright material on the Internet is an ongoing problem across all media.
At Packt, we take the protection of our copyright and licenses very seriously. If you
come across any illegal copies of our works, in any form, on the Internet, please
provide us with the location address or website name immediately so that we can
pursue a remedy.

Please contact us at copyright@packtpub.com with a link to the suspected
pirated material.

We appreciate your help in protecting our authors, and our ability to bring you
valuable content.

Questions
You can contact us at questions@packtpub.com if you are having a problem with
any aspect of the book, and we will do our best to address it.

www.it-ebooks.info

mailto:copyright@packtpub.com
http://www.it-ebooks.info/

www.it-ebooks.info

http://www.it-ebooks.info/

[1]

Getting Started with ImageJ
Welcome to the second edition of Image Processing with ImageJ. ImageJ is a versatile
and open source software package designed for scientific image processing and
analysis. It is written in the Java programming language, allowing for a uniform
cross-platform experience. It is based on the NIH Image software package on the
Macintosh platform, developed in 1987 by Wayne Rasband. Rasband, who is still an
active contributor of ImageJ, published the first ImageJ distribution in 1997. It was
developed as a project to provide a solution to a problem. In 2012, ImageJ celebrated
its twenty-fifth birthday with a publication in the journal Nature Methods.

ImageJ distributions
Currently, there are different distributions that are based on or are extensions of the
original ImageJ. The basic ImageJ package is available on the ImageJ website at the
National Institute of Health (http://imagej.nih.gov/ij/download.html). The
current version of the package is version 1.50b, and the website is updated monthly.
This is the core distribution of ImageJ, which contains the main interface and all the
basic tools to load, view, process, and export images and data. Other distributions
contain this core package and most of its features, but you need to add additional
features and plugins to create an optimized interface for specific fields. Some of
these other distributions are still easily recognizable as ImageJ, while others offer a
completely different interface.

www.it-ebooks.info

http://imagej.nih.gov/ij/download.html
http://www.it-ebooks.info/

Getting Started with ImageJ

[2]

For different scientific fields, different distributions were developed based on the
core of ImageJ. One of the major distributions for the life sciences is called Fiji (Fiji
Is Just ImageJ), which can be found on the Fiji website (http://fiji.sc/Fiji).
The basis of Fiji is ImageJ, but it comes with a large complement of preinstalled
features (macros and plugins) that are commonly used for image processing in
the life sciences. It is focused on fluorescence microscopy, with built-in tools for
segmentation, visualization, and co-localization. It also contains plugins for image
registration, particle tracking, and super-resolution processing and reconstruction.
It also has an extensive library of image formats that can be opened. This library
includes proprietary image formats from all the major acquisition software packages
via the Bio-Formats plugin, as described in the upcoming section. The advantages of
this distribution are the large number of supplied plugins that come with it as well as
a very user-friendly script editor. It also has an extensive update mechanism for both
ImageJ as well as some plugins.

For the field of astronomy, a different distribution of ImageJ was developed, named
AstroImageJ (http://www.astro.louisville.edu/software/astroimagej/).
This distribution takes the core implementation of ImageJ and supplements it with
specific plugins and macros developed for analysis in the field of astronomy. It is not
directly compatible with ImageJ. The core of ImageJ was slightly modified for this
distribution.

An example of a distribution derived from ImageJ but with a different user interface
is Icy (http://icy.bioimageanalysis.org/). The Icy distribution has integrated
ImageJ, and many plugins are compatible. However, not every plugin developed for
ImageJ will work within Icy and vice versa. In the Icy distribution, there is a strong
emphasis on cellular and spot detection and tracking. There is also a strong emphasis
on plugin development. Plugins that are developed for the Icy platform will have
documentation and automated updating implemented by design. There are also
possibilities for users to directly provide feedback to the developers from within the
interface, which is a feature not present within other distributions based on ImageJ.
A disadvantage may be that it requires several external libraries to be installed, most
importantly VTK, which can cause issues on Linux systems.

Another distribution that uses ImageJ not only for the processing of data but also
aids in the acquisition of data is called μManager, which can be found at https://
www.micro-manager.org/. It is loaded from within ImageJ as a plugin, but provides
a unique interface geared towards image acquisition and hardware control. Camera
and microscope drivers allow the control of supported hardware used in image
acquisition, which can then be fed directly to ImageJ for processing and analysis.
An example of the use of μManager is in the Open SPIM project, where it is used to
control a DIY light sheet microscope, acquire images, and process them.

www.it-ebooks.info

http://fiji.sc/Fiji
http://www.astro.louisville.edu/software/astroimagej/
http://icy.bioimageanalysis.org/
https://www.micro-manager.org/
https://www.micro-manager.org/
http://www.it-ebooks.info/

Chapter 1

[3]

The uses of ImageJ
ImageJ is a great tool to process images and perform analysis. It is used in many
scientific peer-reviewed publications, with over 1000 articles in diverse fields such as
life sciences, astronomy, and physics. In life sciences, it is used to quantify medical
images to aid in the detection of pathological markers. It is also used to process
and quantify data from single-cell or single-molecule experiments using super-
resolution techniques such as STORM and PALM. In physics and engineering, it
is used to quantify and visualize data obtained from atomic force microscopy. For
astronomy, ImageJ is used to analyze images obtained from telescopes and satellites
and visualize data obtained from observatories. NASA's Jet Propulsion Laboratory
hosts a central node with a good collection of data that is available for download at
http://pds.jpl.nasa.gov/. It contains information on the planetary missions as
well as other research fields such as atmospheres or asteroids.

As it supports a large number of different image formats, it is a great image viewer
and allows a great number of pixel-based operations. It also supports images with bit
depths greater than 8 or 16 bits per channel. However, it is not meant for anything
other than pixel-based operations. If you wish to use vector-based operations, then
ImageJ is not the tool for you (unless you wish to develop this functionality).

Besides the common tools for image processing, such as cropping, rotating, and
scaling, it supports images with multiple dimensions. Images with up to five
dimensions can be processed and saved. These dimensions can include channels
(multiple colors), frames (time points), and slices (Z planes), and any combination
of these dimensions. Currently, multipoint acquisitions are not supported (different
locations in a larger XY space). It is also possible to change the intensity of pixels
displayed by adjusting the brightness and contrast, or the color-coding of the pixels
(Lookup Tables). More advanced techniques to correct image acquisition artifacts,
such as background and bleaching, are also available.

The default image format of ImageJ is the Tagged Image File Format (TIFF). This
format allows for the storage of multidimensional data and supports many meta-
information fields for calibration, data acquisition information, and descriptions. It
can also store information about elements such as overlays. Graphical annotations
are placed on the image in a separate layer. Measurements will benefit from the
calibration included in the image, allowing for a fast feedback of sizes in the
appropriate unit. It is, however, less suited for different kinds of mixed data such as
video files. Using the FFMPEG plugin allows you to open and save the image data of
a video but not the audio track(s). Also, editing is limited to a small set of transitions
and layering techniques. For editing videos with image and sound, non-linear
editors are available. They allow for greater control.

www.it-ebooks.info

http://pds.jpl.nasa.gov/
http://www.it-ebooks.info/

Getting Started with ImageJ

[4]

It can also be used as an image-conversion tool. Many image formats can be read
natively by ImageJ, and with the help of a plugin, many proprietary formats can be
opened. Once the image is opened, it can be saved to any of the supported export
formats supported by ImageJ, including, but not limited to TIF, JPG, and PNG for
images and AVI and MOV for time series and Z-stacks. It can also be used to change
the order and/or color of images exported by other software. It is, however, not
meant as a general photo editor or nonlinear video editor, as it lacks some of the
specialized tools required for these workflows.

The current state of ImageJ
Currently, ImageJ has been cited in more than 200 publications since the beginning of
2015, in fields ranging from physics and engineering to medicine and biology. Many
publications are about newly developed plugins that were specifically developed to
solve a problem within a certain subfield of science. On the ImageJ website, the page
that lists plugins has more than 1000 plugins available. A few research institutes
even have collections of multiple plugins available that were developed there as
research projects. Most, if not all, are open source plugins with the full source code
available. You can adjust and customize the code to suit your needs.

ImageJ2
ImageJ is still under active development, and new features and bug fixes are added
to the core distribution on a regular basis. Currently, the development of a revised
system for ImageJ is being developed. It is called ImageJ2. The goals of ImageJ2 are
to better support multidimensional data as well as create a more extensible platform
that can be used as a library instead of a standalone application. It will also create
a more consistent environment for development and extension. One of the features
being developed is the updating mechanism for ImageJ. Currently, it is possible
to update ImageJ automatically using a central repository, and one of the goals of
ImageJ2 is to expand this option to plugins and other features and allow tracking of
bugs and features. However, one of the core requirements in the new ImageJ2 system
is backward compatibility. This goal means that plugins developed now will stay
functional in future releases of ImageJ. The current status is indicated as beta, which
means the plugin is functional but may still contain bugs and is not optimized for
performance yet.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 1

[5]

SciFIO and OME-XML
Other developments related to image are those related to image formats and
standards. Currently, all major commercial acquisition platforms store image data in
unique proprietary file formats. The SCIFIO project is aimed at creating an extensible
and integrated interface to handle images of different formats. It will support more
image formats and allow for additional options to be set when importing the data,
such as autoscaling, loading metadata, and loading the data in different ImageJ
image types. However, it is still under active development, and some of the features
do not quite work in a production environment (yet).

The OME-XML (Open Microscopy Environment-XML) project is aimed at creating
a file format that contains all the image and metadata in a standardized format. This
would facilitate the exchange of microscope image data, regardless of the equipment
used for acquisition. It is mainly focused on the exchange of microscopy data in the
field of life sciences. It contains all the experimental and setup data as well as the
pixel data in a single file specification.

Bio-formats
Besides the OME-XML format, which is focused on integrating acquisition and
processing across multiple acquisition platforms, there is also active development of
the plugin used to import many image formats currently in existence. This plugin,
called Bio-Formats, is mostly focused on image formats from the life sciences.
However, it also supports FITS data, which is used in the field of astronomy and
space exploration. It currently supports (to different degrees) 140 different image
formats and converts them to the OME-XML format for use in ImageJ.

Integrated environment for acquisition
and processing
As ImageJ is such an extensible application for acquisition, processing, and analysis,
it is impossible to deal with all the options and extensions. In this edition, I will
focus on image processing and analysis. I recommend the Fiji distribution for people
beginning with ImageJ, as it contains a large number of useful features that allow
you to get off to a running start. Another advantage is the presence of the script
editor supplied with Fiji, which has many features that some of the larger Java
development suites also provide. These features mainly include syntax highlighting
and smart indenting. The editor also includes a selection of macro and plugin
templates that allow for a basic framework to start with.

www.it-ebooks.info

http://www.it-ebooks.info/

Getting Started with ImageJ

[6]

Obtaining and installing ImageJ
The current version of ImageJ can be run on any platform that supports Java.
When you wish to use ImageJ or one of the other distributions, a version can be
downloaded for your specific operating system. A distribution of ImageJ can be
downloaded with the Java Runtime Environment (JRE) prepackaged. The following
sections will explain how to obtain and install ImageJ on the three main operating
systems: Windows, OS X, and Linux.

Installation of ImageJ
When you download a copy of ImageJ, the JRE can be provided along with it. If you
already have a copy of the JRE installed, you could download ImageJ without the
JRE for a faster download. The minimal requirements to run ImageJ are JRE Version
1.6 or higher. For some distributions, most notably Fiji, the JRE has to be version 1.6.
This limitation is due to the current implementation of the updater included with
Fiji, which is not capable of updating the JRE. This problem may be resolved in
the future.

As ImageJ comes with its own JRE, it can be extracted on a USB drive and run from
there without installation. The only limitations on the system are dependent on
the size of the images. ImageJ loads images directly into memory, so the available
system memory needs to be large enough to hold the images you wish to process.
When memory requirements exceed 3 GB, a 64-bit operating system with a 64-bit
JRE is required.

Since ImageJ is platform independent, you could use the same version on all three
platforms: Windows, OS X, and Linux. The only platform-dependent part is the JRE;
for each platform, there is a specific JRE installation. The following sections will
explain how to install ImageJ on each of the operating systems.

Installing on Windows
In order to install ImageJ on Windows, you can download the latest version from the
ImageJ website at the NIH (http://imagej.nih.gov/ij/download.html) or for Fiji
from the Fiji website (http://Fiji.sc/Downloads). When downloading from the
NIH website, there are two choices: an installer for 32-bit or 64-bit systems and a ZIP
archive when you wish to run ImageJ on a platform without installer privileges.

www.it-ebooks.info

http://imagej.nih.gov/ij/download.html
http://Fiji.sc/Downloads
http://www.it-ebooks.info/

Chapter 1

[7]

When using the installer version, it is generally not recommended that you install
ImageJ in the Program Files folder. Certain files within the ImageJ folder need to
be modified when using the program, so when running it as a regular user, access
problems may occur. Also, when installing or creating plugins, the compiled files
need to be placed in the plugins folder within ImageJ. This folder may not have
write permission when it is located in the Program Files folder for regular (non-
administrator) users. Alternatively, you could change the access permissions for the
ImageJ folder specifically. However, this is not recommended from a security point
of view.

Double-clicking on the ImageJ.exe file within the extracted folder will start ImageJ.
This file is a wrapper executable that calls the ij.jar file and uses the supplied JRE
to run it. The Fiji distribution comes as a ZIP archive that can be extracted on a disk
and run immediately:

Installing on Mac OS X
ImageJ is available for Mac OS X as a ZIP archive that can be extracted to a folder
within the Applications folder. The Fiji distribution can be downloaded as a DMG
file that can be dropped in the Applications folder. This will install the ImageJ folder
and make it accessible for all registered users. It will also create a Fiji icon in the
app drawer. If you wish to import or export QuickTime movies under OS X 10.10
(Yosemite), you need to download the QTJava.zip and libQTJNative.jnilib files
from http://imagej.nih.gov/ij/download/qt/ into your home directory within
the Library/Java/Extensions folder.

Note that in OS X 10.7 and later, you may receive a warning the first time you try
to run ImageJ. This warning will say ImageJ can't be opened because it is from an
unidentified developer. This can be resolved by going to the system settings and
pushing the allow button in the security and privacy panel. This should prevent
this warning from showing up in the future. Alternatively, you can select the
Anywhere option from the Allow apps downloaded from section. The latter option
is not recommended from a security point of view, as it might also allow malicious
software to be executed.

www.it-ebooks.info

http://imagej.nih.gov/ij/download/qt/
http://www.it-ebooks.info/

Getting Started with ImageJ

[8]

Note that when ImageJ (or Fiji) is run on OS X, the menu bar is not part of the main
window as in Windows:

Installing on Linux
ImageJ can be installed on Linux platforms by unpacking the distribution from the
NIH website. The distribution from the NIH website is available as a ZIP file, while
the Fiji distribution is available as a tar.gz file. For most Linux distributions, it is
recommended that you extract the archive to a location within your home folder.
This prevents problems with write permissions on the ImageJ folders. The folder
contains a shell script to run ImageJ. This shell script is named ImageJ. For different
desktop environments, methods exist to create a shell shortcut to this script to allow
it to run from a shortcut.

The ImageJ folder structure
After installing ImageJ, a folder structure is placed at a location designated during
the installation process. This folder's structure consists of a few key folders that are
essential to the regular functioning of ImageJ. If you installed ImageJ in a folder to
which you have no write privileges, there are two important folders that need read
and write permissions in order for ImageJ to function: the plugins and macros
folders. Also, the configuration file on Windows platforms (pref.cfg) needs write
permissions for the user. Without the write permission, settings cannot be changed.
The next section briefly explains the properties for the plugins and macros folders,
and how ImageJ uses them.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 1

[9]

Plugins folder
The two most important folders are the macros and plugins folders. These folders
will be searched for available macros and plugins when ImageJ loads. When you
download a plugin and place it in the plugins folder, the plugin will be found
the next time ImageJ starts. When downloading plugins, there are three different
options of files that can be downloaded: a Java source file (.java), a compiled file
(.class), or a Java archive (.jar). In order for plugins to be displayed in the plugins
menu, the .java and .class files need to contain at least one underscore character
in the filename. For .jar files, the archive needs to contain a plugins.config file
that defines the location within the menu system. This has an additional advantage
that plugins within a .jar archive can also be installed outside the plugins menu.
Underscores are replaced by spaces in the plugins menu or removed completely if
the last character is an underscore. If you place your plugins in a folder within the
plugins folder, this folder name will also show up in the Plugins menu, but only if
it contains at least one valid plugin. If you download the source file of a plugin, you
can create an executable plugin by choosing Compile and Run from the Plugins
menu and selecting the Java file. The next time ImageJ is run, the new plugin will be
automatically detected.

JAR files are slightly special. They can be placed within the plugins folder, but
they do not have to show up in the Plugins menu. The JAR file contains a manifest
that specifies the location where the plugins within it are placed. This specification
allows the developer to place the plugin in a specific submenu of the Plugins menu,
regardless of the folder where the JAR file is placed. This would be especially handy
if you create a group of linked or associated plugins that you wish to group within
the Plugins menu.

Macros folder
The macros folder contains a collection of macros that come with ImageJ and is
also the default location to store user-defined macros. ImageJ macros are flat text
files with the .ijm extension, although this extension is not essential. Any flat text
file with valid macro code can be run in ImageJ. Macros in ImageJ have their own
language, which is similar to Java, but with a few minor differences. Chapter 5, Basic
Measurements with ImageJ will investigate how to create macros and will explain the
language constructs in ImageJ macros.

www.it-ebooks.info

http://www.it-ebooks.info/

Getting Started with ImageJ

[10]

Configuring a fresh ImageJ installation
After installing ImageJ, it can be launched for the first time. When using ImageJ,
a few settings need to be made to allow successful processing. One of the most
important settings is the number of threads and memory available for ImageJ. By
default, ImageJ has 512 MB of memory available. This allows for opening images up
to 512 MB, which is fine for a large amount of use cases. However, with the current
trends in image acquisition, files now tend to be in the range of 1 or more gigabytes.
So, one of the first things is to set the memory for ImageJ to at least the size of the
largest images you think you'll need to process. Fiji, on the other hand, automatically
allocates 50 percent of the available system memory when installed, which can be
changed if necessary.

To set the memory allocated to ImageJ, you can set find the setting for memory
under Edit | Options | Memory and Threads…. You can set the maximum memory
to any value that is less than the system memory. Keep in mind that on a 32-bit
system, it is not possible to allocate more than 3 GB. If you wish to allocate more than
3 GB of memory, installing 64-bit ImageJ on a 64-bit operating system is required.

It is also possible to use a command-line argument to pass the memory size when
starting ImageJ. To do so, run ImageJ from the command line using the following
command:

javaw –Xmx1024m -cp ij.jar ij.ImageJ

This tells the computer to run ImageJ with 1024 MB (1024m) of memory. If you
need more, then you can change the value of 1024m to whatever value is suitable.
However, make sure that you do not use more memory than is available on your
system.

Another setting that is important to verify is in the Appearance dialog. The
Interpolate zoomed images option should be unchecked for image processing. This
option can interfere or give misleading results when processing:

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 1

[11]

If you plan to work with images containing a lot of white pixels, it is also advisable
that you change the selection color to a different value than the default Yellow. This
can be done via the Colors setting in preferences. A good default value in many
cases is Orange or Green.

Summary
In this chapter, we looked at the origin and use of ImageJ, and discussed how
to download and install it on different platforms. We looked at the basic folder
structure of the ImageJ installation and configured it for use. Everything should
now be set up to start with the first steps in image processing.

www.it-ebooks.info

http://www.it-ebooks.info/

www.it-ebooks.info

http://www.it-ebooks.info/

[13]

Basic Image Processing
with ImageJ

After following the instructions in the previous chapter, you should have a working
and running installation of ImageJ. This chapter will deal with the following topics:

•	 Supported image types in ImageJ
•	 Multidimensional images
•	 Loading and saving images
•	 Viewing and obtaining pixel values
•	 Calibrating images for measurements

Images in ImageJ
ImageJ has a wide support for multiple common image formats such as JPEG, PNG,
and TIFF. With the help of the Bio-Formats plugin, a wide range of proprietary
image formats can also be loaded (for example, STK files [Metamorph], and LSM
files [Zeiss]) as well as certain medical image formats (Dicom) and astronomy
formats (FITS). The most recent version of Fiji comes with the Bio-Formats plugin
and supports the files of almost all the major image formats.

This chapter will use some of the image files that are available from the sample
images item in the File menu. These files are accessible from the Internet, so they
require a functional Internet connection. The whole suite of images is also available
as a single download from the ImageJ website. When using the Fiji distribution, the
image set can be cached locally by going to File | Open Samples | Cache Sample
Images from the menu.

www.it-ebooks.info

http://www.it-ebooks.info/

Basic Image Processing with ImageJ

[14]

We will start by opening one of these sample images to demonstrate some of the
features in ImageJ regarding images. To do so, start ImageJ as described in the
previous chapter. Go to File | Open Samples, and select Boats (356K). This image is
taken from http://imagej.nih.gov/ij/images/boats.gif, and shows a picture
of some boats in the harbor. The same image can also be loaded by going to Import
| URL in the File menu and copying the earlier URL and pasting it in the field. The
image should load and display in a new window as follows:

The title bar shows the filename (boats.gif). Just below the title bar is an information
strip that shows the key parameters of the image: the size of the image (720x576
pixels), the image type (8 bit) and the file size (405K). The upcoming sections will
provide more details on the basics of image types in ImageJ.

www.it-ebooks.info

http://imagej.nih.gov/ij/images/boats.gif
http://www.it-ebooks.info/

Chapter 3

[15]

Image types
An image is built up using pixels, where each pixel has a value that is encoded by
bits. The number of bits determines the number of gray values or colors that can be
represented. The upcoming sections will briefly explain the different image types
that are supported by ImageJ.

Grayscale images
The boats image from the previous section was an 8-bit grayscale image, which
means each pixel has a value between 0 (black) and 255 (white). Grayscale images
can also be 16 bit (values between 0 and 65535) and 32 bit (floating-point images).
The gray values of an image are represented in the lookup table (LUT). For 8-bit
images, the LUT maps a value between 0 and 255 to an equal mix of red, green,
and blue on your computer screen to display the gray level. For instance, a mid-
gray level of 128 will be displayed on your screen as RGB value (128,128,128). It is
also possible to change the mapping of the LUT to different scales for display. By
changing the LUT, you can change the color appearance of the image on the screen.
If you would like to give the grayscale image a green appearance, you can set the
LUT to green. This will tell ImageJ to map the mid-gray value on your screen to the
RGB value (0,128,0), thus appearing darker green. The same principles hold for 16-bit
and 32-bit images, although they have more levels of gray that they can represent.
These distinctions become important when creating macros and plugins, as certain
processing steps can only be performed on 8-bit images.

Color images
Color images have generally two bit depths: 8-bit and 24-bit color. The 8-bit color
image type is an indexed image, where the index determines the color of the image.
An example of an 8-bit color image is the GIF file format. It stores up to 256 colors
in its index, which results in smaller file sizes at the cost of a reduced number of
colors. These images store a table of 256 red, green, and blue (RGB) values (also
called the palette). Each entry in the table has an index that is referenced in the image
for the pixels that use that specific color. This type is rare nowadays, as the reduced
file size is no longer that critical due to larger storage capacity and faster Internet
connections. By going to Image | Color | Show LUT from the ImageJ menu, you
can view the palette or a list of indices from an indexed image.

www.it-ebooks.info

http://www.it-ebooks.info/

Basic Image Processing with ImageJ

[16]

RGB images such as JPG or PNG files are color images with 24 bits of information:
8 bits each for the red, green, and blue channel. PNG files can have an additional 8
bits for the transparency channel. Besides RGB images, it is also possible to generate
images using different color spaces such as L*a*b and HSB. HSB images split the
three components of a RGB image into hue, saturation, and brightness channels.
The hue component can be compared to the color (blue, green, violet, and so on) of
a pixel. Small hue values are used for red and orange, whereas medium values will
represent cyan and blue. High hue values represent magenta and red. In this image,
you can see the mapping of the hue channel to colors in an RGB image (the S and B
channels were kept white):

Note that the mapping of the hue channel is circular. Both pure white and pure black
have the same color. They start at red and end at red.

Modifying the saturation makes the colors more or less colored. A small saturation
value will make the colors look more gray, while a high saturation value will make
the colors more pure. The following example shows a horizontal gradient for the hue
channel and a vertical gradient for the saturation channel (the brightness channel
was constant; the orange box delineates the different channels):

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 3

[17]

As you move from the bottom of the lower panel to the top, the colors get more
washed out, becoming less vibrant and, in this case, becoming white. The color of
the upper part is determined by the brightness channel, which was white in this
example.

Changing the brightness value makes the colors brighter or darker. High values
leave the colors intact and bright, while low values make the colors appear more like
black. The following image shows this effect, where the horizontal gradient is again
the hue channel, while the vertical gradient is the brightness channel (the saturation
channel was uniform white):

A real image will have combinations of gray values for hue, saturation, and
brightness, which together result in the final color.

Converting between image types
It is possible to change a 16-bit image to an 8-bit image at the cost
of losing pixel intensity information. To do so, go to Image | Type
and select the image type you wish to convert to. However, not
every conversion is possible. For example, an RGB image cannot be
converted to an 8-bit grayscale image (directly)!

www.it-ebooks.info

http://www.it-ebooks.info/

Basic Image Processing with ImageJ

[18]

Stacks and hyperstacks
The image types described in the previous sections were the basic image types that
are supported by most graphical programs. However, ImageJ supports a different
class of images that consists of multiple primitive image types combined into a single
object: a stack or hyperstack. The extra dimensions have different names depending
on the information they represent. When images are acquired in three dimensions by
taking images at multiple levels of a volume, the resulting image is called a Z-stack.
Each image in a Z-stack is referred to as a slice. When different colors are imaged, the
stack is called a multichannel stack, and each image of the stack is called a channel.
Finally, there is a stack that holds images that were acquired over time, where each
image in the stack is called a frame. A hyperstack is a stack that contains images from
more than three dimensions. For instance, a stack with slices, channels, and frames
would be a 5D hyperstack. The following sections will briefly explain the different
types of stacks and hyperstacks.

Color images and multichannel stacks
Multichannel images contain individual channels that can each have their own
color. An RGB image can be converted to a multichannel stack with a channel for
red, green, and blue. An example of a multichannel image can be found in the image
samples by selecting Fluorescent Cells (400K):

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 3

[19]

The window looks similar to the Boats image. However, there is another bar at the
bottom of the image window. This bar has a letter C on the left-hand side, indicating
that it has multiple channels. Each channel has its own LUT, which, in this case, is
Red (channel 1), Green (channel 2), and Blue (channel 3). The bar just below the title
bar now also displays some additional image information. It has the current channel
indicated out of the total number of channels (1/3), and the color of the text indicates
the color of the channel.

This allows for images with 16-bit information for each channel, which allows for
images with a total of 48 bits of information in three channels. Internally, ImageJ can
handle these files without problems, but most other programs cannot deal with these
images. When saving these images, you may need to convert them to a different bit
depth to use them in other programs.

ImageJ allows you to change the color of multichannel images using a lookup table.
The default is Grays, but other options include Red, Green, Blue, Cyan, Magenta, and
Yellow. There are also multicolor LUTs that encode intensity over a range of colors:

The preceding image shows a few examples of a range of LUTs that are available in
ImageJ: from left to right green, red, cyan, and spectrum.

www.it-ebooks.info

http://www.it-ebooks.info/

Basic Image Processing with ImageJ

[20]

Z-stack images and volumes
When making optical sections using a microscope or an MRI machine, the resulting
stack will contain information in three dimensions: X, Y, and Z. Each image in this
Z-stack is called a slice. Multiple slices form a volume, which can be visualized in 3D.
This will be discussed in the next chapter. The appearance of the image will be the
same as for a multichannel image. However, instead of C, there will be a Z next to
the slider to indicate that the stack contains slices.

Time series
When taking images at a regular time interval, the resulting stack will be a time
series containing an image for each time point called a frame. The appearance of the
slider will be slightly different. Instead of a letter next to it, there will be a small play
button. When you click on it, the time series will play at the speed that the time series
was acquired (if the stack was calibrated).

Multidimensional images
Besides multiple channels, frames (for time series) and slices (Z-stacks), it is also
possible to combine all three dimensions into a single image file: a 5D image. If you
open the Mitosis (26MB, 5D stack) sample image, a new window opens with two
additional sliders at the bottom of the image window:

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 3

[21]

The top slider is again for the channels (indicated by C), the middle slider is to
navigate the slices (indicated by Z), and the last one is to navigate the time frames
(indicated by the play button ►). When you click on the play button, the time series
will start playing like a movie, with the speed determined by the time interval
between frames. If you wish to change the speed of playback, you can right-click
on the play button. Alternatively, you can go to Image | Stacks | Animation |
Animation Options… from the menu and enter the speed (in frames per second).
Larger values mean faster playback.

The bar below the title bar, called the subtitle, again provides additional information.
It now shows the selected channel (c:1/2), slice (z:3/5), and frame (t:26/51). This
time, the image is also calibrated, and the subtitle also shows the dimensions of the
image in micrometers (the size in pixels is indicated between braces).

Extracting image and pixel information
If you wish to have more information about the image, you can press Ctrl + I (+I
on Mac) to get a new window with image information. If you do this for the 5D
image, you will get the information shown in the previous image on the right-hand
side. This shows a short description of the sample used as well as the dimensions of
the image in calibrated units (micrometers) and pixels. It also tells you the bit depth
per channel (bits per pixel: 16) and the time interval between frames that was used
(frame interval: 0.14286 sec).

The use of the Control key, or  (command) key on Mac, for shortcuts
is optional by default. You can control this by going to Edit | Options
| Misc. There is a checkbox labeled Require control/command key
for shortcuts. When selected, the control/command key is required for
the shortcuts used in ImageJ. When a shortcut requires the Shift key
as well, this key is still required regardless of the setting! In this book, I
will include the control/command key for shortcuts.

To see the value of a pixel, you can place your mouse cursor over the pixel of
interest. In the status bar of the ImageJ main window, you can see the following
information:

www.it-ebooks.info

http://www.it-ebooks.info/

Basic Image Processing with ImageJ

[22]

There is information about the location of the pixel (the X and Y coordinates, in
calibrated units if the images are calibrated) and the value (intensity or gray value).
Coordinates in ImageJ are relative to the upper-left corner (origin). If a Z-stack was
loaded, the current z coordinate is also provided. In the next chapter, we will look at
other measurements that can be obtained from images.

Note on slice indexing
Note that the value given for the pixel assumes that the first slice is 0,
while the information below the title bar assumes that the first slice
is 1. When you start developing your own macros and plugins, this
distinction can become important!

Loading and saving images
Let's take a look at loading images and sequences in the following sections.

Loading images and sequences
As we have seen, we can load images from a URL by selecting it from the samples or
going to Import | URL in the File menu. For files stored locally on the disk, we can
select File | Open… and browse to a folder containing our images. It is also possible
to drag and drop an image file onto the main ImageJ window to load it. If you drag
and drop an entire folder onto the ImageJ window, all the images in that folder will
be loaded.

If you have a folder containing individual pictures that you wish to open as a
sequence, you can go to Import | Image Sequence… in the File menu. This allows
you to select the first image file of the series, after which ImageJ determines all the
images that will be loaded into a single image window. It is possible to use regular
expressions to limit the number of images that will be imported.

Importing image sequences
When importing a sequence of images, all the images must be of the same
type (bit depth) and have the same dimensions (width and height). If
any file has dissimilar dimensions or bit depth, the import will fail and
ImageJ will show an error. If other file types are in the same folder that
should be ignored for importing, consider placing them in a different
folder. Alternatively, you can use the regular expressions field in the
import dialog to filter them out.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 3

[23]

After the image is loaded, the window shows the filename in the title bar. When a
filename is especially long, it may be beneficial to rename the window. Renaming
the window can be done by selecting Image | Rename… from the menu or by right-
clicking on the image and selecting Rename… from the context menu.

Saving images
ImageJ allows you to save images to different file types. The preferred file type used
by ImageJ is TIFF, as it allows the storage of additional meta-information, regions
of interest overlays, and calibration information. ImageJ supports a wide variety of
image formats. When you go to File | Save As, a list of image formats is presented.
The JPEG and PNG formats are compressed formats. They require less disk space
for storage. This means they require smaller file sizes depending on the amount of
compression that is selected. The TIFF format is a lossless format, but it can support
compression.

When saving images, it is important to take into account what the saved image will
be used for. When you wish to quantify the image at a later time or you have to
repeatedly save it, a lossy compression file format such as JPEG is not recommended.
Every time you save the image as a JPEG file, a little quality is lost. Furthermore,
JPEG compression is optimized for smooth color gradients, generating artifacts
when applied to fluorescent images with abrupt changes in intensity. The following
screenshot shows an example that was opened and saved as a JPEG file 200 times.
On the left-hand side is the original image, and on the right-hand side is the saved
image:

www.it-ebooks.info

http://www.it-ebooks.info/

Basic Image Processing with ImageJ

[24]

The most apparent problem is around the eyes, where multiple artifacts of the
compression can be seen. In the white of the eyes, there are now spots that were not
present in the original. The skin also shows a block-like pattern. This is caused by
the fact that the JPEG compression is based on blocks of 8 x 8 pixels. In this case, the
image was zoomed in to 200 percent, and for a web page, this image might still be
acceptable. However, this image would be unacceptable for image quantification due
to the artifacts. When you need to save the image many times, or when you are not
sure what further processing is required, always save the image as a TIFF file. If you
require an image for a web page or presentation, you can use only 8-bit grayscale or
RGB images, which can be saved in TIFF, JPG, or PNG.

Image calibration
When you perform image measurements and you wish to measure distances or
areas, you need to make sure that your images are calibrated in the proper units. For
2D images or 3D images, you can enter the pixel dimensions, and for time series,
you can enter the time interval between frames. To do so, you can press Ctrl + Shift
+ P ( + Shift + P on Mac) to display the properties dialog. This allows you to set the
unit of measurement (for instance, μm for micrometer) and the values for the width,
height, and depth. The values indicate the number of units per pixel. For time series,
the frame interval can be entered in seconds. When the Global checkbox is checked,
this calibration will be applied to all images that are opened.

Viewing images in ImageJ
In order to examine an image in more detail, we may wish to use some of the tools
that are available to view images in ImageJ. To show the available tools, let's use the
Fluorescent Cells images that we opened earlier. The first thing that you may wish
to do is look at the detail in the image. This can be done by zooming in on the image
by going to Image | Zoom | In [+] or by pressing the + key. When zooming in, the
location of the cursor determines the center of the zoom. The current zoom level is
indicated in the image title bar, and the maximum zoom level is 3200 percent. When
you zoom in, the window rescales until it no longer fits on the desktop. When you
zoom in beyond that point, the window size stays the same and the location of the
current zoom is indicated in the top-left corner as an overlay:

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 3

[25]

The large blue square represents the entire image, while the small square inside
indicates the current position of the zoomed display (in this case, at the lower-left
side of the image). To zoom out, select Image | Zoom | Out [-] from the menu or use
the - key.

www.it-ebooks.info

http://www.it-ebooks.info/

Basic Image Processing with ImageJ

[26]

If you notice that the zoomed image shows some artifacts as shown in the following
image, make sure you disabled Interpolate zoomed images by going to Edit |
Options | Appearance…, as described in the first chapter:

Sometimes, when you acquire images, the exposure settings are suboptimal. This
means you are not using the entire range of gray values available. In order to still see
the signal, you can adjust the brightness and contrast of the image. To do so, select
Image | Adjust | Brightness/Contrast from the menu or press Ctrl + Shift + C. This
adjustment is non-destructive. It does not change the values in the image file until you
press Apply in the Brightness/Contrast dialog for 8 and 16-bit images. The Apply
button does not work for 32-bit images. If you press Reset, the values are restored to
the initial values or to the values that were set after Apply was pressed. If you have an
underexposed (dark) image, you can make it brighter by lowering the Maximum slider
or increasing the Brightness slider.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 3

[27]

Brightness/Contrast adjustments and measurements
When you adjust the Brightness/Contrast of an image and apply it,
the gray values of the image are irreversibly modified. If you still wish
to perform measurements that include intensity values, applying the
modifications would alter your results (and perhaps, conclusions). Only
use the Apply button when you create an image for non-critical viewing
(presentations) or when measuring lengths or areas independent of
intensity.

Viewing multichannel images
When you have a multichannel image, you may sometimes want to hide
channels from being viewed. ImageJ allows you to show or hide any channel in a
multichannel image by going to Image | Color | Channels Tool… in the menu or
by pressing Ctrl + Shift + Z. A dialog opens with a checkbox for each channel. When
the box is checked, the channel is displayed. Otherwise, it is switched off (hidden).
It is also possible to change the order of the channels by going to Image | Color |
Arrange Channels…. When modifying the Brightness/Contrast of a multichannel
image, the adjustments are only applied to the current channel that is displayed. The
currently selected channel can be checked on the info bar directly underneath the
title bar. The color of the histogram in the Brightness/Contrast dialog also reflects
the channel color selected.

Brightness/Contrast adjustments and the Channels Tool
When you have hidden channels using the Channels Tool, they can
still be modified by the Brightness/Contrast dialog. If the hidden
channel is currently selected when you modify the Brightness/
Contrast, the adjustments would be made by ImageJ, but are not
visible. Always verify the current channel before making adjustments!

www.it-ebooks.info

http://www.it-ebooks.info/

Basic Image Processing with ImageJ

[28]

Viewing time series
When viewing time series, adjustments for brightness and contrast are visible in
all frames of the time series. If you wish to apply an adjustment, ImageJ will ask
whether you wish to do so for the current frame or for all the frames. When you
apply the settings to all the frames, the adjustment is equal for all frames, irrespective
of the intensity in the frame. This means that this does not help for time series that
show a decrease in fluorescence over time (that is, bleaching). Bleaching is inherent
in fluorescence imaging and causes a decrease in intensity over time. Generally
speaking, this effect follows an exponential decay trend. Fiji has an option to correct
this bleaching process by selecting Image | Adjust | Bleach Correction from the
menu. For most time series that experience bleaching, the best correction method to
select is Exponential Fit. This method is more robust against changes in intensity
from sources other than bleaching. If the cause for the change in intensity is different,
you may want to use the Simple Ratio method to correct the time series. Running
this correction results in a new image window with the corrected data, which means
that the original remains unaltered.

Summary
In this chapter, we discussed the different image types that are supported by
ImageJ. You also saw how to load images from a disk or from a URL. We looked
at the anatomy of an image window in ImageJ and the information that can be
viewed. We applied a calibration to images in order to prepare for length and area
measurements. Finally, we looked at different ways of viewing different image types.
You learned how to adjust the brightness and contrast of the images.

In the next chapter, we will look at ways to perform basic processing steps using the
ImageJ interface.

www.it-ebooks.info

http://www.it-ebooks.info/

[29]

Advanced Image Processing
with ImageJ

The previous chapter showed you how to load and view images in ImageJ and how
to make basic alterations to image intensity and pixel values. This chapter will deal
with the techniques used to preprocess images. We will prepare them for image
analysis and measurements. This chapter will apply some of the techniques we
examined in the earlier chapters. We will cover the following topics:

•	 Correcting images
•	 Z-stack processing
•	 Time series processing
•	 Image and stack calculations

Correcting images
In order to analyze images, we sometimes need to correct the problems that were
present during acquisition. Problems such as noise, uneven illumination, and
background fluorescence can cause many issues during image analysis. I will
provide a little technical background on the sources of these problems and then
follow this up with how they can be corrected in ImageJ.

Technical background
Of the many sources of noise that exist in imaging, a few can be corrected with
correct acquisition settings. Others are inherent in the electronics and physical
properties of the camera, and cannot be easily fixed. I will first deal with the source
of noise that can be remedied with optimizing acquisition: Shot or Poisson noise.
Next, we will look at Electronic or Dark noise.

www.it-ebooks.info

http://www.it-ebooks.info/

Advanced Image Processing with ImageJ

[30]

Correcting Shot noise
Shot noise is caused by the physical properties of light; light can be seen as packages
of light or photons. The number of photons that are collected by each photo-detector
site on the camera determines the final pixel intensity. If only a few photons hit the
detector at any time, the differences in the number of photons could be large. This is
called a Poisson process, and the signal-to-noise ratio can be expressed as follows:

NSNR
N

=

This means that the signal-to-noise ratio (SNR) will get larger as the number of
photons (N) increases. By increasing the exposure time or the illumination intensity,
the number of photons per pixel and the SNR will increase. A low SNR cannot be
fixed with processing techniques in software.

Correcting dark noise
Another source of noise is called dark noise or dark current. This source of noise
comes from the electronics in the camera and can be visualized by taking an image
with the camera without illumination. In digital consumer cameras, exposing the
image while the lens is completely covered can easily do this. You can even try it
with the camera of your phone. Just cover the lens tightly and take a picture (make
sure the flash is disabled!). As an example, the following figure shows a small region
of an image taken by two different cameras, both with the same settings. The left-
hand image is a small region of an image taken with a Sony α6000 (2014), while the
image on the right-hand side is from a Canon EOS 550D (2010). The orange bar is
there to delineate them:

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 3

[31]

The intensities of each image were equalized to show the pattern, and only the green
channel is shown in this example. The settings for both cameras were as follows:
1/10sec exposure, ƒ5.6, and ISO 200. It is clear from these images that the noise
level from the electronics is quite different between the two camera sensors. Note
that most scientific cameras, especially cooled EM-CCD (Electron-Multiplying
CCD) cameras, have far lower levels of electronic noise. This allows some EM-CCD
cameras to detect single photons and even count them.

In order for the subtraction of the dark noise signal to work, the exposure duration
needs to be identical to the exposure time during the acquisition to get the same level
of dark noise. The duration of the exposure is directly linked to the amount of noise.
A longer exposure results in more dark noise. This type of noise can be easily fixed in
ImageJ using the image calculator that will be introduced a little later in this chapter.

To determine the noise level of your own camera, take a picture with the lens
covered (make sure it is completely blocked from all light). Ideally, you should do
this with your camera capturing images as RAW files. When a camera acquires
images as JPEG files, the camera already performs some noise reduction on the
image. If you can only capture images in JPEG, check to see whether there is an
option to switch off the noise reduction. Now, open the image in ImageJ, as was
illustrated in the previous chapter, and follow these steps:

1.	 Select your darkshot image window by clicking on it, making it active.
In ImageJ, most commands will operate on the active image, or the last
opened image. By clicking on an image window, that image becomes the
active image.

2.	 In order to determine the noise level, we can select an area that we want to
measure. We will create a rectangle by specifying it by entering the specific
values. To do this, go to Edit | Selection | Specify… and select the Centered
checkbox, before entering 512 for the width and height. For the X coordinate
and Y coordinate, enter half the width and height of your image (indicated in
the image subtitle) and click on OK.

3.	 Make sure that the measurements are set to standard deviation. This can be
done by going to Analyze | Set Measurements and selecting the Standard
deviation checkbox. Selecting other parameters for measurement is fine, and
in the output below Area, Mean gray value and Min & max gray value were
also selected. For this exercise, the Standard deviation option is the only
relevant parameter that is required.

4.	 Perform the measurement by pressing Ctrl + M or by going to Analyze |
Measure. You can measure regions immediately after placing them, or you
can add them to the ROI Manager (see the next chapter for more details)
before measuring them.

www.it-ebooks.info

http://www.it-ebooks.info/

Advanced Image Processing with ImageJ

[32]

The results should now be visible in a new window labeled Results. Depending on
which parameters you selected, the results in this window might deviate from the
one shown here (I have included area and the minimum and maximum values):

The first line contains the results from the α6000 camera, and the second line contains
the results from the EOS 550D camera. The area is identical (512 x 512 = 262144 pixels)
for both measurements, but the standard deviation (a measure of the noise) is lower
for the first camera by a factor of 6.3. Also, the mean of the first camera is closer to 0,
as you would expect the value to be when there is no light hitting the sensor.

Cameras can have pixels that no longer work (dead pixels). Dead
pixels will show as black pixels in bright areas and always occur at the
same location. The opposite can also happen. Very bright pixels in dark
areas are called hot pixels. Hot pixels do not have to occur at the same
location every time and are more common with very long exposure
times. For EMCCD cameras, there is another source of bright pixels,
which is caused by cosmic rays hitting the image sensor. These events
are relatively common in long time series, and present themselves as
very bright regions for only a single frame. The removal of dead and
hot pixels follows the same methodology as the dark noise removal.

For most type of exposures, these levels of noise are so small that they do not cause
degradation of your pictures. A picture at the beach with the sun in the sky will not
require correction. With the enormous amount of light that is detected, the electronic
noise is drowned out completely. However, one field of image acquisition where
dark noise is a substantial factor is in the field of astrophotography or night-time
photography. Whenever long exposures are required for image acquisition, the
electronic noise becomes a substantial factor that can degrade your image.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 3

[33]

To reduce the effects of sensor noise in low-light conditions, you need to change the
way you acquire your image slightly: instead of a single exposure, you need multiple
exposures in quick succession. Some cameras support this automatically, using
names such as handheld twilight (Sony) or multi-frame noise reduction (Pentax,
Olympus etc.). In this mode you take 2 or more pictures in rapid succession and the
final image is an average of the series of images. You can also do something like this
in ImageJ by using the following procedure:

1.	 Open the multiple images that you acquired in succession (make sure there
are no other images opened!)

2.	 Select Image | Stacks | Images to Stack from the menu. You will now have
a single window where every slice represents one image that you took.

3.	 Create the noise-reduction image by selecting Image | Stacks | Z Project…
from the menu and use Average Intensity as the projection type.

A thing to keep in mind is the following: when anything moves between the
individual exposures, this method will not provide good results. It is possible
to correct for simple shifts, but this only works in the simplest of cases.

Uneven illumination – background
subtraction
When an image is acquired under difficult lighting conditions, it can sometimes
occur that the illumination is not even across the image sensor. This effect of uneven
illumination is something that can easily be corrected in ImageJ. To show how this
is done, we will take an image acquired with brightfield illumination on an inverted
microscope using Differential Interference Contrast (DIC) optics.

DIC images provide contrast by looking at the difference in thickness of
your specimen. A single light wave is split into two separate rays that
are slightly separated but parallel and with the same phase. When one
ray goes through an object with higher density than the parallel ray, the
waves will shift out of phase. When they are recombined, the out-of-
phase rays will partially cancel each other out (interference). This results
in less light on the camera pixel, making the pixel darker. For cells,
the strongest interference can be found close to the membrane of the
cell. One ray will pass through the cell, while the parallel ray will pass
through the water outside the cell.

www.it-ebooks.info

http://www.it-ebooks.info/

Advanced Image Processing with ImageJ

[34]

The image shows the effect of uneven illumination. The left-hand side of the frame is
darker than the middle, and the gradient runs along the frame in a slightly diagonal
direction. It is also clear that the field is not going in one direction. The middle is the
brightest and the two edges, left and right, are darker:

As a first attempt, we will use the background subtraction method to see
whether this will fix the problem. To do so, we need to go to Process | Subtract
Background… and use the following settings:

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 3

[35]

After applying the background subtraction, the image is altered, but the effect of
the uneven background is still not fixed. The image is actually a little darker on the
left-bottom side, and also the middle did not decrease in intensity that much (see the
left-hand-side image). Note that when the Light background option was selected
(see the right-hand-side image), there is a strong over compensation on both the left
and right-hand sides. Not only is the contrast reduced on those sides, but also the
illumination is now more uneven than it was before the correction:

Disabling the Sliding paraboloid option also caused artifacts that were even more
artificial and incorrect. The problem with this type of background subtraction is that
it assumes a homogeneously decreasing change in background. This means that
the changes in background should be smooth and go from high to low in a single
direction (left to right, diagonal, and so on.). However, DIC images such as this one
have a tendency to have a background that has more of a U-shape: high at the edges
and low in the middle, or vice versa. Therefore, this method is unsuitable for this
type of image, and other methods need to be explored to fix this problem.

Next, we will try to eliminate the background using a method called pseudo-flatfield
correction. This method is based on filtering the image using a Gaussian filter that
blurs the details. This filter will capture the uneven illumination and separate it from
the objects in the frame. The basis of how these filters work will be discussed in the
next chapter in more detail. Let's create the background image that we will use to
correct the uneven illumination. You need to perform the following steps:

1.	 First, we want to duplicate the image so that we keep the original image for
subtraction. To do so, we will go to Image | Duplicate… or use Ctrl + Shift +
D and name the duplicate image background.

2.	 To create a Gaussian low-pass filter, we will select the background image
and go to Process | Filters | Gaussian Blur…, entering a value of 150 for the
sigma (radius). When you check the preview checkbox, you will see that the
image will look like it is defocused. You can see that the objects can no longer
be distinguished, and what is left is the diagonal background illumination.

www.it-ebooks.info

http://www.it-ebooks.info/

Advanced Image Processing with ImageJ

[36]

3.	 We can now subtract this background from the original image to correct
the uneven illumination. To do this, we will start the image calculator by
going to Process | Image Calculator… from the menu. Then, we will select
the original image as Image1 and the background image as Image2. Set the
operation to Subtract and check the Create new window and 32-bit (float)
result checkboxes. The following image shows the effect of the subtraction
and how it corrected the uneven illumination:

Image normalization
To enhance the contrast of an underexposed image, you can go to Process | Enhance
Contrast… option, and select the Normalize checkbox. This stretches the gray values
over the entire range of an 8-bit or 16-bit image. It does not work on RGB images.
The following image shows the effect of the normalization, with the original image
on the left-hand side and the normalized image on the right-hand side:

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 3

[37]

This also works for stacks or time series, where the normalization can be done for
each frame separately. A similar effect can be obtained using the Auto option in the
Brightness/Contrast window, as described in the previous chapter. Note that the
normalization is applied to the image and modifies the pixel values irreversibly.
If the signal should not change over time, this should not pose a big problem for
measurements. However, for intensity changes over time, this method will distort
or remove the changes.

www.it-ebooks.info

http://www.it-ebooks.info/

Advanced Image Processing with ImageJ

[38]

Bleach correction
When imaging fluorescence, the illumination can cause the bleaching of the
fluorophore under investigation. This effect is well established and is related to
the intensity of the excitation light. To avoid this effect, it is better to use a long
exposure with low intensity light. However, this may not always be possible. The
amount of bleaching is related to the intensity at the beginning and decreases in an
exponential fashion. To see whether an image series is affected by bleaching, we can
make a quick measurement on the entire image for each frame to see what the mean
intensity is. Note that if there are changes in illumination or background signal in
individual frames, the results might not look like a smooth curve. To make a quick
measurement, press Ctrl + A to select the entire frame and then press Ctrl + M to
measure the intensity. Repeat the measurement for each frame and plot the mean
intensity values against the frame number (or time, if you know the interval) in your
favorite graphics program. In this case, I used MATLAB to create the plot, although
you could also create the plot by selecting Image | Stacks | Plot Z-axis Profile from
the menu in ImageJ. Here is an example of a bleaching curve:

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 3

[39]

This collection of points seems to follow a trend that is close to either a straight
line or an exponential curve, although the trend in the first 2 seconds seems more
exponential than linear.

In order to perform bleach correction, you can select the correction plugin in Fiji
by going to Image | Adjust | Bleach Correction. There are three methods for
correction:

•	 Simple ratio
•	 Exponential fit
•	 Histogram matching

Simple ratio is the best method if the decrease in intensity does not follow a regular
shape, such as an exponential decay function. For most fluorescence imaging, this
method yields good results and can be combined with fluorescence measurements.
The histogram matching method performs better with noisy images, but is less
suitable for intensity measurements.

Since our trend looked more like an exponential decay model, we selected the second
method, which fits a single exponential function to the data:

www.it-ebooks.info

http://www.it-ebooks.info/

Advanced Image Processing with ImageJ

[40]

This plot was generated using the parameters obtained by the bleach correction
command and entering them in MATLAB. The ImageJ command itself also generates
a plot with the data and the fitted curve. However, the axes are labeled X and Y. So,
for the purpose of clarity, I have recreated the plot with the correct labels. The red
line indicates the fitted function, which matches the curve with an R2 value of .9954
(a very good fit). The model consists of three parameters, labeled a, b, and c. The
value of a indicates how much above the asymptote, indicated by the c value, the first
point lies. The asymptote is the value to which this exponential curve will go when
given infinite time. The value of b indicates the rate at which the curve decays. If you
want to know the time it takes to lose half of the initial fluorescence, you can use the
following formula, using the b value from the fitting:

()
1 2

ln 2
t

b
=

The preceding formula gives you the half-time of the fluorescence loss. Note
that the b parameter for the fit is expressed in frames and not time. So, when using
the preceding formula, you need to multiply the result with your frame interval to
get the value in seconds (or minutes). In the graph shown earlier, the half-time is
30.587 seconds (using the formula with a b value of 0.0028327 and a frame interval
of 0.125 seconds).

Stack processing
ImageJ is very suitable to process information that has more than two dimensions:
data acquired at different Z-levels or at different time points. We have already seen
an example of stack processing in the section on noise correction. The next section
will deal with time series consisting of frames. However, first, we will explore more
options when dealing with image stacks containing slices (Z-stacks).

Processing Z-stacks
Z-stacks are series of 2D images that were acquired at different heights or distances.
In a microscope, this is done by moving the objective or the stage up or down and
acquiring an image at specific intervals. In Magnetic Resonance Imaging (MRI),
this is done by moving the patient through the center of the scanner. The scanner
then creates an image for each position using radio pulses that create fluctuations
in the magnetic field. These fluctuations can be measured by the detector in an MRI
machine. This results in a single slice that can be combined into a single file. Some of
the processing that you may want to perform on this type of image involves creating
projections or 3D renders of the volume. We will first examine the projections that
you can create. Then, you will understand why you would create them.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 3

[41]

Stack projections
We have already seen an example of a Z-projection in the section on noise
cancellation. In the previous section, we used the projection to create an average
intensity for each pixel over the frames. For images that contain slices (Z-information),
an average projection is usually not the most useful projection. However, there are
other Z-projections available in ImageJ that are more applicable for Z-stacks. The
following sections will deal with some examples of these projections.

Maximum projection
A maximum projection uses the maximum intensity of each pixel across the slices.
If a stack has 20 slices, then each pixel will contain the maximum value across the 20
slices. This type of projection can be helpful to reduce the third dimension of a Z-stack
in order to create a two-dimensional representation of the data. This type of projection
essentially flattens the image. When used on fluorescence images with sparse signal
(few bright pixels) at the same location, this projection has the effect of showing all the
objects in a single frame. It is also useful for fluorescent images that have thin objects
that are in focus in different slices at different positions. By flattening the Z-stack,
all the in-focus parts will be visible in one continuous shape. You can visualize this
as a flight of stairs. Each step has a different Z-position, but if you would flatten the
steps (assuming that the steps do not overlap), you would get a rectangular board.
If you have an image that is not sparse, then this projection would be of little use. To
demonstrate this projection, open the Confocal Series image from the sample images.
Go to Image | Stacks | Z Project… and choose Max Intensity as the projection type.
The following image shows the result of this projection:

www.it-ebooks.info

http://www.it-ebooks.info/

Advanced Image Processing with ImageJ

[42]

As is visible in the preceding image, the maximum intensity projection shows the
entire shape of the cell, but some information was lost. Specifically, the small details
in the first frames are drowned out by the intense pixels from the middle of the
volume. For some representations, this is fine. For some Z-stacks, the rough shape
of the total volume is unclear in the individual slices, but the maximum projection
shows the general shape.

To demonstrate this effect, we will open the Bat Cochlea Volume image by going
to File | Open Samples. Looking at a few slices from this volume gives very little
information about the shape of this sensory organ (the numbers indicate the slice
number):

When we create a maximum intensity projection, the general shape of this organ
becomes much more obvious: it is shaped like a twisted spiral (the cochlea is the
shell-shaped cavity that is used for hearing). When you also open the Bat Cochlea
Renderings image by going to File | Open Samples, you see the 3D rendering of the
volume:

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 3

[43]

The image on the left-hand side shows the maximum projection of the Z-stack, while
the images on the right-hand side show the rendered volumes. From this image, it
is clear that the maximum projection provides more information than the individual
slices. However, some of the details are still lost in the process. In particular the top-
left part of the cochlea is very unclear in the maximum projection. The start of the
spiral is obscured because of the loop behind it.

Fiji has an option that allows you to create a maximum projection that contains
more information: depth coding. Depth coding assigns a color to the Z-location
of a pixel, resulting in different colors for different slices. To do so in Fiji, go to
Image | Hyperstacks | Temporal-Color Code and select Grays for the LUT. This
results in the middle representation in the preceding image (not exactly, but very
similar). Note that you will get a message that the slices and frames were swapped.
This is done because this plugin is designed for time series and not Z-stacks. The
right image in the preceding figure is a 3D rendering of the volume, which will be
covered in the next section.

Volume viewing and rendering
When images are acquired over a range of depths, the goal is usually to view this
collection of images as a 3D volume. Another useful viewing aspect is to take a
3-dimensional volume, cut it along the z axis, and view the volume from the side.
This latter view cannot be obtained from the two-dimensional images. For this
example, we will use two different stacks from the sample images. Let's start with
viewing the volume of an MRI stack. To open the image, go to File | Open Samples
and select MRI stack. This is an MRI stack where every slice is at a different level
through the head (the numbers indicate the slice number):

The eyes are clearly visible in slice number 6 as two dark orbs on the top of the
image. Slice 11 shows the brain within the skull, and frame 16 shows the ventricles as
black holes in the middle of the head. Slice 26 shows the top of the head. The area is
much smaller indicating that the crown of the head is being reached.

www.it-ebooks.info

http://www.it-ebooks.info/

Advanced Image Processing with ImageJ

[44]

A lot of information is already present in the slices. The eyes can clearly be seen,
as well as the sinuses and the nose (slice 1). The information in these slices is not
complete, however. We lack shape along the z axis. To view the three-dimensional
shape of this volume, we can use a viewer that comes with Fiji. Go to Plugins |
Volume Viewer with the MRI stack selected. If you have the standard ImageJ, the
Volume Viewer plugin can be downloaded and installed from the plugins page.
Then, the following window will open:

This is Volume Viewer, which is included in Fiji and available as a plugin for
ImageJ. On the left-hand side, there are three images that show different views of
the volume: an xy slice (this is the top view for this stack), a yz slice (this is a side
view for this stack), and finally, an xz slice (this is a front view for this stack). The
large image in the middle of the viewer is the current selected view, in this case, the
xz slice view. The position of this slice is indicated in the overview images on the
left-hand side by the cyan (xy) and green (yz) lines. Note that I adjusted the z-Aspect
by entering 5 and pressing Enter instead of the value of 1 based on the current
calibration. The volume, otherwise, looks very squashed. The squashed appearance
is caused by the fact that this image was not calibrated. Each voxel (a contraction
of volume and pixel) is 1 x 1 x 1, without a unit. A typical value for the voxel size
in MRI images is 1.5 x 1.5 x 3.0 mm, which can be set using the image properties as
described in the previous chapter. We can now change the view by selecting the view
buttons at the bottom of the viewer. The yz button will give us a side view of this
volume. It is also possible to rotate the volume by clicking and dragging the mouse.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 3

[45]

The size of the volume viewer window has a minimum size of ±1024
x 768 pixels. This can mean that depending on the pixel dimensions of
your monitor, some of the controls might fall off the screen. For most
modern displays, this should not be an issue. However, for some small
screens or beamers, this can be a problem.

Next, we will look at a different type of image: a Z-stack of a fly brain using
fluorescent imaging. To open the image, go to File | Open Samples and select the
Fly Brain image. The Z-stack will open, and you can go through the slices:

The first slice contains no bright pixels, but as you move through the stack, the
brain of the fruit fly starts to show defined features. This stack shows the brain from
a (rotated) front view in contrast to the MRI stack, which was displayed as a top
view. We will use the volume viewer to examine the entire volume and use it to
create a short movie of the volume turning. To start, select the Fly Brain stack and
go to Plugins | Volume Viewer. The initial image will be a slice view, but for this
example, we want to switch to a different mode. Select Volume (4) mode using the
selector at the top of the viewer. We will set the interpolation to Tricubic sharp (3)
using the drop-down selector. On the right-hand side of the viewer, we will modify
the transfer function to 2D Grad to create a slightly more pleasing view. Next, we
will set the rotation for X, Y, and Z at the bottom of the volume viewer to -90, 30,
and 180 respectively. This will provide a side view of the brain.

By pressing the Snapshot button (top right) in the viewer, we will get a picture of
the current view. Next, we will increase the value for the Y rotation with 10-degree
increments and take a snapshot every time until you have reached 210 degrees. We
now made snapshots of the brain from one side of the brain to the other side (180
degrees). To turn this into an animation, all we have to do is go to Image | Stacks
| Images to Stack. If you close the original stack, you only have to press OK in the
dialog. Otherwise, you would have to enter Volume_Viewer in the Title contains
field. You will now have a stack that can be played and saved as a movie for
presentation purposes. For this example, we used increments of 10 degrees for the
rotation, which gives an adequate result. However, if you take smaller increments,
the result will look much smoother. Feel free to modify the angles at which you
view the volume for different results as well as experiment with the other settings
available within the volume viewer.

www.it-ebooks.info

http://www.it-ebooks.info/

Advanced Image Processing with ImageJ

[46]

The volume viewer is a very powerful function in ImageJ that allows for the
investigation and visualization of 3D objects. Use the Slice (0) mode to examine the
volume as a cross-section and the Volume (4) mode to see a solid model.

Processing time series
Time series consists of images acquired over time, usually with a fixed interval.
Movies can also be seen as time series with a fixed interval of 24 or 25 frames per
second (fps). Processing of time series mostly focuses on two areas: fluctuations
in intensity over time and background reduction and normalization. Fluctuations
in intensity have been covered in the previous section where we looked at bleach
correction. In the following section, we will look at ways to normalize the time series
data.

Normalizing time series data
Normalizing time series data will help in further analysis by providing a correction
for the baseline intensity. Many times, the goal of time series is to look at changes
in intensity or movement over time. Normalizing will yield cleaner time series data
relative to the resting or baseline state. A very simple normalization is to calculate
ΔF over F0 (dFF0). The basis for this metric is that the baseline fluorescence can be
different between time series, but the changes in intensity relative to the baseline are
similar. It is calculated using the following formula:

0

1
0' 0

0

n
ii

t

FdFF
F

F
F F F F

n
=

∆
=

∆ = − = ∑

The numerator is the difference between the current frame (Ft) and the baseline
(F0). The baseline is the average of the first n frames. A value of dFF0 larger than
1 indicates the signal increased relative to the baseline, while a value less than 1
indicates a decrease relative to the baseline. It is possible to perform this calculation
only on the measured values of a time series (in Excel or MATLAB), but you can
also transform the time series directly. I will now show you how to do this in ImageJ
using the Z projection, image duplication, and image calculator.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 3

[47]

To get started, we will open the timeseries_events.tif image, which is available
in the online resources with this book. This is a time series of vesicles in a cell that
are transported and fuse when the cell is stimulated with electrodes. It contains two
channels: one with a red fluorescent marker and the other with a green fluorescent
marker. The red marker is fluorescent at all times until the vesicle fuses, at which
point it disappears. The green marker is not fluorescent while the cargo is within
the vesicle, but as soon as it fuses, it becomes bright. To start the processing, we first
want to split the channels into two different time series. To do this, select the time
series and go to Image | Color | Split Channels to generate two time series: one for
each channel. We will select the green channel, which was labeled C1_timeseries_
events.tif, using the split channels command.

We can now start with the first step in the creation of the dFF0 time series: creating
the baseline frame. We will go to Image | Stacks | Z Project… and set the method
to Average Intensity and Stop slice: to 5. What we do here is create an average of
the first five frames. This effectively reduces the noise in the individual frames by
averaging it out while leaving the bright objects present in the first frames intact.
Let's rename the resulting image to make it easier to identify later on. Right-click on
the average image and select Rename… from the context menu. Rename the image
to F0 so that it will be easy to select later on.

For the next step, we will create the ΔF image. As explained at the beginning of this
section, this image is the raw image minus the baseline image. To get this image,
we will use the image calculator by going to Process | Image Calculator from the
ImageJ menu. Select the original time series as Image1 and the F0 image as Image2.
Then, set the method to Subtract. Make sure that the Create new window option is
selected.

The order of the images is very important when one of them is a stack or
time series and the other is a single frame. The stack always needs to be
set at the Image1 position if you wish to modify each slice or frame. For
subtraction, this is usually obvious, but for multiplication, the order of
the operation would not be important from a mathematical perspective
(A × B equals B × A). However, if you place the time series or stack on
Image2 and the single frame on Image1, only the current slice or frame
is used for the calculation!

We now have the ΔF stack, so let's rename it to make it easier. Right-click on the new
time series, select Rename…, and enter deltaF as the new name.

www.it-ebooks.info

http://www.it-ebooks.info/

Advanced Image Processing with ImageJ

[48]

Now, we can create the final time series that is normalized to the baseline. Note that
the deltaF series by itself already provides an improvement over the original time
series as it is corrected for the initial static background. To create the dFF0 image, we
will use the Image Calculator again. This time, we will select deltaF as Image1 and
F0 as Image2 and the Divide operation. Select the Create new window and 32-bit
(float) result options.

This time, the 32-bit result option is useful. As we noted earlier, in the
definition of the calculation, we expected the results to be between 0 and
infinity. This is denoted as [0, ∞] in mathematical notation. This means that
that any value, including 0 and infinity, are within the range of possible
values. When this option is not selected during the calculation, all the
values below 1 will be rounded to 0, and information about these events
are lost. Note that for the example used here, the events we wish to see
will have a value larger than 1. So, in this particular case, it is not crucial.

The new image is now the dFF0 image, which has been corrected for the baseline and
normalized to the initial baseline intensity. The following image shows the effect of
this normalization (second row), compared to the original images (first row):

The clearest difference that can be seen is that the images before frame 300 are
nearly black, indicating that nothing is happening relative to the baseline situation.
At frame 300 and beyond, the increase in signal at different locations is very clear,
indicating that the signal has increased in these locations.

Summary
In this chapter, we investigated the processing of different types of images. We
looked at different sources of noise that can corrupt images and degrade their
quality. You learned how to apply different corrections to the images to fix these
problems. We then looked at processing steps specifically aimed at Z-stacks and time
series.

In the next chapter, we will see how to separate pixels into different groups and how
to clean up and filter the result for further processing.

www.it-ebooks.info

http://www.it-ebooks.info/

[49]

Image Segmentation
and Feature Extraction

with ImageJ
The previous chapter looked at processing images to view and correct imperfections
in acquisition. This chapter will introduce techniques for segmenting images and
extracting features that are relevant for processing and analysis. The following topics
will be covered in this chapter:

•	 Image segmentation
•	 Morphological processing
•	 Image filtering and convolution
•	 Feature extraction

Image segmentation
For many steps in image analysis, it is important to split the image into two
separate (non-overlapping) components. These components are usually labeled as
background and foreground. Generally speaking, the background is the part of the
image we are not directly interested in when we analyze the image. We normally
restrict our analysis to parts of the image that are deemed as the foreground. This
splitting into two components is called segmentation and is primarily based on pixel
intensity. This is important if you wish to count and measure a number of unique
objects of a specific type or measure the intensity of a single complex object while
excluding the background from the measurement.

www.it-ebooks.info

http://www.it-ebooks.info/

Image Segmentation and Feature Extraction with ImageJ

[50]

Image thresholding
To achieve the split of an image into background and foreground, we will set a
threshold value. Values below this threshold will be classified as one group, while
pixels with higher or equal values will be classified as another group. In general,
the background in fluorescent images contains values close to black (that is, a dark
background), while brightfield images have background values closer to white (a
light background). The output of thresholding is an image called a mask in ImageJ,
which is a binary image. Its pixels have only two values (0 and 255).

We will look at how to perform basic thresholding on a grayscale image first. After
that, we will look at the possibilities for thresholding a color image. The difference
between these two image types stems from the fact that a color image does not have
an easy way of setting a threshold. Each pixel contains three values (red, green,
and blue), and a single threshold value does not segment the image in useful ways
generally.

Thresholding grayscale images
We will start by taking a grayscale image from the sample images and segmenting it.
For this example, we will use the Blobs image. Thresholding would be the first step
if you wanted to measure the size of each individual blob as well as get a count of
the number of blobs in the image. Note that for small images such as this example,
counting could be done by hand. However, if you need to do this for a large number
of images, this method of counting by hand would be very tedious.

To set a threshold, go to Image | Adjust | Threshold… or press Ctrl + Shift + T. The
threshold dialog will open with a few options:

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 4

[51]

For fluorescent images, the Dark background checkbox needs to be selected,
while for brightfield images, it needs to be deselected (unless you use darkfield
illumination methods). The methods available can be set in the drop-down list on
the left-hand side. The default method is based on the IsoData method. The IsoData
method determines the value of the threshold based on the following procedure:

•	 Take an initial value for the threshold T
•	 Calculate the average intensity of the background (BG) and the foreground

(FG) pixels based on the value of T
•	 If the average of BG and FG in step ii is not equal to T, increment the

threshold value T and repeat step ii

For more information and references on thresholding methods, refer to the Fiji
website at http://fiji.sc/Auto_Threshold#Available_methods for an overview.
The drop-down list on the right-hand side gives the option to show the effect of the
thresholding. When Red is selected, the foreground selection is displayed as red
while the background stays in grayscale.

Once you have the threshold set, you can create a binary image by pressing Apply
in the threshold window or by going to Edit | Selection | Create Mask. The former
method will modify your original image, while the latter method will open a new
window with the thresholded image. The red parts (that is, the above-threshold
values) in the original image are now white, while the non-red parts (that is, the
below-threshold values) in the original image are now black. Sometimes, the
threshold is not perfect and has gaps or holes in places where the signal was not
even. You will learn how to deal with these issues in the Morphological processing
section. The three stages of this process are shown in the following image:

www.it-ebooks.info

http://fiji.sc/Auto_Threshold#Available_methods
http://www.it-ebooks.info/

Image Segmentation and Feature Extraction with ImageJ

[52]

The image in the left panel is the original image. The middle panel shows the auto
threshold with the foreground areas in red. The right panel shows the resulting mask
that was created based on the threshold.

Thresholding color images
As mentioned earlier, color images are more complicated to segment. When
talking about color images, it is important to distinguish between RGB images and
multichannel stacks. The latter can be thresholded just fine using the techniques
described in the previous section. Multichannel stacks can be seen as individual
grayscale images that were given a specific LUT to appear colored. RGB images, on
the other hand, are a little more complex. If the image only contains pixels that are
red, green, or blue, you could convert the image into a multichannel image.

To segment an RGB image with more colors, you need to transform the image to a
different color space. To select the foreground based on color, the HSB color space is
more convenient. As we saw in the Chapter 2, Basic Image Processing with ImageJ, the
color information in HSB images is a separate channel encoded in grayscale values.
When you want to set a threshold on an RGB color image in ImageJ and Fiji, the
Threshold Color dialog opens automatically:

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 4

[53]

By default, it opens in the HSB color space, where the top chart shows the
distribution of the hue channel. The two sliders underneath indicate which colors
you wish to select. In this case, orange is selected. The second panel shows the
controls for saturation. As the sliders are far to the right, we only select bright orange
colors. Finally, the third panel at the bottom shows the controls for brightness, which
is set for a wide range of brightness values starting at the mid-level. This example
shows you how to select a specific range of colors. In this case, the threshold was set
to select the hair of the clown in the Clown sample image:

As you can see, the threshold is not perfect. There are small areas on the cheek and
near the nose that are also within the threshold. Furthermore, there are also gaps in
the area that are part of the hair, especially around the right eye and in the top-right
corner of the image.

The threshold method list has the same methods as the standard ImageJ threshold
dialog, and it works only on the brightness channel. The Original button is similar to
the Reset option in the grayscale threshold dialog. The Select button will convert the
thresholded region into a selection. The Sample button will use a selected portion
of the image to generate a threshold based on the hue, saturation, and brightness
channels in that area.

www.it-ebooks.info

http://www.it-ebooks.info/

Image Segmentation and Feature Extraction with ImageJ

[54]

Morphological processing
After segmenting the image into the two components, you are left with a mask or
binary image. As was clear from the examples, these masks are not always suitable
for direct measurement. Imperfections in the image may result in gaps in objects or
small discontinuities in structures. Also, some areas might be detected as foreground
when they are actually not really objects of interest. You could manually correct this
by converting the missing pixels to white or black in order to include or exclude
them, respectively. In some cases, this might be the only possible recourse. However,
in many cases, there are a few processing steps available that can fix these problems
in a systematic way. These steps are called morphological processing, which we will
examine in greater detail in the next section.

Morphological operators
ImageJ supports the two main principal operators for morphological processing:
erode and dilate. It also has functions for filling holes, skeletonizing, and
watershedding binary images, which will be discussed in a later section. These
functions will be explained in the upcoming sections using a few basic examples.

Erode and dilate
To start with, we will look at the basic operators erode and dilate. The erode
operator takes a foreground pixel (FG) and looks at the surrounding pixels in a 3 x
3 neighborhood. Based on the number of FG pixels, the pixel will be changed to a
background pixel (BG), or it stays as an FG pixel. The dilate operator functions in the
opposite way. ImageJ determines whether a pixel will be changed or not based on
the binary options, which can be set by going to Process | Binary | Options…:

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 4

[55]

Iterations determines how many times the operator is repeated, and Count
determines the number of pixels used for the threshold that determines whether a
pixel is switched or not. EDM output determines where the results from distance
mapping functions are written. When Overwrite is selected, the distance mapping
overwrites the pixels in your mask image. Pad edges when eroding determines
whether pixels will be eroded when they are located on the edge of the image. When
selected, there will be no erosion at the edges of the image.

For the following example, I will assume that the number of iterations is set to 1, the
count to 1, and the black background is unchecked.

1.	 Open the 4909_03b_binary.tif image in ImageJ. It is available on the Packt
website.

2.	 Set a threshold for the image using 0 for the top slider and 75 for the bottom
slider, using the default method. Leave the dark background unchecked.

3.	 Select Edit | Selection | Create Mask to generate a new image or press
Apply in the threshold dialog to overwrite the original image.

4.	 Finally, select the masked image and press Ctrl + Shift + I to invert the image
so that it has a white background. You should now have the following result
(the original is on the left-hand side and the mask is on the right-hand side):

When you look closely at the masked image, you will appreciate that there are a few
small problems. Most notably, the letter a in Binary and ImageJ is broken in three
disconnected parts. Also, the letters p and g are not entirely complete and have a
break but are not completely disconnected. For humans, this is not a large problem.
We can easily fill in the gaps in our minds and read the text. Computers, on the other
hand, may have a more difficult time trying to decipher the text. We will now look at
the effect of binary operators on this mask. You will also see how this may solve our
problem of fragmented letters.

1.	 Select the masked image and go to Process | Binary | Options… to open
the options dialog. This will show a few more options now that we have
a masked image, most notably the Do drop-down menu and the Preview
checkbox.

www.it-ebooks.info

http://www.it-ebooks.info/

Image Segmentation and Feature Extraction with ImageJ

[56]

2.	 Zoom in on one of the letters a using the magnification tool or the + key on
the keyboard.

3.	 Select Erode from the Do drop-down menu and check the Preview checkbox,
but don't press OK!

In preview mode, you will notice that the entire mask went white, and the text
completely disappeared when you selected the erode operator. When you increase
the value in the Count field, you will start to notice that parts of the text will start to
come back. With a value of 3, some pixels are visible, while a value of 7 or 8 gives
you most of the text unscathed. When the value is set to 8, the only victim of the
erode operation is the isolated pixel of the letter a. All the other pixels remain intact,
but this isolated pixel is removed. This is one of the most used applications of the
erode operator—removing isolated single pixels caused by noise in your image.

When using Erode, isolated pixels can be removed, but the entire mask
becomes smaller, reducing the area that we would like to measure. Using
Dilate directly after an Erode operation (or using Open), we can remove
isolated pixels while still preserving the area we would like to measure.
Once an FG pixel is lost because of Erode, it can never return, no matter
how many times you use Dilate!

Now, select Dilate from the Do drop-down menu, set Count to 1 again, and see what
the effect is. When you use the dilate operator, the text will become thicker, but it
also fills in the gaps in the letters. This outcome is much more useful. However, there
are a few problems here. The bottom tail of the letter g as well as the opening of the
letter e are now filled in. By increasing Count to 2, this problem is ameliorated, and
the letter e as well as the tail of the letter g are open again. When Count is 2, Dilate
fixes the problem of the fragments. However, our letters are now much thicker, and
some letters have merged. Take a look at eJ in the word ImageJ. The tail of the letter
e is directly connected to the tail of the letter J. We would now like to take two steps.
First, we want to dilate the mask to fill the gaps, and then, we want to erode the
mask to get rid of the connected letters. Executing the operators in succession on the
mask can perform this combination. First, we will dilate the mask, and then, we will
erode the result. However, there is also a special function that performs both steps in
this order called Close. If you want to perform the steps in the opposite order (first
erode and then dilate), you can use the Open function.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 4

[57]

When you select the Close option in the drop-down menu, you can see the result of
this action. The result is OK, but not that great. The fact that the result in this case is
not that great is caused by the fact that we used different values of Count for each
step. The Dilate operator worked best when we used 2, while the Erode operator
worked best when we used a value of 7 or 8. For this example, it is better to perform
the Dilate and Erode operators in succession with specific values for count in each
step. In the following images, the Close operation was used with a value of 2 for
count, while the succession of Dilate and Erode were performed using 2 and 5,
respectively (the left-hand-side image is the original mask):

As can be seen in the middle and right panels, both methods have their advantages
and drawbacks. The Close operation (middle panel) filled in the letter e, and there is
still an isolated pixel that is part of the letter a. However, the letters themselves still
have good details. The manual successive dilate/erode steps (right panel) preserved
the hole in the letter e as well as the details of the letter g. However, the details of the
letter a are less pronounced. Specifically, the serif (the small hook at the bottom-right
corner of the letter a) is completely lost.

Skeletonize and watershed
After processing the mask using Dilate, Erode, Open, and Close, we may want to
reduce the mask to the most basic features. The core of the letters that we segmented
earlier is formed by the strokes. Each character consists of a set of strokes in different
directions, which together define the character. In ImageJ, we can recreate these
strokes using the skeletonize function, which can be found by going to Process |
Binary | Skeletonize in the menu or by selecting it from the Do drop-down menu in
the binary options dialog. Skeletonize looks at each pixel's neighbors and removes
a pixel if it is flanked by other FG pixels. This leads to reducing the mask to a single
pixel width mask.

www.it-ebooks.info

http://www.it-ebooks.info/

Image Segmentation and Feature Extraction with ImageJ

[58]

When applied to the result of the masks after our close (left panel) and successive
dilate/erode (right panel) operations, the results are as follows:

The result from the Close operation (left panel) is not very satisfactory. The letter e is
unrecognizable and looks more like a letter c. The successive dilate/erode operation
(right panel) has a slightly better result due to the skeletonize operations. Although
the letters look a bit funny and wobbly, all the important strokes are present.

The watershed function separates objects that are touching. We will look at the
effect of this operation using the blobs sample image. You could apply it to the text
example. However, the problem in the text example was the fact that objects needed
to be joined not separated.

1.	 Open the Blobs image from the sample images.
2.	 Set a threshold using the Default method, leave the Dark background box

unchecked, and click on Apply to create the mask.
3.	 Now, go to Process | Binary | Watershed from the menu.

The result will look as follows, with the original mask to the left and the result of the
watershed operation to the right:

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 4

[59]

As can be seen, four blobs were split into two separate objects each. This operation
looks for areas that are pinched. When an object has a narrow part between two
thicker parts (similar to the middle of an 8), it will be separated along the narrow
part. Notice, however, that this does not work for some of the blobs (indicated by
blue rectangles). When there is no pinch in the outline, the watershed algorithm
will not split the object. This would be very useful if you wish to quantify the
number of objects when you know that objects can overlap. However, you may
run into problems if you wish to measure object size or area. As the overlapping
area cannot be measured accurately, the measurements for overlapping objects will
underestimate the actual size. This problem can be solved by assuming that the
objects have a regular shape, such as an oval, but this might not hold in many cases.
In ImageJ, this latter assumption can be used using the particle analyzer, which
will be discussed in Chapter 5, Basic Measurements with ImageJ. The best way to solve
this problem is by making sure that the amount of overlap is reduced, which might
require changes in your sample preparation or acquisition.

Image filtering
The previous section looked at ways to segment the image in the foreground and
background using a threshold. It also looked at ways to derive a result suitable for
analysis with the use of morphological operators. The morphological operators were
used to clean the results of the threshold by removing isolated pixels. In most real-
life applications, these isolated pixels are due to the effect of noise in your image-
acquisition system. Some of the noise can be removed using the techniques described
in the previous chapter, but this may not remove all the noise. In this section, we
will look at ways to use filters to remove noise and prepare images to create masks.
Filtering can be a step that is inserted before thresholding and morphological
processing. If your images are high contrast and have extremely low levels of noise,
this might not be required. However, this is relatively rare.

There are two categories of filtering, depending on the type of domain that is used
for filtering. Images can be seen in two different domains: the spatial and the
frequency domain. The most recognizable to humans is the spatial domain. This is
an image as we recognize it from our cameras. Each location in space has a value,
and the combination of an area filled with closely spaced locations with differing
values forms an image. If all the values were identical, the image would appear
uniform as a single color or gray. In the case of digital images, locations are specified
by the pixels that form the image, and the value is represented as a gray value or an
RGB value.

www.it-ebooks.info

http://www.it-ebooks.info/

Image Segmentation and Feature Extraction with ImageJ

[60]

The frequency domain is less recognizable to humans. An image in the frequency
domain is represented by the rate of change of values or frequency. Humans recognize
frequency in terms of wavelengths of light. Light with a higher frequency will appear
blue/violet, while light with a lower frequency will appear orange/red. However, in
image processing, the frequency of an image is determined by the way pixel intensities
change within an image, and not necessarily the color of the pixels. I will start with
filtering in the frequency domain, as this is more complex. Note that most of the
filtering for image processing is done in the spatial domain with excellent results.

Filtering in the frequency domain
Filtering of images is based on a transformation technique described by Joseph
Fourier in 1822. This transformation takes data in one domain and transforms it to
a different domain and back again. For image processing, the transformation goes
from the spatial domain to the frequency domain. The spatial domain considers points
to be in a space, either a plane (2D) or a volume (3D). Each location of a point has
an intensity value, which changes over different locations for most images. The rate
at which the intensities change along a dimension determines the frequency. Take a
look at this artificial image:

If we look at the profile of intensity along the width of the image as well as along the
height of the image in the middle, we would get the following results (horizontal
profile to the left and vertical profile to the right):

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 4

[61]

As is obvious from these plots, there is a clear difference in the rate of intensity
changes. The horizontal profile (left) shows fast changes in intensity over distance,
while the vertical profile (right) shows no change whatsoever. Another way of
describing this is that the frequency along the horizontal profile is large, while it is
low on the vertical axis.

The Fourier transform will calculate the frequencies in the spatial domain and
plot them as frequencies in the X and Y direction. The idea of the transform is
based on the fact that any signal can be described as the (infinite) sum of harmonic
functions (that is, sines and cosines) with different frequencies. These frequencies
are represented by the coefficients for the sines and cosines, which are displayed as
gray values by ImageJ in an image. We will obtain the Fourier transform that is, Fast
Fourier Transform (FFT) of the artificial image by going to Process | FFT | FFT
from the menu:

www.it-ebooks.info

http://www.it-ebooks.info/

Image Segmentation and Feature Extraction with ImageJ

[62]

The center (that is, origin) of the image has a frequency of 0, while the horizontal
line through the origin represents the frequencies along the x axis of the image. The
values in the quadrants determine the frequencies along the diagonals of the image.
Values close to the center of the image represent low frequencies, while values close
to the edge represent higher frequencies. As there is only a change in frequency
along the X coordinates of the image, the transformed image shows only vertical
lines. If the pattern had been diagonal, the lines in the transformed image would also
be diagonal.

The dashed appearance of the lines in the transformed image is caused
by the fact that the input image was not square. The width is 512, but
the height only 128 pixels. If the image were a 512 x 512 square, the
transformed image would only show a row of dots along the x axis
through the origin. If you halved the height of the sample image, the
dashes become roughly twice as long.

When we use the FFT image as input, we can create the original image when we
select Process | FFT | Inverse FFT from the menu:

Note that since we used the FFT and immediately the inversed FFT, we actually did
not apply any filtering. The image before and after the transform is identical. This
is a very desirable feature of the transform, because this means that the transform
is lossless. No information was lost during the process. To actually filter the image,
we need to modify the transformed image by modifying the pixel values in the
transformed image.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 4

[63]

To apply some (crude) filtering, we will take the following steps:

1.	 Select the transformed image.
2.	 Go to Edit | Selection | Specify… from the menu and enter the following

values: Width as 255, Height as 255, X coordinate as 0, and Y coordinate as
0. Then, press OK.

3.	 Open the color picker by going to Image | Color | Color Picker from the
menu or pressing Ctrl + Shift + K on the keyboard.

4.	 Make sure that the foreground is set to black by clicking on the little icon of a
black-and-white square in the bottom-right corner of the color picker.

5.	 Now, fill the selection that we specified with black by going to Edit | Fill or
by pressing Ctrl + F.

6.	 Repeat steps 2 and 5, but now, specify the selection to have the X and Y
coordinates of 257.

7.	 Finally, go to Process | FFT | Inverse FFT from the menu to generate the
filtered image.

If you followed the instructions, your FFT image would look as follows:

www.it-ebooks.info

http://www.it-ebooks.info/

Image Segmentation and Feature Extraction with ImageJ

[64]

The inverse FFT image will look as follows:

As can be seen in the inverse FFT image, there are now significant differences before
and after the manipulations. For instance, the frequency in the vertical direction is
different. Each bar now changes intensity as you go from top to bottom. Try the same
routine, but this time, specify the selection using the following parameters in step 2,
and skip step 6:

•	 Width: 64
•	 Height: 512
•	 X coordinate: 272
•	 Y coordinate: 0

After filling in the selection with black and calculating the inverse FFT, the image
will appear as shown here in the right panel. You have specifically removed a small
subset of the frequencies from the frequency domain. After calculating the inverse
FFT, you will get the following result (zoomed area in the top-left corner):

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 4

[65]

On the left-hand side, you see the original image, and on the right-hand side is the
filtered image. As the region selected and removed entailed the lower frequencies,
the higher frequencies remain resulting in a greater change in the intensity values
along the horizontal axis.

As this example is very artificial, the results here are not necessarily practical for
analysis. However, if you have an image that is corrupted by high-frequency
intensity changes (for example, imaging noise), you know you have to remove
the frequencies at the edge of the FFT transform. On the other hand, if you have a
slow gradient of intensity changes (for example, uneven illumination), you need
to remove the low frequencies in the FFT transform. Using black to remove the
frequencies, you're creating a filter that excludes the frequencies covered by your
selection. If you filled the selection with white, you would include all the selected
frequencies covered by your selection. In the next section, we will look at filtering in
the spatial domain, which is slightly more intuitive to apply.

Image filtering in the spatial domain
Filtering in the spatial domain involves using a filter, usually referred to as a kernel.
This filter transforms every pixel using a method called convolution. Convolution
involves taking a center pixel with a small array of neighboring pixels (usually 3 x
3) and multiplying the intensities with a set of weights as defined in the kernel. The
sum of the multiplications will become the new pixel intensity for the center pixel. In
the following example, there is a part of an image (left), the kernel (middle), and the
outcome of the convolution (right):

www.it-ebooks.info

http://www.it-ebooks.info/

Image Segmentation and Feature Extraction with ImageJ

[66]

The center pixel (highlighted in orange) and the surrounding pixels in a 3 x 3
neighborhood are multiplied with the kernel (middle). The result of the convolution
is shown on the right-hand side. The value of the center pixel used to be 128, but is
now 78 after convolution. The kernel shown in this example is a simple smoothing
filter (also called a box filter). The main effect of this filter is that it averages pixels,
resulting in a blurring of the image. The following image is a detail from the Boats
sample image, before (left) and after (right) convolving with the box filter:

When you change the filter size to 7 x 7, the effect of the smoothing will be much
stronger, as more pixels in the neighborhood will influence the value of the center
pixel. When using the box filter with a size of 7 x 7, each weight will be equal to 1/49.
The result for the same image will look as follows:

Notice that the filtering has almost completely smoothed the letters, making them
unrecognizable. The box filter functions as a low-pass filter—only low frequencies
in the image will remain. This is caused by the fact that fast changes in intensity will
be smoothed out more aggressively by the box filter than the low frequencies. Even
though this filtering happens in the spatial domain, the effects are also reflected in
the frequency domain.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 4

[67]

To recreate the preceding images, follow these steps on the Boats image from the
sample images:

1.	 Select Process | Filters | Convolve… from the menu and remove everything
in the text field in the dialog that opens.

2.	 Type three 1s separated by a space and press enter. Repeat this twice.
3.	 Make sure that the Normalize kernel checkbox is selected and press OK.
4.	 The image now looks a little less sharp as it has been convolved with a 3 x 3

box filter.

If you want to convolve with a 7 x 7 box filter, just type seven rows of seven 1s
separated by spaces, and repeat the steps on a newly opened Boats image to see the
effect of kernel size.

When applying the kernel on an image that was already convolved, the
effect will be larger than when the image wasn't convolved yet. When
using the 3 x 3 box filter twice in succession, the effect will be the same
as running a 3 x 3 box filter with weights of 1/81 per pixel (1/9 * 1/9).

The result of filtering using a kernel depends on the values of the weights that
you specify and the kernel's size. Typically, there are two types of kernel that can
be separated based on the sum of their weights. When the sum of the weights in a
kernel adds up to 1, the kernel is called normalized. The advantage of a normalized
kernel is that the result of the convolution will not exceed the maximum pixel value
allowed by the bit depth of the image. When the Normalized kernel checkbox
is checked in the Convolve dialog, ImageJ will automatically take care of the
normalization. Non-normalized kernels can exhibit clamping artifacts. When the
sum of the kernel exceeds 1, the result of convolution may exceed the maximum
allowable value (that is, 255 for 8-bit images). When this happens, the value after the
transformation will be clamped at the maximum value. This clamping may result in
artifacts such as blocks of white pixels.

www.it-ebooks.info

http://www.it-ebooks.info/

Image Segmentation and Feature Extraction with ImageJ

[68]

The box filter is a very simple filter, but it does not discriminate any features in the
image. It averages evenly in all directions. Other filters exist that actually enhance
certain features in your image. An example of such a filter is the Mexican hat filter.
This filter emphasizes the center pixel over the surrounding pixels:

The Mexican hat filter is shaped a little like a sombrero, hence the name. It makes
areas with high contrast become bright, while areas of uniform intensity become
darker. Applied on the Boats image, the result looks as follows:

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 4

[69]

What stands out immediately is the fact that the edges of the letters are greatly
emphasized. This makes sense because the contrast is relatively strong. These are
black letters on a mostly even light-gray background. The only edges that are not
clearly recognizable are the points where the letters touch each other and the places
where the ropes hide parts of the letters. You can imagine that this filter might
also work well for the text example and the segmentation of the blobs mentioned
earlier. It basically functions as a high-pass filter. Only regions with fast changes in
intensity are emphasized, while regions with slow changes in intensity (that is, low
frequencies) are reduced.

Besides entering kernel weights manually, ImageJ and Fiji also have some common
filter kernels that can be accessed by going to Process | Filters. Two of the most often
used filter kernels include the Gaussian Blur… and the Mean… filter. The latter is
identical to the box filter. The former is similar to the Mexican hat filter. However, it
does not use negative values in the kernel. The Gaussian Blur filter smoothens the
image just like a box filter does, but it does it in a more gradual way. The advantage
of Gaussian Blur is that it can have fewer artifacts when you apply it. The response
of the filter in the frequency domain is also better, making it possible to combine
spatial and frequency domain filtering.

Next, we will look at some operators that can be used to detect specific features in an
image that may be relevant for processing. These operators also use convolution, but
they have different properties compared to the filters described earlier.

Feature extraction
As we saw in the earlier sections, filters can be used to isolate different frequencies
using filters. By convolving an image with a Mexican hat filter, high frequencies are
preserved, while using the box filter has the opposite effect. The difference between
the filters in this section and the filters in the previous section is in specificity. The
Mexican hat filter had no preference for direction. When there was an edge with
sharp contrast (quick change in intensity), the filter had a strong effect. However,
sometimes, you are only interested in a specific type of edge. Let's assume that we
only want to detect vertical edges. The Mexican hat filter will give us all the edges in
all directions, not just the vertical ones. This will be the topic of the following section.

www.it-ebooks.info

http://www.it-ebooks.info/

Image Segmentation and Feature Extraction with ImageJ

[70]

Edge detection
To detect only vertical edges, we need to create a kernel that emphasizes pixels that
are in a vertical orientation. The following kernels can detect different orientations of
edges:

To perform the Sobel edge detection, you can use the Find Edges command from
the Process menu. This command will run both the horizontal and the vertical Sobel
kernel over the image.

Finally, there is also the Canny procedure for edge detection that involves five steps.
This procedure was developed by John F. Canny and consists of the following steps:

1.	 Apply Gaussian smoothing to remove noise.
2.	 Detect gradients in the image using edge detection.
3.	 Thin edges using convolution with a kernel such as the Mexican hat.
4.	 Apply two different thresholds to determine weak and strong edges.
5.	 Remove weak edges that are not connected to strong edges.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 4

[71]

The first three steps involve using different kernels for smoothing, edge detection,
and edge thinning in succession. Note that the first step is only required if the image
is degraded by noise. If the contrast is high and noise is absent, this step can be
skipped. This step is also the weakest point of the procedure. Both noise and edges
are forms of high-frequency signals, and the Gaussian filter smoothens both equally.
If noise is present, techniques that reduce the noise specifically while leaving the
edges intact should show great improvement.

Summary
In this chapter, we looked at ways to separate an image into foreground and
background. We saw different methods to set the threshold in grayscale and color
images. We applied filtering in the spatial and frequency domains to aid in cleaning
the image and extracting edges for further processing. All these steps will help us
when we wish to measure objects in the image, which is the topic of the next chapter.

www.it-ebooks.info

http://www.it-ebooks.info/

www.it-ebooks.info

http://www.it-ebooks.info/

[73]

Basic Measurements
with ImageJ

We saw in the previous chapter how to perform some preprocessing steps that
prepared the image data for measurement and analysis. In this chapter, we will take
a closer look at the measurement system available in ImageJ. You will also learn
how to create some visualizations of movement and dynamics. We will look at the
following topics in this chapter:

•	 Selections and regions
•	 The ROI Manager
•	 Kymographs and line profiles
•	 Area and line selections
•	 Semiquantitative colocalization
•	 Particle analysis

www.it-ebooks.info

http://www.it-ebooks.info/

Basic Measurements with ImageJ

[74]

Selections and regions in ImageJ
We will first look at the tools that are available in ImageJ to select Regions Of
Interest (ROIs). These tools can be useful if you wish to only process a small portion
of your image. ROIs are a very important element in ImageJ, and there is also a
specific manager to handle the ROIs: ROI Manager. It can be opened by going to
Analyze | Tools | ROI Manager…, which will open the following window:

On the left-hand side, there is a list that will contain the ROIs, while on the right-
hand side, there are several buttons that will perform certain actions on the ROIs.
The checkboxes in the bottom-right corner allow the user to see all the regions at
once (Show All), while the Labels checkbox displays the region label in the image.

There are different types of region that are supported by ImageJ. They can be divided
into two major types: area selections and line selections. A third singular type is
the Point ROI, which only has one member. When used for measurements, the
parameters that can be measured are slightly different. Area can only be measured
with the area type ROIs, while angle can only be measured with line selections.

First, I will discuss a few of the common selection types that are supported by
ImageJ, and then, we will apply them to take measurements.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 5

[75]

Area selections
Area selections in ImageJ contain different types with different properties. The
following types are available in ImageJ:

•	 Rectangles
•	 Ovals
•	 Polygons
•	 Freehand

Rectangles are mostly used to select areas to crop images or for rectangular objects.
If your images contain more organic shapes, oval or polygon areas are more suitable.
These types can be added to images by selecting the appropriate tool in the toolbar of
the ImageJ program. Then, you can left-click and drag the mouse to enclose the area
you wish to select and then release the mouse button. After the selection has been
set, you can press the Add button on the ROI Manager (or press Ctrl + T) to add the
region to the ROI Manager.

If the Require control/command key for shortcuts option is unchecked
when you go to Edit | Options | Misc…, then pressing only the letter
T is sufficient to add the ROI to the Manager.

When an ROI is added to the ROI Manager, it can be saved to a file to preserve it for
later. When multiple ROIs are added to the ROI Manager and one is selected when
attempting to save the ROIs, only the selected ROI will be saved. If you wish to save
all the ROIs at once, press Deselect to unselect all ROIs. Alternatively, you can use
Ctrl + A to select all the ROIs, before selecting More » | Save from the ROI Manager.

Single ROIs will be saved to the disk as a file with the .roi extension.
Multiple ROIs will be saved as an ROI set in a .zip file. This zip archive
contains individual .roi files, one for each selection. On Windows,
extensions are hidden by default for known file types. So, to see the
extensions, you may have to uncheck the Hide extensions for known
file types option in the folder options.

www.it-ebooks.info

http://www.it-ebooks.info/

Basic Measurements with ImageJ

[76]

When adding additional ROIs, it may be convenient to select the Show All checkbox
in the ROI Manager. This will show all the ROIs currently in the list. Clicking on the
ROI in the ROI Manager can set the active region. It always shows in the color you
have set in the options (refer to, Chapter 1, Getting Started with ImageJ), with small
white squares at the corners:

These small squares are control points that can be used to move and resize the ROI.
If you modify a region by resizing it or positioning it, pressing the Update button
on the ROI Manager will update the region in the list. To resize, click and drag one
of the squares to a new location and release the mouse button. If you hold the Shift
key while dragging the handles, the shape will become a square or circle with equal
width and height. If you hold the Ctrl key (or Cmd key on a Mac) while clicking on
the control points, the region grows in width and height equally around the center.
If you hold the Alt key while resizing, the handle on the opposite side will stay at a
fixed location while you resize the region, keeping the length-to-width proportion
equal. If you press the Alt key and create an area that overlaps with your previous
region, a subtraction of the overlapping part of the two regions will be formed.
Conversely, if you hold the Shift key before creating a new region that overlaps a
previous region, you will create a union of the overlapping part of the two regions:

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 5

[77]

A combination of two of the keys can also be pressed while dragging for a
combination of both resizing effects. To move a region, move the cursor inside the
region and click and drag the region to a new location. Make sure that the cursor is
shaped like an arrow—and not like a hand or crosshair—before you click and drag
the region. For small regions, you might have to zoom in in order to move the region.
If the cursor gets close to the control points, it will change to resize mode.

www.it-ebooks.info

http://www.it-ebooks.info/

Basic Measurements with ImageJ

[78]

Once a region is placed and added to the ROI Manager, pushing the Measure button
in the ROI Manager or using the Ctrl + M keyboard shortcut will measure the region.
To select the parameters that are measured, go to Analyze | Set Measurements… to
select the parameters:

Mean gray value is the average intensity within the area, while Area measures the
area of the region in the units of the image. Once you click on Measure in the ROI
Manager, a new window with the measurements is opened. This window shows the
results. Some of the different measurements will be explained in the Area selections
and measurements section, where we will use them to extract useful information from
our images.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 5

[79]

Line selections
The line selections contain the following types:

•	 Straight line
•	 Segmented line
•	 Angle tool

ImageJ handles these selection types in a similar way. However, they can be used for
different measurements. One of the most used functions for line segments is to plot a
profile along a line or segmented line. Another option is to create a kymograph. Both
these options will be demonstrated in the upcoming sections.

Point selections
The third type of selection only contains one tool: the point tool. It selects a single
pixel only and is mostly used in counting or marking an object's center point. The
advantage of point selection is that it requires only a single click to place it. However,
the measurements that can be obtained are limited to the X and Y coordinates and
the intensity.

Basic measurements
We will now look at a few techniques that can be used to measure specific
parameters from data. For these measurements, we will use the ROI Manager
and several different types of region to select and measure intensities, speed, and
other interesting things. Besides measurements, regions can also be used for other
purposes relevant to processing and image handling. One useful application of
selections is that they can be used to limit certain processing steps to the selected area
while leaving the unselected pixels unaffected. A few examples of these applications
will be demonstrated as well.

Area selections and measurements
We will start with some basic measurements using area selections. We will use these
to measure some basic parameters such as area, perimeter (or circumference), and
many more. We will start with the most basic area selection: the rectangle.

www.it-ebooks.info

http://www.it-ebooks.info/

Basic Measurements with ImageJ

[80]

Rectangular selections are very useful for cropping image areas. By reducing the
size of an image, you reduce the memory required as well as the processing time
for complicated algorithms. Another good use for a rectangular selection is to
restrict processing in a larger image to a specific region. Some ImageJ algorithms
and tools can work within an active selection. We will see an example of this type of
application in a plugin that we will develop in Chapter 9, Creating ImageJ Plugins for
Analysis. As a result of the simplicity of the rectangle, measurements, such as area
and perimeter are not really relevant. You can calculate the area and perimeter of a
rectangle very easily using the width and height. We will, therefore, focus on some
more useful applications of rectangular selections.

To start with, let's use the rectangular selection to modify a small section of an image
by inverting its gray values. To start with an example, open the Blobs image from
the sample images. We will invert the LUT for a single blob using these steps:

1.	 Select a blob in the image using the rectangular selection tool.
2.	 After selecting a blob, press Ctrl + Shift + I to invert the LUT.
3.	 Use Ctrl + Shift + A to remove all selections and invert the LUT again using

Ctrl + Shift + I.

In this little exercise, we focused on only modifying pixels that were selected, while
the pixels outside of the selection were left unchanged. If no pixels were selected, the
Invert LUT command worked on all pixels. This is an example of how to use area
selection to limit processing to selected pixels only. The same method also works for
other area selections. You could also use this method to highlight a specific part of
an image by making it stand out. For instance, in the following kymograph example,
we could show the lines that were acquired during stimulation by creating a square
selection and inverting the LUT for only that time period.

Oval selections
ImageJ has two types of selection for rounded shapes: ellipses and ovals. The
difference between the two types is subtle, but oval selections can only by shaped
along the x or y axis. Ellipses, on the other hand, can be freely rotated as well. To
create a circle, hold the Shift key while creating an oval selection to force ImageJ
to make a circle with equal width and height. Another important property of oval
selections is their shape descriptors. The shape descriptors that ImageJ reports in its
measurements are the circularity (Circ.), roundness (Round), aspect ratio (AR), and
solidity (Solidity). Circularity is defined as follows:

2. 4 ACirc
C

π= ⋅

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 5

[81]

Here, A is the area, and C is the circumference. Roundness is defined as follows:

[]2
4 ARound

Major Axisπ
= ⋅

⋅

Here, the major axis is the largest diameter of an oval. Aspect ratio is the ratio
between the major and minor axes of an oval. Solidity is defined as the area divided
by the convex hull of the area. Solidity is helpful for irregular shapes. A convex hull
is the smallest curve that can be fitted around an object without intersecting with
it. It can be seen as trying to stretch an elastic band around the object to encompass
it completely. For oval- or ellipse-shaped objects, this parameter does not add any
information.

Let's look at some of the results when drawing a few ellipses and ovals and
measuring their shape descriptors. Here are a few examples of elliptical selections
(left of the image) and oval selections (right of the image):

www.it-ebooks.info

http://www.it-ebooks.info/

Basic Measurements with ImageJ

[82]

The shapes with a circularity of 1.00 are colored orange (ellipse) and light green
(oval). The red ellipse has a very low circularity (0.28), while the cyan oval has an
intermediate circularity (0.48). This circularity parameter will be useful when trying
to detect particles, as it is a very basic description of a shape using a single value.
Round objects will have a value of 1, while flattened ovals will have a low value
closer to 0.

It is also possible to create a doughnut selection using the oval tool. Making two
circles, one bigger than the other, and then removing the smaller of the two circles
can do this. The following steps will create a doughnut selection:

1.	 Create the larger circle first over the object you wish to select and
press Ctrl + T to add it to the ROI Manager. Make the size of the
circle 20 x 20 pixels.

2.	 To create the inner circle, you can add a new circle using the oval tool.
However, it may not be centered. To create a centered inner circle, we will
select the outer circle and select Edit | Selection | Enlarge… from the menu.

3.	 Enter a value of -5 to shrink the circle to a new circle of 10 x 10 pixels and
press Ctrl + T to add it to the ROI Manager.

4.	 To create the doughnut, select both circles in the ROI Manager.
5.	 With both circles selected, select More » | XOR from the ROI Manager.

This will result in the doughnut. To add the new selection, press Ctrl + T.

Note that creating a doughnut this way forces the new area selection to be
"pixelated". The outline of the region will be aligned across the pixel grid unlike
the ROIs generated by ImageJ. You can also create the doughnut by holding the
Alt key while creating the inner circle. However, it can be difficult to align both
circles properly.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 5

[83]

Polygon selections
Other types of area selection are polygon and freehand selections. They allow more
organic shapes to be selected. To create a polygon selection, select the tool and by
left-clicking, you can add points to the polygon. Each point is connected by a straight
line (vertex), and by double-clicking or by left-clicking on the first point, the polygon
is closed and turns into an area selection. If you right-click, the polygon tool will
add a point at the point where you clicked and close the polygon at the same time.
A polygon requires a minimum of three points. This is tool is helpful for selecting
irregular shapes, such as in the Blobs example:

www.it-ebooks.info

http://www.it-ebooks.info/

Basic Measurements with ImageJ

[84]

For this type of irregular shape, the polygon tool is more suited to only selecting the
blob. A similar effect can be achieved with the freehand tool. However, it may be
more difficult to select very precisely. The freehand tool works by left-clicking and
holding the button while you drag the mouse around the shape.

Another way of creating an irregular area selection is to use the magic wand
selection tool. This tool works in the same way as the wand tool in other graphics
programs such as Photoshop and Gimp. It selects pixels that have the same intensity
or color as the one that was clicked. To select a blob in the sample image, we can
follow these steps:

1.	 Select the Wand Tool from the toolbar.
2.	 Left-click on a blob. This will create a selection.
3.	 Change the tolerance for the selection by double-clicking on the wand

tool button and set Tolerance to 60. Then, press OK (see the following
screenshot).

4.	 Left-click on the same blob to see the effect of the tolerance setting on the
selection:

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 5

[85]

The wand tool allows us to set a tolerance, which means that values that fall within
the tolerance relative to the selected pixel will be included in the selection. A value
of 0 will only consider pixels that are identical. When enabling thresholding, the
tolerance will be ignored (basically, it is set to 0). The mode allows you to use the
4-connected or 8-connected neighbors to determine the selection. The difference
between a tolerance of 0 (left image) and 60 (right image) for the blobs example can
be as follows:

This tool can be very efficient for selecting organic shapes such as these blobs.
However, it requires the contrast between the object (the blobs) and the background
to be high. If you set the tolerance higher, in the blobs example for instance, not
only is the object selected, but also background. If you try a tolerance value of 150
in the blobs example, the selection would still be OK. However, it already includes
some background pixels. A tolerance value of 160, however, would include almost
the entire image if you click on one of the blobs' lighter pixels. There is a different
way to select organic shapes such as blobs using the particle analyzer, which will be
discussed later on.

www.it-ebooks.info

http://www.it-ebooks.info/

Basic Measurements with ImageJ

[86]

Line selections and measurements
Besides the area selection tools for measurements, there are also line selection tools
that can be used for measurements. Line selections can be useful to select thin,
elongated structures. Brain cells have a basic structure with a cell body and long, thin
processes called neurites. Measuring along these thin processes can be done using
line selections to determine characteristics such as length. In time series, a line along
the neurite will allow for measurement of intensity over time using a specialized
visualization of dynamics called a kymograph.

Kymographs
A kymograph is a representation of all the pixels along a line for each frame or slice.
This type of image shows the dynamics of objects. Straight lines that run from top to
bottom of the image represent static objects, while angled lines indicate movement.
The steeper the angle, the faster the object moves. This can be used to measure
the velocity of objects. It is also a very simple visual aid to identify movement in a
confined space. This latter point is an important distinction. Any object that starts on
the line but leaves it on either side will not be visualized and cannot be measured.

Let's look at a very basic kymograph of the time series we used in the previous
chapter when we normalized a time series. Open the time_series.tif image in
ImageJ. Next, we will trace one of the stretches where many puncta are present. To
trace an irregular shape like we have here, we want to select the segmented line
region.

1.	 Right-click on the line tool in the ImageJ main interface and select Segmented
Line from the options presented.

2.	 Draw a line as indicated in the following image (feel free to take a different
stretch).

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 5

[87]

3.	 If you wish to create multiple kymographs, you can add each line to the ROI
manager using Ctrl + T.

www.it-ebooks.info

http://www.it-ebooks.info/

Basic Measurements with ImageJ

[88]

Make sure that the line that you draw intersects the puncta and that you stay along
their path. As stated earlier, the kymograph will only show what is on the line! As an
exercise, you can draw a line more accurately by first creating a maximum projection
and drawing the line there and then transferring it to the time series. To do so,
perform the following steps:

1.	 Create a maximum projection by going to Image | Stacks | Z Project… and
selecting Maximum intensity.

2.	 In the new image, select a stretch using the segmented line and add it to the
ROI Manager.

3.	 Select the original time_series.tif window.
4.	 Transfer the selection by either selecting the added ROI from the ROI

Manager or by going to Edit | Selection | Restore Selection from the menu.
Note that the latter option will only work for the last active selection, while
the former option will work for any number of selections.

Now that we have our line, we will create the kymograph by going to Image |
Stacks | Reslice [/]… from the menu. Alternatively, you can press the forward slash
key (/). If you have a recent version of Fiji, you could also select Analyze | Multi
Kymograph | Multi Kymograph to create a kymograph. When using the Reslice
option, follow these steps:

1.	 Make sure that the line is the active selection by selecting it in the ROI
Manager.

2.	 Select Image | Stacks | Reslice from the menu or press the forward
slash key.

3.	 Select the Avoid interpolation checkbox and press OK.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 5

[89]

After pressing OK, a new image opens. It has a width equal to the length of the line
and a height equal to the number of frames (600). Here are the first 300 lines from the
earlier selection:

When using Fiji, using the Multi Kymograph tool that is located in the Analyze
menu can generate the same effect. This plugin has an additional feature that allows
you to average a few pixels along the line's length. This will reduce the effects of
noise along the line by averaging pixel intensities. To use this plugin, use these steps:

1.	 Select line selection in the ROI Manager.
2.	 Select Analyze | Multi Kymograph | Multi Kymograph from the menu.
3.	 Enter a value for line thickness: a value larger than 1 will create an average,

in this case use 3 and press OK.

www.it-ebooks.info

http://www.it-ebooks.info/

Basic Measurements with ImageJ

[90]

The kymograph clearly shows that some of the puncta are moving, while others are
more static. Depending on the line you drew, you should get more or less the same
result, although some areas have less movement. As this selection was a single line, it
is also clear from this example that some of the puncta move in a different direction
than others.

To measure velocity in a kymograph (remember that velocity is distance divided by
time), all we have to do is draw a single line across each section that is not vertical.
Vertical lines have zero distance and, therefore, a velocity of 0. To make it a little
easier to do the calculations, we will first change the calibration of the image (refer
to Chapter 2, Basic Image Processing with ImageJ, for details on how to do this). Set the
pixel width to 266.67 and the pixel height to 0.125. The unit can be set to pixel.
What we do here is specify that the width (x coordinates) is in nanometers, while the
height (y coordinates) is in seconds. ImageJ does not fully support this notion, but
this will function for our purposes nonetheless.

To perform the measurement, proceed as follows:

1.	 Select the Straight Line tool and draw a line through the center of a track for
as long as the line stays in the middle of that track.

2.	 Make sure that the Bounding box option is selected in your measurements.
3.	 Press Ctrl + M to measure the current selection, which will be added to your

results.
4.	 Measure the next part of the track by dragging the top handle of your line to

the next point where the track starts to change velocity and measure again.
5.	 Repeat this process until the track disappears from the kymograph.

As the Bounding box option was selected, you will have four columns in your
results table, labeled BX, BY, Width, and Height. For velocity measurements, we
only require the width and height parameters. The width is equal to the distance
that was traveled, while the height is equal to the time spent traveling. To get the
correct value for velocity, we will divide the width by the height to get the velocity,
expressed in nm/sec with the calibration mentioned earlier.

This method of calculating the velocity for moving particles is not
very difficult, but it is very time consuming and error prone. Also,
kymographs are not suited for objects that travel in arbitrary directions
in space (that is, not along a line). So, for that type of object and for a
more detailed approach to tracking the movement of objects, we will
revisit this topic in a later chapter.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 5

[91]

Line profiles
In the previous section, we saw what we can do using a simple line selection and
a time series for quantification. Line selections can also be used for single images,
especially when quantifying features related to intensity, (co) localization, and
intactness. For these types of assessment, we would like to know the intensity profile
of an object. To create an intensity profile, we can use a straight line or a segmented
line selection.

In the following example, we will look at the distribution of rings within a section
of a tree. When trees grow, they add a ring every year of young wood. The thicker a
ring is, the faster the tree grows, indicating favorable conditions for growth (sunlight,
mild temperatures, rainfall, soil conditions, and so on). For this kind of analysis, we
need to know two things: the number of rings and the thickness of each ring.

To start with, open the Tree Rings image from File | Open Samples. The image
that opens shows a partial section of a tree, with the tree center at location (135,54),
approximately. The rings can be seen as white areas separated by dark lines. Each
dark line is the boundary of a growth ring. When you zoom in on the center of the
tree, it is immediately apparent that the rings are not equal in width. The fourth ring,
for instance, is quite thin, while the fifth ring is five times thicker. For the analysis,
we could use the same strategy that we used for the kymograph. We could draw a
line from dark border to border and measure the length each time. This has a very
big drawback. It is very time consuming (again), and it will be difficult to keep the
line straight. Measuring the width of each ring should be based on the shortest
distance between each ring border.

To create a line profile, select a line across a section of the image that you wish to
profile and go to Analyze | Plot Profile from the menu (or press Ctrl + K):

www.it-ebooks.info

http://www.it-ebooks.info/

Basic Measurements with ImageJ

[92]

This shows the line profile at the bottom of the figure across the line in the image.
It shows the intensity along the line's pixels. The plot profile window also has an
option to show a live updating plot. This means that when the region is moved
or resized, the plot is updated immediately. Each of the low points in the profile
indicates a tree ring border. When we press the List button in the Plot Profile
window, a window opens with intensity values for each pixel along the line. If we
copy this to a spreadsheet program, we can calculate the distance between each
valley to determine the width of each ring in pixels (without calibrating the image,
the real width in practical units is unknown). The number of valleys gives the
number of years.

Alternatively, it is possible to measure the widths of the rings using the profile plot
as shown earlier. To do this, we must draw a segmented line on the profile plot.
Every graphics window (text and results windows excluded) in ImageJ can be used
to draw selections. For this example, it is important to disable grid lines in the profile
plot before creating the profile plot. This can be done by unchecking the Draw grid
lines checkbox in the profile plot settings, which can be found by selecting Edit |
Options | Profile Plot Options… from the menu.

1.	 Draw a segmented line from the lowest point of each valley starting from the
left-hand side.

2.	 Set the foreground color to black using the color picker and draw the line
using Ctrl + D or by going to Edit | Draw from the menu.

3.	 Make sure that your measurement settings include the Bounding rectangle
option.

4.	 Select the wand tool to measure the area underneath the graph. To measure
the width of a tree ring, click with the wand tool above your segmented line,
but below the black line of the graph. This will select the white pixels of the
chart, which is continuous up to the black line of the graph. You will see that
only the section underneath the graph until your segmented line selection is
selected (see the following image).

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 5

[93]

5.	 When you press Ctrl + M to measure this selection, you will get the width
and height for the selection.

The width measurement will be the thickness of the tree ring. By doing this for
each area between the valleys, you can measure the thickness of each ring. Note
that if the area underneath the graph is meaningful for your measurements, then
selecting Area in your measurement options would give you this parameter as
well. A similar method is used when analyzing electrophoresis gels and western
blots. For this purpose, ImageJ has a special collection of tools to analyze gels.
These tools can be found by going to Analyze | Gels, with an explanation of
how to use it at http://imagej.nih.gov/ij/docs/guide/146-30.html#toc-
Subsection-30.13 and a video explaining it at http://imagejdocu.tudor.lu/
doku.php?id=video:analysis:gel_quantification_analysis.

www.it-ebooks.info

http://imagej.nih.gov/ij/docs/guide/146-30.html#toc-Subsection-30.13
http://imagej.nih.gov/ij/docs/guide/146-30.html#toc-Subsection-30.13
http://imagejdocu.tudor.lu/doku.php?id=video:analysis:gel_quantification_analysis
http://imagejdocu.tudor.lu/doku.php?id=video:analysis:gel_quantification_analysis
http://www.it-ebooks.info/

Basic Measurements with ImageJ

[94]

Colocalization
In the previous sections, we looked at ways to measure certain aspects of our
images, such as velocity and length. This section will look at a different aspect of
measurements that involve the colocalization of different signals. Colocalization
means that two (or more) objects are within proximity of each other. Whenever two
signals overlap in space, we can conclude that they are at the same location, within
the boundaries of the resolution that an imaging system allows us. In biology, the
localization of two labeled structures or proteins provides clues to whether the
protein is contained within a structure or whether it moves to a certain location after
being stimulated. For dynamic structures such as cells, we can observe a change in
the amount of colocalization, depending on time or stimulation.

Semiquantitative colocalization
Semiquantitative colocalization means that you examine the amount of colocalization
by eye or using a crude measurement and classify it (rather arbitrarily) as
colocalized or not. This can be a very good place to start off. However, it is very
difficult to conclude anything if the results are not black and white. For this type of
colocalization, we only require an image for each signal, and we need to merge them
to see the colocalization. This is sometimes done automatically when we acquire
images, and sometimes, images need to be merged by hand. To merge two different
images, a few prerequisites need to be met:

•	 Images need to be the same size (X, Y, and optionally Z or T)
•	 Images need to be the same type (8-bit, 16-bit, and so on)
•	 Images cannot be moved between each channel's acquisition

If these conditions are met, then the result of the colocalization should provide a
qualitative result.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 5

[95]

To merge two channels, go to Image | Color | Merge Channels… from the
menu. Currently, ImageJ supports merging seven different images into a single
multichannel image using seven different LUTs: red, green, blue, gray, cyan,
magenta, and yellow. The most frequently used combination is Red/Green, where
colocalization results in yellow pixels. Another good combination of colors is
Green/Magenta, with colocalization showing as white pixels. The latter option is
recommended for publications, as people with color-blindness can still appreciate
the colocalization. Note that if one channel has very low intensities and the other
channel has high intensities, the human visual system will only perceive the brighter
channel. For a good visualization of colocalization, both channels need a similar
distribution of gray values. The respective histograms should look similar.

A simple way to quantify this colocalization in a rudimentary way is to look at
the overlap of bright pixels. To do this, we can take a threshold for each channel
and create a mask for each image. To look at the overlap, we can use the image
calculator to perform an AND operation. Overlap of pixels is classified as pixels that
are 1 (technically, 255) at the same location in both images. After performing this AND
operation, we can determine the amount of overlap by counting the number of white
pixels in the resulting image. A simple way to do this is by taking the histogram
by pressing Ctrl + H and then pressing the List button in the resulting histogram
window. By looking at the value for 255 (at the bottom of the list), you will get a
count for the number of pixels that overlap. We will revisit this topic in Chapter 8,
Anatomy of ImageJ Plugins, where we will apply more rigorous quantification using
some of the plugins supplied with Fiji.

Particle analysis
This section will look at the methods available for particle analysis, a field that
deals with detecting multiple (similar) objects within an image, with the purpose
of segmenting and quantifying them. Many problems can be defined as a particle
system, which consists of many individual cells within a single image, holes in
a surface, detecting cars on a road, and so on. The basic particle analysis step is
detecting or segmenting the particles in a single image.

www.it-ebooks.info

http://www.it-ebooks.info/

Basic Measurements with ImageJ

[96]

Preprocessing and preparations
To detect particles, they first need to be separated from the background. To do
this, we need to create a mask that isolates all the objects from the background. We
already saw how to set a threshold in the previous chapter and how to use it to
create a mask. This mask image will be used for particle analysis. For this example,
we will use a relatively simple example. Open the Blobs image by going to File |
Open Samples in the ImageJ menu. When the image opens, go to Image | Adjust
| Threshold… and set the threshold using the Auto button. Make sure that Dark
background box is not checked. You should now see something similar to the
following image:

The red areas indicate the foreground, which are our potential particles, while
everything else will be ignored. The goal will now be to segment the particles based
on two main characteristics: their shape and size. We will finish this step by creating
the mask by selecting Edit | Selection | Create Mask from the menu (the mask is
the image on the right-hand side).

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 5

[97]

Before we start detecting the particles, we first need to know a few things about
them. We need to know the size of the particles. There are two simple ways of
determining the size of all the particles within this image, and we will start with
the most straightforward one. To determine the size of a specific particle, we will
just draw a region around it and measure it. In the section on area measurements,
we used polygon selection to measure the area and shape descriptors. For particle
analysis, we need to determine what the smallest particle is that we may still
consider a real particle.

To get started, let's take the particle at (103,111) as the smallest real particle. After
drawing a polygon around it, you may get an area of 363 pixels and a circularity of
0.9188. If we take a less circular particle, for instance at (133,83), we get an area of 434
and a circularity of 0.7329. Let's take the minimum value for each parameter of these
two observations, giving us a minimum area of 363 pixels and a minimum circularity
of 0.7329 to continue with. We can now perform particle analysis by selecting
Analyze | Analyze Particles… from the menu. Enter the following parameters
in the dialog that opens:

www.it-ebooks.info

http://www.it-ebooks.info/

Basic Measurements with ImageJ

[98]

The size is the range of sizes that will be counted as particles, measured in square
pixels (area). The circularity range that we found is now defined as the particles
that are round or more round than our estimate. For the Show option, you can
select multiple output types, including outlines. When you use the Add to Manager
option, this output is not really required anymore and can be set to Nothing. When
you do not wish to measure particles that are only partially in the image, you must
select the Exclude on edges option. In Chapter 9, Creating ImageJ Plugins for Analysis,
we will look at an implementation of particle analysis in a time series.

After clicking on OK, the particles will be added to the ROI Manager, at which point,
segmenting the particles is completed. We can now measure the particles using the
same methods for any other area selection that we looked at in the earlier sections.
Another way of setting the parameters for area and circularity is to run the particle
analysis, but without restrictions on either the size or circularity parameter. This
will detect every particle within the image, and the results can be filtered after the
segmentation. Both methods should give you similar results, with an equal amount
of work.

Summary
In this chapter, we saw some methods to measure parameters within images and
time series. We used some of the techniques used in the previous chapters to extract
data from our images. You learned how to visualize dynamic data in a single image
(kymographs). We looked at colocalization in a qualitative way, as a prelude to
quantitative analysis later on in the book. Finally, we looked at particle analysis as a
way to detect similar objects within a single image.

In the next chapter, you will use some of the techniques that you learned and apply
them in macros to increase your efficiency.

www.it-ebooks.info

http://www.it-ebooks.info/

[99]

Developing Macros in ImageJ
In this chapter, we will take a look at ways to automate our image processing to
allow for faster and more efficient processing. The processing we did earlier was
adequate, but time consuming. When dealing with very large stacks or time series,
or with many individual files, the processing we performed was good but inefficient.
We will look at macros in ImageJ and understand how they will help us with the
processing. In this chapter, we will cover the following topics:

•	 Recording and running macros
•	 Modifying macros
•	 User input in macros
•	 Progress in macros
•	 Running macros in batch mode
•	 Installing macros

Recording macros
Macros are sets of commands that allow you to perform a series of tasks on a single
image or multiple images. In a macro, you can place all the commands you can
find in the ImageJ menu structure. A very basic application of a macro is to convert
images from one specific type into another type. In order to create a macro, we could
create one from scratch by typing all the commands in a text file, which we can then
execute. However, if we are using commands from the menu structure, an easier way
would be to use the macro recorder.

www.it-ebooks.info

http://www.it-ebooks.info/

Developing Macros in ImageJ

[100]

The macro recorder will register every command and selection you make, and place
them in a simple editor. This is a very simple and fast way to create a macro that
will perform a basic set of tasks on an image. To begin recording, go to Plugins |
Macros | Record… from the menu, which will open a new recorder window:

The recorder window has a list to allow different types of recordings. The default
is macro, but it is also possible to record commands for a plugin using Java as
the recording type. ImageJ also supports JavaScript code and Beanshell scripts
to run, and these types can also be created here. When JavaScript or BeanShell
is selected, the commands recorded will look slightly different from the default
macro commands. There is also an option to set the name of the new macro you are
creating. Macros in ImageJ do not require an underscore in their names and have the
.ijm extension to indicate that they are ImageJ macros. When you have performed
all the processing steps you wish to unleash on your image, you can press the Create
button to finalize the macro for saving.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 6

[101]

Recording a macro for conversion
Let's take a look at a simple recording of a macro that will take a multichannel image,
change the lookup table of the blue channel, and convert it to an RGB image. We will
use the sample image of the HeLa cells. For better processing, we will not include
the open image command. So, we will first open the image by going to File | Open
Samples | HeLa Cells. We will then start the macro recorder by going to Plugins |
Macros | Record… from the ImageJ menu. Make sure that the type is set to Macro,
and enter a name for your macro. Next, we will perform the steps we wish to record
in the order we wish to use them. To start with, activate the image window and
select the blue channel by pressing the right arrow key twice. You will see that there
are now two commands in the recorder window:

run("Next Slice [>]");
run("Next Slice [>]");

Note that when you click on the channel bar with the mouse, nothing will be
recorded and no commands are added to the recorder window.

The recorder does not record mouse clicks that change the state of the
display. It does not record mouse clicks to change the channel, frames,
or slices in stacks nor when you adjust the brightness/contrast. Only
the Set and Apply commands will show up in the recorder.

With the blue channel selected, we will now change the LUT of this channel to Cyan
by going to Image | Lookup Tables | Cyan from the menu. This will add a new
command to the recorder, corresponding to the action we just performed:

run("Cyan");

We will now perform the last step in this process, which is converting the image to
an RGB image. To do so, go to Image | Type | RGB Color from the menu. A new
image will be created of the RGB type, and a new command is added to the recorder
window:

run("RGB Color");

www.it-ebooks.info

http://www.it-ebooks.info/

Developing Macros in ImageJ

[102]

Now, we have a complete macro to convert a three-channel image into an RGB
image, with a change of the LUT in one channel. The final recorder window will
look like the following screenshot:

The name of the macro I have selected is convert_3ch_rgb.ijm. When you create
the macro, this will be the default name used when you save the macro. When you
push the Create button, a new window will open that will look a little different,
depending on the distribution of ImageJ that you are using. When using Fiji, the
Script Editor window will open, with the commands that we recorded in the editor:

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 6

[103]

The advantage of the Fiji script editor is that it has syntax highlighting (indicated
by the colors for different elements) and line numbering. It also supports a tabbed
interface, allowing multiple macros to be opened at the same time within the same
window. This editor also has a run button at the bottom of the window to let you run
the macro directly.

In the standard ImageJ distribution, the editor will look a little more basic, and it
does not have the added features that the Fiji script editor provides:

Notice the lack of highlighting and the absence of line numbers in the editor. Once
we have created the macro, we can run it using the keyboard shortcut Ctrl + R or by
going to Macros | Run (standard ImageJ) or Run | Run (Fiji).

The recording of the macro allows for many steps to be recorded in sequence.
However, there is a drawback to the macro as we have it now: we need to open the
image we want to process ourselves, and we need to save the resulting image as
well. Furthermore, the macro in its current form only processes the currently active
image. As long as only one image is open, this will not pose a problem. However,
when we have more than one image open when we run the macro, we have to make
sure that the window that we want to process is selected before we run the macro. In
the next section, we will try to add some commands to deal with opening and closing
images to allow for more robust processing.

www.it-ebooks.info

http://www.it-ebooks.info/

Developing Macros in ImageJ

[104]

Modifying macros
The macro we created in the previous section was effective. However, it does
not deal with opening and closing images. So now, we will look at the process of
modifying the current macro we now have. Most of the work will be done in the
editor window, but we will still use the recorder window to discover the functions
required to open and close images.

Let's start by adding an option to open the image you wish to process to the macro
that we have. I will use the image we used earlier. However, since you are more
likely to have images saved locally on a disk, we will save the HeLa Cells image to
the local disk. Let's make a folder named processing on the desktop and store the
HeLa Cells image in it. To save the image, go to File | Save or press Ctrl + S and
select the folder on the desktop as the destination. After saving the image, we can
start with the process of opening an image within our macro.

To start with, we need to make sure our previous macro is opened in the editor
window and start the macro recorder. We also need to make sure that there are no
images open. Now, we will start by opening the image we saved by selecting File |
Open…. Then, we will select the image from the folder we created in the previous
step. In the recorder window, we will now see a line that tells ImageJ to open the
image. When done on our computer, <username> will be set to the user name that
was used when you logged in:

open("/Users/<username>/Desktop/processing/hela-cells.tif");

This tells us that ImageJ requires the open()function with a single parameter, which
is a line of text (called a string, delimited by double quotes in Java/ImageJ). This
line of text contains the full path of the file you wish to open. To implement this
command into our macro, we need to copy or type this command into the editor
window on the first line. We can now test whether everything works as we expect
by running the macro. To do so, we need to close the image and run the macro by
selecting the editor window and pressing Ctrl + R to run the macro. If all goes well,
the image will open, the blue channel will be selected and changed to cyan, and
finally, the image will be converted to an RGB image.

Next, we will look at how to save the new image to the same folder but with a
different name. We need to make sure the recorder window is still open, and then
click on the newly created image to activate it. Next, we will save the image as a TIFF
file by going to File | Save. We will keep the name as it was set by ImageJ. In the
recorder window, we should now see a new line with the save command:

run("Save", "save=[/Users/<username>/Desktop/processing/hela-cells.tif
(RGB).tif]");

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 6

[105]

This command is a little more complex than the open command, as it uses the more
general run() method. The run method takes two parameters: a string with the
command, (in this case Save) and a string with the form save=[], with the filename
between the square brackets for saving. Note that the user name was replaced
with <username> in this command. It should be changed to the user name of your
logged-in account. We can now add this command to our script to perform the save
function.

Next, to complete the process, we will close all the images that are currently open.
To do so, we will select the recently saved image and close it. Alternatively, we
will select File | Close All from the menu. If we close an image or use close all, the
following line will be placed in the recorder window, respectively:

close();
run("Close All");

The first line means the currently active window will be closed, while the second
command will close all open images. Since we want to close all the images that are
open, when we are finished processing, the second command is more suited for our
macro. We will add the Close All command to the script, which means our final
macro will look as follows:

www.it-ebooks.info

http://www.it-ebooks.info/

Developing Macros in ImageJ

[106]

When using the script editor in Fiji, we can also see the runs that were performed
with the current macro in the list below the editor. Using the Clear button allows us
to reset this history. When you open this macro as it is now, it will open the image,
change the LUT of the third channel, convert it to RGB, save the resulting image,
and then close all the images. Even though this macro is very simple, it processes
this image much faster than we will ever be able to do by hand. There is only one
problem with this macro: it only works for a single image in a specific location. If
we want to process many different images, this macro will not be very practical. We
would have to manually change the macro for each file that we wish to process. So,
in the next section, we will add the possibility for the user to select a file when the
macro is run.

User input in macros
Our previous macro was very efficient at processing a specific image, but it would
be more efficient if the macro asked for the file to be processed. To do this, we will
need to add a method that will ask the user for a file. The only problem is that we
cannot use the recorder to get this function. We need to find a function that asks the
user for a file location, which can be done with the built-in macro functions available
in ImageJ. On the ImageJ website, there is an extensive list of all the macro functions
that you can access at http://imagej.nih.gov/ij/developer/macro/functions.
html. The functions are sorted alphabetically.

Opening a specific file
The function we want is a file open dialog that asks the user to locate an image file.
The easiest way to find a function on this page is to use the find function of your
browser to search for relevant keywords. To find the function we need, we will use
the search term "file open dialog" in the search box. When we enter the search term,
there will be multiple occurrences on the page, so we will look at all the descriptions
for each occurrence. In this case, the function that describes what we need is a
function called File.openDialog(title), and the description says that it will
display a file open dialog that returns the path of the file that the user selects. We will
now change our current macro to use this function to allow us to change any file that
we select. We will change the first line of our macro into the following two lines:

fname = File.openDialog("Select 3 channel image");
open(fname);

www.it-ebooks.info

http://imagej.nih.gov/ij/developer/macro/functions.html
http://imagej.nih.gov/ij/developer/macro/functions.html
http://www.it-ebooks.info/

Chapter 6

[107]

The first line tells ImageJ to display a file open dialog with the title Select 3 channel
image and then store the path that the user selected in a variable called fname. On
the next line, we modified the open() command to use the fname variable to open
the image that the user selected. One thing to note in this example is that the variable
type is not specified. Macros in ImageJ are weakly typed and do not require that you
specify the type beforehand.

Saving an image to a folder
So now, we made the macro a little bit more flexible. We can now select any file we
wish at any location on the hard disk or attached storage. The only problem is that
the image is still saved to a fixed location with a fixed name. So now, we have to
change the portion of our macro that deals with saving the image. There are many
possible solutions to this problem. We can save the new image in the same folder as
the image we opened, or we could save it in a different folder where we collect all
the processed images. We will start with the first option: saving it to the same folder
as the image that we opened.

To get the name of the folder we selected, we can use a function called File.
directory(), which will give us the directory of the last file that was opened using
a file open dialog. This is exactly what we need for our save function, so let's start
by adding this function in our code. To do so, we will add a new line before the
run("Save", …) command and add the following code:

fdir = File.directory();

This will store the path of the last opened image in a variable named fdir. In order
to save a file, we need the path but also the filename of the new file. The filename in
this case is just the title of the created image, so we will use a function to get the title
of the current image by adding this line underneath the fdir line:

newName = getTitle();

We will store the value of the new filename in a variable named newName. We are
now ready to modify the save function to use the two variables that we created.
What we need to do is combine the fdir and newName variables. We can do
this within the save command, so we will change the old save command to the
following line:

run("Save", "save=["+fidr+newName+".tif]");

www.it-ebooks.info

http://www.it-ebooks.info/

Developing Macros in ImageJ

[108]

We have replaced the path that was specified between the square brackets with the
two variables. We had to add a set of quotes between the square brackets to interrupt
the string, and we used the + operator to concatenate the strings. We specified the
extension of the file we wished to save. As the title of the image does not contain
an extension at the end of the name, we need to add it. Alternatively, we could use
the saveAs macro command to achieve the same result (adding the extension is not
required because we will save the image as a TIFF file):

saveAs("Tiff", fdir+newName);

In this case, the RGB Color command creates a new image. When calling
Save on a new image, we can change the name, and it will work the same
way as the saveAs command. If your function does not create a new
image but you would still like to store the result as a separate file, use the
saveAs command. Otherwise, the save function will overwrite the image
on the disk with the modified data.

Our macro should now look like this:

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 6

[109]

Our macro is now more flexible. We can select any file for processing, and the result
will be stored in the same folder as the original but with a modified name. The next
step is to modify the code to control which channel will be modified.

Adding choices
Our macro now allows us to modify any image that we can locate and save the result
in the same folder. In the next step, we will ask the user which channel we wish to
change. We need to ask the user for a number between 1 and 3, which will be the
channel that will be updated. There are two basic ways of retrieving a number: we
could use a text field where the user can enter a number, or we could present a list
of numbers where the user can select the correct one. The first method is very easy,
but also requires additional checking. What if the user enters a value larger than the
number of channels (or not a number at all)? A slightly safer method is to give the
user a limited set of choices where only one can be selected.

We will use a set of functions related to creating a dialog and adding fields to it. We
will need to place this code somewhere at the beginning of the macro, before we call
the next slice command. We will place the following code directly after the open
command:

Dialog.create("Select a channel");
Dialog.addChoice("Channel number:", newArray("1","2","3"));
Dialog.show();

The first line will create a dialog with the title Select a channel. Next, we added a
choice list to the newly created dialog with an array containing the options 1, 2, and
3 as strings. Finally, we called the show() method to display the dialog we created.

We created a dialog that asks the user to select a channel number, but we did not
use the selection yet. If we run the code as it is now, the result would be the same
regardless of the selection we make in the dialog. So, our next step is to retrieve the
user selection and extract the number that the user selected. The function to do this
is getChoice(), which is part of the dialog function. We will add it directly after the
show command as follows:

chChoice = Dialog.getChoice();

This command will store the selected choice in a variable called chChoice. However,
if we look at the description of the function, this function returns a string. This is a
problem, because we need it to be a number in order to select the correct slice. There
is a function available to convert a string to an integer in the macro language. It is
called parseInt(), and we can implement it as follows:

sliceNumber = parseInt(chChoice);

www.it-ebooks.info

http://www.it-ebooks.info/

Developing Macros in ImageJ

[110]

The sliceNumber variable now contains the user's channel selection. Next, we will
use this number to select the correct slice in our image. We could use a small loop
combined with our next slice commands. However, there is a faster and simpler
method using a built-in macro function called setSlice(). To do this, replace the
two lines with run("Next Slice [>]") with the following line:

setSlice(sliceNumber);

If we wish to also change the color of the lookup table that will be used, we could
add a second choice list to our dialog using the same methodology. We could just
add another addChoice() command, but this time, with several choices of LUTs (for
example, cyan, yellow, magenta, and so on). The getChoice() function retrieves the
results of each choice list in the order they are added to the dialog. If you add the
LUT choice after the channel number, it would be retrieved with the second call to
getChoice(). Our macro will now look as follows (I have added the color choice
as well):

fname = File.openDialog("Select 3 channel image");
open(fname);
Dialog.create("Select a channel");
Dialog.addChoice("Channel number:",newArray("1","2","3")));
Dialog.addChoice("Select color:", newArray("Cyan","Magenta","Yell
ow"));
Dialog.show();
chChoice =Dialog.getChoice();
clrChoice = Dialog.getChoice();
sliceNumber = parseInt(chChoice);
setSlice(sliceNumber);
run(clrChoice);
run("RGB Color");
fdir = File.directory();
newName = getTitle();
run("Save", "save=["+fdir+newName+".tif]");
run("Close All");

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 6

[111]

There is now a new variable called clrChoice, which holds the value of the color
selection that the user makes. If you run the modified macro, you would have to
select the image you wish to process and then set the channel and LUT color. After
this, the image will be processed according to the values you set. The macro is now
quite flexible and allows for different types of conversions of a specific channel with
a specific color. We now only need one more modification to make it a little more
robust. We need to check whether the image that the user selected actually has three
channels or not.

www.it-ebooks.info

http://www.it-ebooks.info/

Developing Macros in ImageJ

[112]

Performing input checking
To add a check for the number of slices in the selected image, we need a simple
conditional statement. The if statement will perform this check. We will add this
conditional after we open the image, but before we ask the user for input. If there are
less than three channels, we need to stop the execution of the macro and close the
image we opened:

if(nSlices<3) {
run("Close All");
exit("Not enough channels in the image (min. is 3)!");
}

The nSlices function is a built-in macro function that returns the number of slices of
the current image. We will check the value of the number of slices against the value
that we require. If there are insufficient channels, we would close all images and
abort the macro using the exit() function.

When using the nSlices function, remember that ImageJ calculates this
value by multiplying the number of slices, frames, and channels of an
image. When working with (hyper)stacks, the nSlices function does
not return the value you might expect. For example, a 5D image with two
channels, five slices, and 51 frames will return a value of 510 (2*5*51).
For stacks, you can use the Stack methods. To count the number of
channels, you can use the Stack.getDimensions() function.

There are two forms of the exit function: one without a parameter and one with a
string parameter. The string parameter will display a message indicating why the
macro was aborted. It is recommended that you use the latter form to make a user
understand why the macro is not performing a task by providing feedback. Our
macro should now look like this:

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 6

[113]

Our macro is now robust and will run in a predictable way every time we run it.
If our image has very few slices, it would abort. If it has more slices, it would run
correctly. However, we will be unable to modify any slice beyond the third slice. So,
our final modification will check for the number of slices in the image and adjust our
choices accordingly by manipulating the array of slice numbers.

www.it-ebooks.info

http://www.it-ebooks.info/

Developing Macros in ImageJ

[114]

To change the content of the choice list, we first need to create an array that is
slightly longer than the one that is currently specified. We want to limit the number
of channels somewhat, so we will create an array with five channels as a maximum.
We will also adjust the check for the number of channels to reflect this alteration. We
will start by creating an array containing numbers 1 through 5 as strings and modify
the conditional statement:

chNumbers = newArray("1","2","3","4","5");
if(nSlices>chNumbers.length) {
 run("Close All");
 exit("The many channels in the image (max is"+chNumbers.
length+")!");
}

This will store the channel numbers in the chNumbers array, and the conditional
array will now check whether the number of slices is not larger than the length of
that array. This method allows us to easily enter additional channel numbers in the
future to the array, without having to modify any other code.

Next, we added the list of channel numbers to our choice list in the dialog. However,
we have to take into account that the user can select an image with fewer channels
than five, so we need to change the array that we add to the choice list to reflect the
number of channels that are present in the selected image. To do this, we can use
the trim function that works on arrays. The trim function takes two parameters:
the first one is the array, and the second one is an integer that specifies the number
of elements that need to be returned, starting from the first element. We can use the
nSlices function to give us the number of elements we want the trim function to
return:

Dialog.addChoice("Channel number:", Array.trim(chNumbers, nSlices));

If we now run the modified macro on our HeLa Cells file, we would see that the
choice list for the channel number only contains the values 1, 2, and 3, which is
exactly what we would expect for this image. If we opened another image with five
channels, we could choose from five options in the list. You can try this by saving the
Neuron (1.6M 5 channels) sample image to test this. The final macro will now look
like the following screenshot:

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 6

[115]

For the next step in processing using macros, we will create a macro that will
perform processing steps on a list of files contained within a folder. This process will
require some form of progress to let the user know that something is happening and
to give a hint of how long the processing will take.

www.it-ebooks.info

http://www.it-ebooks.info/

Developing Macros in ImageJ

[116]

Showing progress in macros
In the previous sections, we saw that we can process a single image file using a
(relatively) simple macro. Although the macro is quite flexible, it still requires the
user to select each file individually and to set the values each time. Many times, you
wish to perform the same processing steps on a collection of many similar images.
The images have the same specifications (number of channels, colors, and so on) but
are of different samples or individuals. When processing large numbers of images, it
is useful to show progress to indicate how far we are in the processing and provide
some visual feedback of how many items have been processed. The easiest type of
feedback is to present the percentage of files that have been processed. Any value
lower than 100 percent indicates that we are not done yet. If we keep track of how
long it takes to process 10 percent of the images, we can (roughly) estimate the time
required to finish the processing. Another useful type of feedback is to provide a
message at the end of processing that we are finished.

For this section, we will create a different macro that will take a folder with time
series images, each containing 20 frames and two channels. We will take the first
channel of each image and create an average projection of the first five frames and
save the result in the same folder. We will then take the second channel of each
image, create a maximum projection, and store it in the same folder as well. The
folder will contain 10 files that need to be processed, as well as a single text file that
contains a description of the files in the folder. We will start by creating a macro for
the processing steps in the next section.

Processing the time series
We will begin by creating the steps to perform the processing. We can use the
recorder as well as the built-in macro function reference page in the ImageJ website
to help us with the processing. We will first open the image in ImageJ in the regular
way. The code to open the images one by one from a folder will be written later on.
Once the image is open, we will create the code that will process each channel. I will
introduce some useful constructs that will make the code a little more clear. I will
add comments to the code to indicate what is happening, and I will encapsulate the
processing in functions.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 6

[117]

Let's start by creating a function that will generate the average projection of the
green channel and save it. Creating a function in an ImageJ macro is very simple.
To declare a function, we will use the function keyword, followed by the name
of the function and the parameter list. For our green channel, the function declaration
is as follows:

function processGreenChannel() {

}

The function is called processGreenChannel and has no parameters (this will
change later on, but for now it is fine). Our first processing step is to generate an
average of the green channel. There are many ways of doing this, but for now, we
will use the most basic one. We will create an average for both channels and remove
the channel we do not want before saving. To create an average projection, we need
the recorder to discover the format of the command. Start the recorder by going to
Plugins | Macros | Record… if it is not already open. Next, we will go to Image |
Stacks | Z Project... from the menu and enter 5 for Stop slice, and Average intensity
for the method. We will see that the command that gives us the result is shown in the
recorder:

run("Z Project...", "stop=5 projection=[Average Intensity]");

This will be the first command we will add to our function to process the green
channel. Next, we wish to remove the red channel from this average projection. To
do this, we will go to Image | Stacks | Delete Slice from the menu. A dialog will
open, giving us a choice to delete the channel (there is not really a choice here). By
pressing OK, the first channel (the red one) will be removed. The recorder shows us
that the command used for this is the following one:

run("Delete Slice", "delete=channel");

We can add the same code we used to save the image in our previous macro to apply
here as well. Our function will now look as follows:

function processGreenChannel() {
 //create an average projection of the first 5 frames
 run("Z Project...","stop=5 projection=[Average Intensity]");
 //delete the red channel
 run("Delete Slice","delete=channel");
 //save the new image
 fdir = File.directory();
 fname = getTitle();
 run("Save","save=["+fdir+fname+"]");
 //close the saved image
 close();
}

www.it-ebooks.info

http://www.it-ebooks.info/

Developing Macros in ImageJ

[118]

Notice that we do not require the extension at the end of the name. The projection
command used a prefix to change the name (AVG_), and our original image already
had an extension at the end, which was preserved by the projection command. The
final step in the processing of the green channel is to close the image we have created
and saved. This time, however, we cannot use the close all command, as we are
not done yet with the processing of the original image. We will just use the close
command, which only closes the currently active image as indicated by the last line
of our function. I have included single-line comments in the function to indicate
what is going to happen in the next line(s) as an aid to understanding what will
happen next. This is a very basic programming tool that can save a lot of time when
we examine our code after weeks or months. Single-line comments are indicated by
text preceded by two forward slashes. If you need more text over multiple lines for
readability, there are multiline comments, which start with /* and end with */:

//single-line comment
/*
multi line comment
that is spread over
several lines.
*/

The function we will create for our red channel is very similar, except we will now
use a different projection method. Also, we must delete a different channel compared
to the previous function. The complete function to process the red channel is as
follows:

functionprocessRedChannel() {
 //create the maximum projection
 run("Z Project...","projection=[Max Intensity]");
 //select the green channel (which is number 2)
 setSlice(2);
 //delete the green channel
 run("Delete","delete=channel");
 //save the new image
 fdir =File.directory();
 fname = getTitle();
 run("Save","save=["+fdir+fname+"]");
 //close the new image
 close();
}

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 6

[119]

There are only two minor alterations compared to the processing of the green
channel. The type of projection was changed from Average Intensity to Max
Intensity, and the setSlice command was added to select the green channel
before calling the delete channel function. Note that if we also wanted to perform
a measurement on each of the channels, we could add some measurement code or
a function call before the close() statement to perform the measurement on the
selected channel.

Now that we have completed the processing code for each channel, we can already
see that there are many similarities between the two functions. It would be possible
to create a single function that will process each channel accordingly using a few
input parameters. In this case, you would need three parameters: one for the stop
point you wish to use for the projection, one for the type of projection, and one for
the slice number you wish to remove. We could do this for the current function, but
it may be simpler to keep separate functions. If we want to change something in the
green channel, processing it might mean we have to introduce even more parameters
to the function to make it work. This would make the function call very complex.
Therefore, it is easier to keep two separate functions. The only parameter that would
be useful in this context is the directory where the image will be saved. As we
will write code to process an entire directory, we will have the path to that folder
already present, so we can easily add it as a parameter. We will modify the function
definition as follows for the green channel processing function:

function processGreenChannel(fdir) {
...
}

This means that we can remove (or comment out) the line that provides a value to
fdir within the body of the function:

//fdir =File.directory();

In this case, I've commented out the line instead of removing it. This is generally
a good practice if it involves only a few lines, as it shows how the function should
work and what the function of the variable is. However, this is not advised for large
sections, as the code will become very long with dead code that you need to skip.

www.it-ebooks.info

http://www.it-ebooks.info/

Developing Macros in ImageJ

[120]

Our next step will deal with selecting the folder to create a list of files that need to
be processed. For the sake of overview, we will also create a function for this part.
The first step in this function will be to ask the user for a folder that contains the files
that need to be processed. When we search the reference web page, we will find a
function called getDirectory(string) that provides the functionality we need. In
the description, there is also a reference to the getFileList function. This function
will return a list of files in a specified directory path. We need both of them for our
folder processing function, which will look as follows:

function processFolder() {
 //get a folder for processing
 fdir = getDirectory();
 //create a list of files that we need to process
 flist = getFileList(fdir);
}

The point where we add this function description is not important for the processing
in our macro. The declaration can be anywhere within the macro, but I will place it
at the beginning of the code. It makes sense to place the function declarations in the
order that you expect them to be called.

At this point, it might be useful to introduce a simple tool that is available to debug
macros in ImageJ: the log window. The log window is a text window that can print
the value of a variable, allowing you to see whether the value is what you expect it
to be. It can also be used as a reference for the user to see which folders have been
processed, thus avoiding a folder being processed more than once. We will add a log
call to our function, showing the folder that is being processed as well as the number
of files that are present in that folder. Placing the following lines directly below the
flist statement will result in the following output:

//display the folder and the number of files
IJ.log("Current folder: "+fdir);
IJ.log("Nr of files: "+flist.length);

The last step is to go over each of the files and run our processing functions on the
image that we open. To do this, we will use a basic loop structure, the for loop:

//go over all the files in the file list
for(i=0; i<flist.length; i++) {
 //get the full file name
 fname = fdir + flist[i];
 //open the image specified by fname
 open(fname);
 //process each channel
 processGreenChannel(fdir);

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 6

[121]

 processRedChannel(fdir);
 //close all images when we are done
 run("Close All");
}

We ended the loop with a Close All statement to make sure that all images are
closed before we go on to the next file.

Fiji also provides a small list of templates that allow a general
framework for image processing in macros. For Fiji, two templates are
very useful. The first is the Process Folder template (Templates | IJ1
Macro | Process Folder), which can be used for the same purpose as
I am using for this example. The other template is the Scale All ROIs
template (Templates | IJ1 Macro | Scale All ROIs). This template
tells us how to go over a list of ROIs in the ROI manager and alter the
size of the ROIs.

For this loop, we might also want to show the processing progress to indicate how
many files we have processed. To do this, we will add a call to the showProgress()
function, which takes a single parameter between 0 and 1, indicating the fraction
of files that have been processed. We can place the call directly after the close all
command:

//show the progress
showProgress((i+1)/flist.length);

As arrays in Java are zero-based, we added a value of 1 to the index to indicate the
file number that was processed. The progress bar will be shown in the bottom-right
corner of the ImageJ window. This completes the macro to process an entire folder,
except that in the current state, we will still have two problems when we wish to
run it. We only have function definitions, but we don't have any direct calls to those
functions. We are missing the entry point for our macro. This point is easily resolved
by adding a call to our processFolder function at the beginning of the macro.

The second problem is a little harder to solve. As specified at the beginning of this
section, we also have a text file in the folder we wish to process. If we run the code
as it is now, this text file would also be opened by our macro. This will result in an
error when we try to process our channels using our functions. If our text file was
the last file being processed, this would not be a huge problem (just a little sloppy).
However, when our text file is in the beginning or somewhere halfway, the macro
will terminate at an undetermined point, and we would have to manually correct
it. This would negate the entire benefit of having a macro to process a folder. It will
result in us still having to manually go over each file.

www.it-ebooks.info

http://www.it-ebooks.info/

Developing Macros in ImageJ

[122]

We could solve the problem by removing the text file from our folder, which may be
a good solution if it is only one folder. However, if you have many folders that you
wish to process, this method would not be very useful. Also, deleting the text file
means you will lose the information that was contained within it, which might be
important. Another option would be to create a subfolder in your processing folder
and place the text file there. There is a problem with this solution as well. Folders
are also seen by Java as types of files. When creating the file list, the subfolder would
still be included. Trying to open the subfolder using the open command might have
unexpected side effects.

We can solve all these problems by adding a conditional statement inside the loop
that checks the type of file that we are currently processing. This if statement needs
to check two conditions: whether the current file a directory and whether it is an
image. To do this, we will add the following if statement around our open and
process commands:

//verify that this file is correct
if(!File.isDirectory(fname) && endsWith(flist[i], ".tif")) {
 ...
}

This if statement checks whether the full path stored in the fname variable is
not a directory and the current file name ends with .tif. This check will exclude
any directories from being processed as well as any file that does not have the
.tif extension. The showProgress call can stay outside of the if statement. The
completed macro can be downloaded from the Packt Publishing's website for
comparison (batch_project.ijm). When we run the macro, we will see that
processing occurs fairly rapidly and the progress bar in the main ImageJ window is
displayed while the processing occurs. Depending on the number of images and the
processing power of your computer, processing might go too fast to see everything.

There is one argument that we can add to the current macro. This argument may
speed up the process and also prevent all the images being shown when they're
being processed. This can be controlled using the following command:

setBatchMode(true);

When the batch mode is set to true, the images will not be shown, and only the
newly created images will be visible. If the value is set to false, the images will be
shown. By setting the batch mode to true, a 20-fold speed increase can be achieved
in some cases. In the next section, we will look at another way to run a macro over
multiple files using the built-in method that comes with ImageJ: batch process mode.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 6

[123]

Running macros in batch process mode
In the previous sections, we looked at processing a folder using a macro with
different processing functions. The method described earlier is very flexible and
powerful, and allows a great deal of control over the processing flow and what will
be processed. ImageJ, however, also has a method that can perform a similar task,
which is the batch process command. This command allows you to run a specified
macro that you created over a folder and allows you to store the results in the same
or a different folder. To start the batch process command, go to Process | Batch |
Macro… in the ImageJ menu, which will open the following dialog:

www.it-ebooks.info

http://www.it-ebooks.info/

Developing Macros in ImageJ

[124]

You can set the input and output folders using the buttons. You can also set the
output format. If you don't set the output folder, the image would not be saved
unless you saved it within your own code. You can use one of the macros that come
with ImageJ using the Add Macro Code selector, or you can use the Open… button
to load your own code file. To specify that you only wish to process image files, you
could use the File name contains field to specify a pattern that indicates you only
wish to process TIFF files by typing (.tif) with the brackets included. When you
press the Process button, the code that is shown in the text field will be run for each
image that matches the pattern.

Note that your macro needs to conform to a few rules to be able to use it in the batch
mode. If you wish to perform the saving yourself inside the macro, you need to
place code to save the results in your macro and leave the Output field in the Batch
Process dialog empty. To perform the same task that we did in our previous macro,
we will copy the entire code to the Batch Process dialog. Then, we will remove the
processFolder() function and the function call, replace it with a line that gives us
the current directory of the opened image, and then call the processing functions:

fdir = File.directory();
processGreenChannel(fdir);
processRedChannel(fdir);

//processing functions...

We can leave the output field in the process dialog empty, as images are saved inside
our processing functions. We can add (.tif) to the File name contains field to
ensure that the text file will be skipped. When we click the Process button, the folder
will be processed in a similar way, and the results will be stored as we described in
our macro's processing functions.

Both methods are very suitable for processing entire folders, and the results are
similar. The biggest difference is that the Batch Process mode allows slightly less
control over the processing steps, and it does not allow recursive processing of
folders and subfolders. Also, it is not possible to include multiple user inputs or
dialogs before the folder is processed. The code within the Batch Process command
needs to be self-sufficient. Any user input will have to be entered every iteration.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 6

[125]

Installing macros
Once you have created your macro, you can save it in the macros folder within the
ImageJ folder. When you wish to run your macro, you can go to Plugins | Macros
| Open or Plugins | Macros | Run to open and run your macro. It is also possible
to add your macros to the macros menu. You can do this by installing a macro in
ImageJ by selecting Plugins | Macros | Install… from the menu. Once you have
selected your macro, it will be added at the bottom of the macros menu. It is also
possible to add your macro to the StartupMacros.txt file in the macros folder. All
macros mentioned in this file will be added to the macros menu automatically.

Note that in Fiji, when you use the install option, the macro is only added
for the duration of the session. As soon as you restart Fiji, the macro
menu will be reset to the default content. It is, therefore, advised that you
always place your macros and script in the macros or scripts folder of Fiji.
To always load it when Fiji runs, use the StartupMacros.fiji.ijm
file as described in the following code.

If you wish to make a toolbar button with a list of your macros that you often use,
you can do so by modifying the StartupMacros.txt file (or StartupMacros.fiji.
ijm file for Fiji). This could be very handy if you have multiple macros that you
use frequently. To add your macros as a toolbar menu, add the following structure
somewhere in the startup file:

var myTools = newMenu("My awesome tools",
newArray("Macro_1", "Macro_2", "-", "Macro_3"));

macro"My awesome tools - C037T0b11MT7b09aTcb09t" {
 cmd = getArgument();
 if(cmd== "Macro_1")
 runMacro("/PATH/TO/Macro_1_tool");
 else if(cmd == "Macro_2)"
 runMacro("/PATH/TO/some_other_tool");
}

www.it-ebooks.info

http://www.it-ebooks.info/

Developing Macros in ImageJ

[126]

The first argument for the newMenu method is a name for your menu item; in this
case, I used My awesome tools. The second argument adds an array of macro
commands to the menu, which will be displayed within the toolbar menu when
added. If you add a dash in the array, a horizontal divider will be added to the menu
at that location. This can be useful to group macros with similar functions. After
defining the menu, we can implement the menu items using an if...else structure,
where we compare the command that was selected using the getArgument method
to see which tool needs to be launched. If we want to know the command necessary
to run our macro, we can start the macro recorder and then go to Plugins | Macros |
Run…, select our macro, and see what the command for our macro is.

It is also possible to add an icon to our menu, which needs to be specified as a string
behind our macro implementation. This string consists of instructions to draw
elements that we specify using a letter followed by coordinates. For instance, if we
wish to write the string Mat (My awesome tools), we could use the following string
for the icon:

C037T0b11MT7b09aTcb09t

The underlined characters are the letters we wish to add, while the value preceding
it is the font size in points (11, 09, and 09, respectively). The alphabet T indicates
that a character must be drawn, and the value next to it indicates the position of
the character. It is also possible to draw a polygon using the following format (this
requires ImageJ 1.48k):

Gxyxy...xy00

Drawing this icon can be somewhat complicated, and in Fiji, there is a Beanshell
script that can convert an image to a toolbar icon string. This can be used by opening
an image and going to Plugins | Examples | Image To Tool Icon. There is also an
alternative that provides more flexibility and higher quality buttons in a separate
toolbar. This alternative is ActionBar by Jerome Mutterer, which is a plugin that
creates separate toolbars that can be set up to your own liking. It also supports icons
in the PNG format.

Documentation for ActionBar can be found at http://imagejdocu.
tudor.lu/doku.php?id=plugin:utilities:action_bar:start.
It also contains an example of how to create your own toolbar and how to
auto-load your tool bar when you start ImageJ.

www.it-ebooks.info

http://imagejdocu.tudor.lu/doku.php?id=plugin:utilities:action_bar:start
http://imagejdocu.tudor.lu/doku.php?id=plugin:utilities:action_bar:start
http://www.it-ebooks.info/

Chapter 6

[127]

Summary
In this chapter, you looked at how to create a macro using the recorder to discover
commands and functions that we could apply. We made a basic macro that
processed an image and generated a new image. Next, we looked at processing a
folder full of images and created resulting images that were saved to a disk. Finally,
we looked at batch process mode that allows ImageJ to process a folder in a similar
way. In the next chapter, we will take a closer look at the constructs available for
developing plugins and how to set up an environment for developing plugins.

www.it-ebooks.info

http://www.it-ebooks.info/

www.it-ebooks.info

http://www.it-ebooks.info/

[129]

Explanation of ImageJ
Constructs

In the previous chapter, we developed macros to ease our processing and
measurements. We used some techniques and constructs that are particular for the
macro language in ImageJ. In this chapter, we will look at the following topics, in
preparation to develop our own plugins:

•	 Frameworks for macros and plugins
•	 Special classes in ImageJ
•	 Built-in functions for macros
•	 API functions
•	 Setting up the NetBeans IDE for development
•	 Setting up for development using Maven

Frameworks for macros and plugins
We will look at some tools that ImageJ offers developers to deal with images and
their processing. In the previous chapter, we looked at macros to perform common
image-processing steps. This was already an improvement over the processing of
time series one frame at a time, but ImageJ supports more tools and constructs that
allow you to expand these basic tools further. In this chapter, we will look at some of
these constructs as a preparation for the upcoming chapters, where we will look at
plugins and their implementation.

www.it-ebooks.info

http://www.it-ebooks.info/

Explanation of ImageJ Constructs

[130]

ImageJ has two ways to process in a more automated fashion: macros and plugins.
Besides the macros described in the previous chapter, ImageJ also supports other
Java-based scripting languages such as Beanshell and JavaScript, as well as the
scripting languages Python and Ruby, among others. The plugins can be split into
two groups as well: plugins based on the original ImageJ (that is, ImageJ1.x plugins)
and those based on the next development of ImageJ called ImageJ2 (ImageJ2
plugins). The ImageJ2 development is designed to be backward compatible with
ImageJ1.x, although this may change in the future. In this chapter, we will look at
some of the constructs available when creating scripts and plugins. We will start by
looking at the scripting languages supported by ImageJ.

Macros and scripting languages
As we saw in the previous chapter, we can easily create an ImageJ macro by starting
the macro recorder and performing different steps for image processing and
measurements. We set the type to Macro in the recorder. We can do the same thing
for two other scripting languages that ImageJ supports: BeanShell and JavaScript.
BeanShell scripts are a type of macros, but have access to the full ImageJ and Java
API. This means, besides the commands available in macros, you can also use
classes and interfaces from Java, providing much more options in processing. The
advantage of the BeanShell scripting language is that it is an interpreted language (it
does not have to be compiled before it can be run) and requires only an interpreter
that has a small footprint. This makes it easy to create fast solutions and prototyping
for plugins. In the following sections, I will examine some of the concepts in the
BeanShell scripting language. Note that similar results can be achieved in the
JavaScript language within ImageJ, where the only difference is small changes in
syntax.

BeanShell scripting
BeanShell scripting allows you to create a script with all the advantages of a macro,
but with the added benefit of having access to the Java API. You can use Java code
almost directly as is. However, there are a few small differences. BeanShell scripts
have weak typing. This means, you do not need to declare the variable type, and you
can change the type of a variable on-the-fly. In all other ways, it is comparable to
developing Java code. If you wish to use a class or interface from the Java API, you
need to import it first using the following line of code:

import java.awt.event.KeyListener;

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 7

[131]

This import statement tells the script interpreter that it needs to load the
KeyListener class from the java.awt.event package. This will allow you to
monitor key presses. The KeyListener class is an interface that can be attached to an
instance of a script. The class will generate an event when a key is pressed, resulting
in a call to the keyPressed() method, which has to be overwritten by the script.
Using the keyPressed() method, you can perform a specific task when a certain key
is pressed.

The BeanShell scripting language also supports importing existing scripts into a new
script. This way, you can daisy-chain multiple scripts. Daisy-chaining scripts means
you use one script's output as input for the next script and so on. The advantage of
this type of processing is that each script becomes a module that can be reused and
combined in different ways to achieve different results. To import an existing script
into your script, use the following syntax:

this.interpreter.source("some_script.bsh");

This will load the BeanShell script called some_script.bsh and give you access
to its methods. A simple BeanShell script may consist of a series of basic ImageJ
commands, but can also contain classes, functions, and even graphical user
interfaces. We will now look at a few constructs used in the BeanShell scripting
language that deal with ImageJ, images, and selections.

ImageJ main class
To access the main ImageJ window, we can use the IJ class to get the current
instance of ImageJ. We can use this instance to gain access to some parameters that
are provided by the ImageJ class:

protected ImageJ ij;
ij = IJ.getInstance();
Label status = ij.statusLine;
status.setText("Now we modified the status line text!");

In this short example, we created a variable of type ImageJ and stored a reference
to the current instance of the ImageJ window in this variable, called ij. Next, we
extracted the content of the ImageJ status line and stored it in a variable called
status. Finally, we set the text of the status line to Now we modified the status
line text!. Of course, this example is neither directly useful nor complete, but it
shows you how to get access to the main ImageJ interface and modify a component
of the interface.

www.it-ebooks.info

http://www.it-ebooks.info/

Explanation of ImageJ Constructs

[132]

I used two different ways of declaring and instantiating a variable: the
ij variable was first declared and then instantiated, while the status
variable was declared and instantiated in one line. The former would
be required if your variable requires an extended scope (that is, across
a loop or an entire class).

It is also possible to use the IJ class to execute commands that are part of the ImageJ
menu structure using the run() method or methods such as openImage() to load
images:

import ij.IJ;
IJ.run("In [+]", "");
imp = IJ.openImage("http://imagej.nih.gov/ij/images/blobs.gif");

The second line shows you how to zoom in once using the run() method from the
IJ class. The third line shows you how to open an image using the openImage()
method, which stores a reference to the image in a variable named imp in this
example. To gain access to an image from within a BeanShell script, we can use the
openImage(), as described earlier, to open an image. Alternatively, we could use the
current active image (if there is an opened image):

imp = IJ.getImage();

Note that in Fiji, which uses the ImageJ2 release candidate, it is required
that you add the import statement before using the IJ class' methods. In
ImageJ1.x, these packages are auto-loaded and the import statement is
optional. To make sure your scripts are future proof, it is best practice to
include the import statements.

Functions to process images
Using the ImageJ class, you have access to the currently active image as well as to the
methods to open images. There are also methods that allow you to process images
on a pixel level using the ImageProcessor class. This class provides methods that
can modify the image at the pixel level: either a single pixel or a group of pixels. The
following snippet shows you how to use the ImageProcessor class to change the
value of a specific pixel:

import ij.IJ;
import ij.process.ImageProcessor;

imp = IJ.openImage("http://imagej.nih.gov/ij/images/blobs.gif");
ip = imp.getProcessor();
ip.invertLut();
imp.setProcessor(ip);
ip.putPixel(64,128, 255);

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 7

[133]

In this example, we opened the Blobs sample image and got ImageProcessor. We
then inverted the LUT (the Blobs image uses an inverted LUT when opened) and put
the inverted image back in the imp object. Finally, we set the value for the pixel at the
coordinates (x = 64, y = 128) to a value of 255. In this example, you will see a white
pixel in one of the blobs at the location (64,128).

If the active image is an 8-bit image (as is the case for the Blobs image), this would
result in a white pixel. In a 16-bit image this operation would result in a dark-gray
pixel. If you want to know if the current image is a gray scale image and how many
bits per pixel (8, 16, 24, or 32) it has, you could include the following commands:

bGray = ip.isGrayscale();
bitDepth = ip.getBitDepth();

This will allow you to determine exactly what kind of image you are dealing with. If
bGray is true, the image is an 8,16, or 32 float grayscale image or a 24-bit image with
identical values for the pixels in the red, green, and blue channels. The bitDepth
value will tell you which level it is. The distinction is small, but significant. A 24-bit
image that contains color information is not the same as a 24-bit image that is gray.
The latter can be converted to an 8-bit image without loss of information, while the
former cannot be converted to an 8-bit image without losing the color information.

Functions for selections
To gain access to selections in the ROI Manager, BeanShell scripts allow you to get
an instance of the ROI Manager, which can then be used to extract the ROIs and
use them for processing. The following code snippet takes the ROIs from the ROI
Manager and enlarges them by 2 pixels:

import ij.IJ;
import ij.plugin.frame.RoiManager;

imp = IJ.getImage();
RoiManager rm = RoiManager.getInstance();
int numRois = rm.getCount();

for(i=0;i<numRois;i++) {
 rm.select(i);
 IJ.run(imp, "Enlarge...", "enlarge=2");
 rm.addRoi(imp.getRoi());
}

www.it-ebooks.info

http://www.it-ebooks.info/

Explanation of ImageJ Constructs

[134]

This snippet shows you some basic scripting to deal with ROIs. We first retrieved
an instance of the ROI Manager, which allows us to get the ROIs as an array for
processing. In the loop, we selected each ROI and used the enlarge command to
increase the size of the ROI by 2 pixels in the X and Y directions. Finally, we added
the enlarged ROIs to the ROI Manager so that we could use them later on if we
would like to. This code can be used almost verbatim as Java code. The first error
you would receive if you tried to compile it is contained in the following line:

imp = IJ.getImage();

This works perfectly fine in a BeanShell script, but in an ImageJ plugin, it will generate
an error as the type of the imp variable is not declared. Also, the for loop does not
declare the type for the index i iterator, which will also generate a compiler error.

Saving and running your scripts
Once we have created a testable version, we can save it and try running it. Macros
are stored with either the .ijm or the .txt extension. The .ijm extension is
preferable, as it allows the distinction between regular (non-script) text files and
macro files. Script files have their own extensions: .bsh for BeanShell and .js for
JavaScript.

When saving the script, the naming has to adhere to the limitations of the filesystem.
Otherwise, there are no specific restrictions for the name. The location to store the
scripts by default is the scripts or macros folder in the ImageJ installation folder,
which I will refer to as $IJ_HOME. If you wish to run scripts from the command line,
it is best to avoid using spaces in the filename to avoid unexpected behavior (that is,
if you forget to escape the space character).

For Fiji, the $IJ_HOME folder is called Fiji.app and can be placed
at any location in the filesystem. It is recommended that you store this
folder in your user account's folder, where you have read and write
access. On OSX systems, the default location for Fiji is /Applications/
Fiji.app when using the package installer.

As described about ImageJ macros in the previous chapter, BeanShell and JavaScript
scripts can be installed and executed in similar ways. When using Fiji, you can open
the scripts in the code editor to run them.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 7

[135]

Plugins for ImageJ
As we saw in the previous sections on the BeanShell scripting language, ImageJ
provides an easy interface that has access to the full Java API. This also holds true
for plugins. Besides the core ImageJ API, plugins can also access the full Java API by
importing classes or interfaces in their source files. With the current developments
within the ImageJ community, there is a new implementation of the ImageJ core
code being developed, called ImageJ2. In the following sections, I will briefly give
an overview of some of the changes that will influence the development of plugins.
This involves introducing some constructs that are used commonly in larger projects,
specifically Git and Maven. Note that knowledge of these constructs is not essential
to create plugins, but they will help in creating more consistent and reproducible
code. These constructs are also not specific for ImageJ2, but the ImageJ2 project was
built up around those concepts. However, I will start by introducing some classes
that are specific for ImageJ and deal with handling images and selections.

ImageJ main class
The main ImageJ class refers to the class that gives access to the ImageJ application.
We already saw this class in the BeanShell sections earlier. The class is called IJ,
which is a static utility class. As shown earlier, this class allows access to the current
image as well as other functions. The use of this class is the same as shown earlier,
except when writing plugins, you need to explicitly declare the variable type. For
instance, when we wish to create a new hyperstack with two 16-bit channels and 10
frames and a size of 512 X 512 pixels, we could use the following code snippet:

import ij.IJ;
import ij.ImagePlus;

ImagePlus imp = IJ.createHyperStack("New Stack",512,512,2,1,10,16);

Note that we need to specify that the imp variable is of type ImagePlus, which differs
from the scripting languages that we saw earlier. Another useful method of the IJ
class is the log() logging method. This method prints a string to a log window, and
displays the log window if it is not open yet. This function is useful for presenting
intermediate results or status updates when processing large datasets. To use it, we
can just call the method and supply the string we wish to print:

IJ.log("We finished processing "+nFiles+" file(s)!");

www.it-ebooks.info

http://www.it-ebooks.info/

Explanation of ImageJ Constructs

[136]

This assumes there is a variable called nFiles, which stores the number of files that
need to be processed. The log message will tell us how many files were processed,
depending on the number of files selected when the plugin was executed. There
are also methods to open images or get the active image, which are identical to the
examples used in the scripting section (with the only difference that the type needs
to be declared explicitly in a plugin).

WindowManager
The WindowManager class is a utility class in ImageJ that keeps track of all the
windows (including images, results, and log windows), and provides methods
that allow the selection of specific windows. Some of the most useful methods are
getImageTitles(), getImage(), and getCurrentImage(). The getImageTitles
method returns a String array with all the titles of open images. This function
is useful to populate a list of files to allow the user to select a specific image for
processing. The following example code will show this functionality and how it can
be used within a program:

String[] imageList = WindowManager.getImageTitles();

JComboBox jcbImages = new JComboBox(imageList);

This is a very user-friendly way of allowing the user to select the image for
processing. Normally, ImageJ uses the last open images (the active image) by default.
When the user has selected an image based on the title of the image, we can use the
getImage method to activate that image for further processing:

ImagePlus imp;
imp = WindowManager.getImage(imageList[idx]);

This allows the rest of the program to use the specified image for processing. This
code will be revisited in the chapter on plugins with user interfaces.

ImagePlus
The main class for images is the ImagePlus class, which is the main class to deal with
images in ImageJ. We already briefly saw the call in the code section earlier. When
invoking the ImagePlus class, we gain access to several get methods that help with
extracting information from the image. We also apply changes to the image using set
methods:

ImageProcessor ip = imp.getProcessor();
int[] pxVal = imp.getPixel(256,256);
imp.setRoi(256,256,32,32);

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 7

[137]

This snippet shows a few methods that allow you to retrieve aspects of the image
as well as set a region in the current image. Another important method that can be
accessed using the ImagePlus class is the ImageProcessor class, as shown in the
first line of the code snippet. The next section will deal with this class.

ImageProcessor
The ImageProcessor class is a class that allows you to work with the pixel array of
an image. There are four different subclasses of the ImageProcessor class, which
are linked to the different image types: ByteProcessor for 8-bit and binary images,
ShortProcessor for 16-bit images, FloatProcessor for 32-bit float images, and
ColorProcessor for RGBα images. Some of the methods that are accessible from
an ImageProcessor instance include autoThreshold(), crop(), getPixel(), and
getIntArray(). These functions allow you to set a threshold on an image, crop the
image, retrieve the pixel value at a specified location or get all the pixel values as an
array, respectively.

RoiManager
The RoiManager class gives the user access to the ROI Manager and all its functions.
This class is essential to retrieve and manipulate the regions that were set either
manually or programmatically. The getRoisAsArray() method allows the user
to retrieve all the regions in the ROI Manager as an array, which enables the user
to loop over all the regions for measurements or modifications to the regions. The
following code is an example:

RoiManager rm = RoiManager.getInstance();
if (rm == null) {rm = new RoiManager();}

Roi[] regions;
regions = rm.getRoisAsArray();

for (int r=0; r<regions.length; r++) {
 Roi region;
 region = regions[r];
 //do something...
}

It is recommended that you use the getInstance() method to get a reference to the
ROI Manager. If it returns a null value, you could use the constructor to create a new
instance. After using the getRoisAsArray() method, you get an array of type Roi,
which contains a list of regions.

www.it-ebooks.info

http://www.it-ebooks.info/

Explanation of ImageJ Constructs

[138]

You can also merge the declaration and instantiating of the regions
variable to a single statement. I prefer to declare my variables at the
beginning of a method or class and instantiate them when I have the
data available. Declaring a variable before instantiating it would be
essential if you need the scope of the variable to extend beyond the point
where it is instantiated or assigned. When a variable is used inside and
outside of a loop, but the value is only assigned within the loop, the
declaration needs to be placed outside of the loop and the assignment
within the loop.

The Roi class
The Roi class is a generic class that encompasses all the region types that ImageJ
supports. You can use this class to retrieve relevant properties of a region, such as
the bounding box of the region using the getBounds() method. It is also possible
to change the size using the grow() method. The Roi class has several subclasses
that are linked to the different region types available in ImageJ. Some of these
subclasses have additional methods that are specific for area regions. For instance,
the PolygonRoi subclass has methods to retrieve the coordinates of the polygon,
getXCoordinates() and getYCoordinates(), which return an int array of
coordinates.

The Application Programming Interface
As with many programming languages, ImageJ has a well-documented Application
Programming Interface (API). It describes all of the classes, methods, and fields
that are accessible for programming. The API reference can be found on the ImageJ
website at http://javadoc.imagej.net/ImageJ1 (ImageJ1.x), http://javadoc.
imagej.net/ImageJ (ImageJ2), and http://javadoc.imagej.net/Fiji (Fiji). The
API documentation is an efficient way to find classes and methods that can be used
to extract relevant information. The classes mentioned in the previous sections can
be found using the API page. You can also find a complete list of methods and fields
that are available, including the return types of the methods. In the section on setting
up an IDE to develop plugins, I will also briefly explain how to set up the generation
of Javadoc. Javadoc is a method that parses your source code and extracts specially
formatted comments to build up a documentation manual. This can be done for the
ImageJ source code, which results in an API that can be accessed offline. I will also
show you how to write your own Javadoc documentation and then generate an API
for your own code in the chapter on plugin development. This is not essential for
small projects, but can be very helpful for large projects with complex code that uses
many classes and methods.

www.it-ebooks.info

http://javadoc.imagej.net/ImageJ1
http://javadoc.imagej.net/ImageJ
http://javadoc.imagej.net/ImageJ
http://javadoc.imagej.net/Fiji
http://www.it-ebooks.info/

Chapter 7

[139]

Setting up NetBeans IDE
We will now look at how to set up an Integrated Development Environment (IDE)
that can be used to develop ImageJ as well as plugins for ImageJ. There are many
IDEs available for Java. While this section will show you how to set up a specific IDE
called NetBeans, many of these settings and configurations can be replicated in your
preferred IDE.

The setup I will describe is for the NetBeans IDE, which is developed by the same
company that manages the Java language. It can be downloaded in different
variants, including a variant for Java development, webpage development, and C++
development. If you only wish to develop plugins for ImageJ, the Java SE (Standard
Edition) or Java EE (Enterprise Edition) downloads should be fine. The enterprise
edition is similar to the standard edition, but it has additional APIs for multilevel
and scalable applications as well as secure network applications. It is possible to
extend the basic Java edition and add modules for web development or C++ coding
later on using the Plugins Manager (Tools | Plugins).

For the upcoming sections, I will assume that the Java SE was installed. However, to
set up the environment, it should not make a difference. It can be downloaded from
https://netbeans.org/downloads/. After downloading, it can be installed using
the standard method for your platform. For Windows systems, there is an installer
that can be run by double-clicking. For OS X, there is DMG with a package file that
can be used for installation. For Linux systems, there is a shell script installer, and
some distributions may supply it from their repositories. It is recommended that you
use the version from the NetBeans website, as it is more recent than the version in
many of the repositories.

The following sections will describe how to develop ImageJ1.x plugins without
using project tools. This method only requires a single download and functions as a
standalone development platform. If you wish to develop plugins using the Maven
platform for ImageJ1.x and ImageJ2, the following sections can be skipped, and you
can continue to the Developing plugins using Maven section.

Gathering all components
After the installation has completed, you should be able to launch the NetBeans
application. When you launch it for the first time, there will be a start page that
allows you to take a tour of the software and watch a quick tutorial project. You can
examine the settings and adjust them to your liking.

www.it-ebooks.info

https://netbeans.org/downloads/
http://www.it-ebooks.info/

Explanation of ImageJ Constructs

[140]

Next, we need to download the source code for ImageJ. The source code can be
downloaded from the ImageJ website at http://imagej.nih.gov/ij/download/
src/, where you will find a list of different versions, from version 1.20 up to the
most recent version (1.50a). Which version you download is not critical. However,
it is best to use the most recent version with the recent bug fixes and functionality
added. After the download has finished, the archive can be extracted, resulting in a
folder named source. For the following sections, I will assume that the content of
the source folder was extracted to the ij/src folder within the Documents folder of
your user profile. This folder location will be referred to as the source folder in the
next sections.

Setting up a project
The setup of the project described here follows the description given at http://rsb.
info.nih.gov/ij/developer/NBTutorial.html, but with a few adjustments. First,
the method to create a project does not work properly when using NetBeans version
8.0. The steps described here will accomplish the same result but with a few key
changes.

The first step is to set up a new project for ImageJ in NetBeans.

1.	 To do so, go to File | New Project…, which will open the following dialog:

www.it-ebooks.info

http://imagej.nih.gov/ij/download/src/
http://imagej.nih.gov/ij/download/src/
http://rsb.info.nih.gov/ij/developer/NBTutorial.html
http://rsb.info.nih.gov/ij/developer/NBTutorial.html
http://www.it-ebooks.info/

Chapter 7

[141]

2.	 In the dialog, select the Java category and select Java Free-Form Project, as
shown in the figure. Then, click on Next >.

3.	 In the next step, we have to select the folder that contains the source.
Click on Browse… and select the src folder that contains the extracted
source code. If the copying was done properly, the remaining fields will be
completed automatically with the correct information:

4.	 We can now click on Next > to proceed to Build and Run Actions and then
click on Next again without modifying the fields.

5.	 In the next step, we have to set the locations that will contain our source code
for ImageJ and for our plugins.

www.it-ebooks.info

http://www.it-ebooks.info/

Explanation of ImageJ Constructs

[142]

6.	 To do so, add the ij/src/ij and ij/src/plugins folders in the Source
Package Folders field. You can remove the first entry marked with a period
from the source package folders. I have set the source level to JDK 1.7, which
forces NetBeans to use a newer version of Java compared to the definition in
the build instructions of the ImageJ source code:

7.	 Click on Finish to complete the setup process:

The last two steps can be kept to default settings.

The project will now be created, and the main window of NetBeans will show the
new project in the Projects tab on the left-hand side. The project name (ImageJ) has
two package sources below it: one for ImageJ source code (ij) and one for the plugin
source code (plugins).

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 7

[143]

The Files tab will show an overview of the files associated with the project:

The next section will look at the configuration required building build ImageJ.

www.it-ebooks.info

http://www.it-ebooks.info/

Explanation of ImageJ Constructs

[144]

Building ImageJ
We will now set up the environment to build ImageJ. This will allow us to create a
functional ImageJ program from which we will be able to execute our plugins and
macros. The first step is to modify the build instructions that will be used when
building the ImageJ project. To do so, select the Projects tab and double-click on
the build.xml file at the bottom of the ImageJ project to open the build file. This is
a standard XML file that can be edited using the XML syntax. To disable sections
of code, you can use either a comment tag (<!-- -->) around that section or delete
it completely. The comment method is advised if you wish to restore the file to the
original state. The first line that needs to be disabled is line 12 (I'm using comments
to disable it):

<!-- <exclude name="plugins/**"/> -->

Save the file after making the change. Next, we will remove the two .source files
from the plugins folder, but not the .class files. We can now start building ImageJ,
by clicking on Run | Build Project (ImageJ) or pressing F11. There may be a few
red warnings in the Build output window, but these can be ignored for now. At the
end of the output, it should say BUILD SUCCESSFUL. We will now add the newly
created ImageJ build to the project. To do so, go to File | Project Properties (ImageJ)
and then to the Java Sources Classpath category. First, select ij[ij] as the source
package folder and click on the Add JAR/Folder button. Browse to the src folder,
select the ij.jar file, and press the Choose button. Repeat this for the plugins
[plugins] source package folder, and then press OK to finish. We are now ready to
set up the configuration to develop plugins.

Creating a plugin
We will now create a very basic plugin to prepare everything to compile and debug
plugins using NetBeans. First, switch to the Files tab and right-click on the plugins
folder. Then, go to New | Java Class from the context menu. In the dialog that
opens, set the Class Name to Plugin_Frame (or something else, but always include
an underscore in the name!). It is advised that you create a package for the new class
instead of the default package (I'm using Template as an example). Click on Finish
to create the new Java source file:

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 7

[145]

Next, we will place the following code in the newly created source file:

import ij.ImagePlus;
import ij.plugin.filter.PlugInFilter;
import ij.process.ImageProcessor;

public class Plugin_Frame implements PlugInFilter {
 protected ImagePlus imp;

 public int setup(String arg, ImagePlus imp) {
 this.imp = imp;
 return DOES_8G | DOES_16 | DOES_32;
 }

 public void run(ImageProcessor ip) {
 ip.invert();
 }
}

www.it-ebooks.info

http://www.it-ebooks.info/

Explanation of ImageJ Constructs

[146]

This will create a plugin that inverts the LUT of the currently active image. Next,
save the source file, and we will compile the code that we just added to our source
file. To compile the source code, go to Run | Compile File or press F9.

A window will pop up to ask whether you wish to generate an ide-file-targets.xml
file, so click on Generate. A new file will open that contains the build instructions for
your plugin:

In the ide-file-targets.xml file, we will modify two lines. First, we will change
line 9 to the following:

<javac destdir="plugins" includes="${files}" source="1.7"
srcdir="plugins">

We will replace ${build.classes.dir} with plugins. Next, we will comment line
8 (or delete it):

<!-- <mkdirdir="${build.classes.dir}"/> -->

Now, save the modified file and select your plugin file again. We will compile the
file again by going to Run | Compile File or by pressing F9. In the output view,
it should show that the build was successful. Next, we are going to set up the
debugging for plugins. Select Debug | Debug Project (ImageJ) at which point a
dialog will pop up asking for the output to be set. Click on Set Output and then on
OK to accept the default values. Go to Debug | Debug Project (ImageJ) again, and
NetBeans will ask to generate an ide-targets.xml file. Click on Generate to create
the file and leave the file unaltered. For the final time, go to Debug | Debug Project
(ImageJ). This time, ImageJ will launch, and your plugin can be found in the Plugins
menu. To start your plugin, select Plugins | Template | Plugin Frame Plugin, and
your plugin should become visible.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 7

[147]

Whenever you want to test or change your code, remember to close the ImageJ
instance that was created when you select debug. Every time you select Debug
Project (ImageJ), a new ImageJ window will open. This will make it very difficult to
keep track of which code you are actually debugging.

Creating documentation
The Java language has a nicely integrated way of creating documentation using
specially formatted comments within the source files. When applied consistently in
your source files, it can be very easy to create an API document. In the next section,
we will look at how to set up the basics for documentation.

ImageJ Javadoc
We will first generate the Javadoc for the ImageJ project. To do so, we will select
the ImageJ project and go to Run | Generate Javadoc (ImageJ). The Javadoc will be
generated for the ImageJ project in a folder named api, which can be found in the /
ij folder. It contains a list of HTML files and style files. To view the documentation,
just view the index.html file in a web browser, and you will see the ImageJ API
documentation. This view is very similar to the API that we saw online in the section
on the API, and the information is identical. It is usually not necessary to generate
Javadoc for the ImageJ project multiple times, unless you modify the documentation.
In the next section, we will look at creating some Javadoc comments for your own
plugins.

Plugin Javadoc
To generate Javadoc for your plugins, you need to add some specially formatted
comments to your code. There is a lot of documentation about Javadoc online, so the
information presented here will be very basic, but should provide a useful starting
point. To start with, you first need to decide how much documentation is required.
You can make well-crafted documents with a lot of detail, but if your code is very
simple, it would cost much more time to write the documentation than to develop
the code. That being said, it will be helpful to have some documentation to be able to
identify the function that a method serves after some time has passed.

Let's look at an example of documentation for a simple method that has input
parameters and an output parameter.

private double[] measureParticles(Roi[] r, ImagePlus imp) {}

www.it-ebooks.info

http://www.it-ebooks.info/

Explanation of ImageJ Constructs

[148]

This is the basic method definition of a function to measure some properties of a
collection of regions within an image, and it returns an array of measurements.
To include the documentation, we will precede the function definition with the
following section:

/**
 * Take regions within an image and measure the fractal
 * dimension of the provided regions.
 *
 * @param r Roi array containing the particles
 * @param imp reference to image containing the particles
 * @return array with the same dimensions as r containing
 * the values for the fractal dimension.
 */

A Javadoc section needs to start with a forward slice followed by two asterisks.
When you press enter after the Javadoc opening tag, NetBeans will generate the code
for the input parameters (@param) and the return value (@return) automatically. The
only thing you have to add is the actual meaning of the parameters.

Once your code has been documented, you will have to instruct NetBeans to build
the Javadoc code. To do this, make the following adjustments to the build.xml file
by replacing the existing javadoc section (it should be at the end of the file) with the
following instructions:

<target name="javadocs" description="Build the JavaDocs.">
<delete dir="../plugins_api" />
<mkdir dir="../plugins_api" />
<javadoc
destdir="../plugins_api"
 author="true"
 version="true"
 use="true"
windowtitle="ImageJ plugins API">
<fileset dir="." includes="**/*.java" />
</javadoc>
</target>

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 7

[149]

This will build the ImageJ and your plugins documentation in a folder named
plugins_api, located one level above your source data. If you created a package for
your plugins, you also need to create a package-info.java file that contains the
information about the package. To create this info file, right-click on your package
in the Projects view and go to New | Java Package Info… from the context menu.
Alternatively, you can also go to New | Other… in the menu. In the dialog that
opens, just click on OK to accept the default values. The file will be generated, and
you can add your package documentation right above the package line in the usual
way. You need to create this info file for every package that you create.

After the documentation is compiled, you can view it by opening the plugins_api/
index.html file in a browser. The ImageJ documentation will be shown first in the
overview panel in the top-left corner. At the bottom will be your package(s). By
clicking on them, you will see all the classes that are defined within the package.
When you click on a class, the documentation that you supplied will be shown and
can be browsed.

Developing plugins using Maven
In the previous sections, I discussed how to set up NetBeans for the development
of ImageJ and plugins in a standalone configuration. However, as the design of
ImageJ is being expanded, there was a need to create a more modular approach.
This approach involves a more project-based building of different modules into a
single program. The advantage of such a modular approach makes for a very flexible
application that can be expanded in the future. The disadvantage is that it requires a
little more overhead to make sure that all dependencies are met for a fully functional
program. This is where Apache Maven comes in. Maven is a toolset to describe how
to build a project into a finished program and which dependencies are required.

It does this using a special file called the Project Object Model (POM), which is
an XML file. This file is stored in the root of your project and is called pom.xml.
The content of the file describes some aspects of the project, such as a unique set of
identifiers, and a list of dependencies that are required by the project. When you tell
Maven to parse the POM file, it will collect all the required resources and compile the
source code, run specified tests, and finally package the program in a JAR file. Maven
is aimed at taking a clear project description and performing all the required tasks
necessary to create the final package automatically without the developer needing
to specify each step manually. This is what the previous sections described using
the Ant mechanism to build code. First, let's look at how the POM is constructed in
Maven, and how it's used to build a project.

www.it-ebooks.info

http://www.it-ebooks.info/

Explanation of ImageJ Constructs

[150]

Construction of the POM
The POM file describes the structure of a project. It describes the location of the
source code (by default, this is /src/main/java) and the build directory where the
compiled program is stored (by default, this is /target). The minimal POM file
contains the following structure:

<project>
 <modelVersion>4.0.0</modelVersion>
 <groupId>some.packaged.app</groupId>
 <artifactId>my-app-name</artifactId>
 <version>1.0.0</version>
</project>

This minimal POM file will inherit all the defaults from the Super POM file. This
means, everything that is not explicitly named in the POM; the default values will
be used. This includes values such as the location of the source files, the build
directory, the build file type (.jar by default), and other options such as the
repositories used to download sources. For an ImageJ1.x plugin, the following POM
is the minimal description:

<project>
<modelVersion>4.0.0</modelVersion>
<parent>
 <groupId>net.imagej</groupId>
 <artifactId>pom-imagej</artifactId>
 <version>13.2.0</version>
 <relativePath />
</parent>

<groupId>sc.fiji</groupId>
<artifactId>Plugin_Name</artifactId>
<version>1.0.0</version>

<name>plugins/Plugin_Name.jar</name>
<description>A Maven project implementing an ImageJ1.x plugin</
description>

<properties>
 <main-class>Plugin_Name</main-class>
</properties>

<dependencies>
 <dependency>

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 7

[151]

 <groupId>net.imagej</groupId>
 <artifactId>ij</artifactId>
 </dependency>
</dependencies>

<build>
 <plugins>
 <plugin>
 <artifactId>maven-jar-plugin</artifactId>
 <configuration>
 <archive>
 <manifest>
 <mainClass>${main-class}</mainClass>
 </manifest>
 </archive>
 </configuration>
 </plugin>
 </plugins>
</build>

</project>

This describes the project using ImageJ as the parent project. This is necessary
because the plugin we want to develop requires the ImageJ to be built. Next, we
specified the artifactId using the name of our plugin; in this case, I used the
generic name Plugin_Name. In the properties field, we stated the main class of the
project, which is the name of the plugin.

Note that the <version> tag within the <parent> tag will control
which version of ImageJ1.x will be retrieved. Using version 7.0.0 will
retrieve version 1.49q, while 13.2.0 will retrieve version 1.50a.

Next, we described the dependencies that are required for the plugin, which is
ImageJ for a plugin. Finally, we described the build process, stating that we want a
JAR file. The manifest should include the main class described by the main-class field
in the properties object. This method does not require any downloading of source
code. The next section will explain how to set up a plugin for ImageJ1.x using a POM
in NetBeans.

www.it-ebooks.info

http://www.it-ebooks.info/

Explanation of ImageJ Constructs

[152]

Creating a Maven plugin project
Using a Maven project to develop a plugin is very simple and only requires a few
basic steps. In many cases, you can use the default values from the POM model, and
you will only need to specify the name of your plugin(s), a version number, and
an artifact name. We will start by creating a new Maven project using NetBeans by
going to File | New Project from the menu. From the categories list, we will select
Maven, and from the Projects list, we will select POM Project and click on Next >:

In the next window, we can set the main properties of our plugin. For this example,
I will create a dummy plugin that I will call Awesome_Plugin. I will place it in the
NetBeans workspace folder, which is the default folder that is created when you
install NetBeans:

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 7

[153]

I added Group ID and a version number, but these can be changed later on quite
easily. After pressing Finish, the project will be created and added to your project
view (if you cannot see your project view, select Window | Projects from the menu).
If you expand the project, you will notice that there are three folders, with the most
important one, at the moment, being Project Files. This folder contains the pom.xml
file that we will edit next. You can open the POM file for editing by expanding the
project files folder in the project or by right-clicking on the project root and selecting
Open POM from the context menu. The POM file will now look as follows:

<?xml version="1.0" encoding="UTF-8"?>
<project xmlns="http://maven.apache.org/POM/4.0.0" xmlns:xsi="http://
www.w3.org/2001/XMLSchema-instance" xsi:schemaLocation="http://maven.
apache.org/POM/4.0.0 http://maven.apache.org/xsd/maven-4.0.0.xsd">
<modelVersion>4.0.0</modelVersion>

<groupId>tools</groupId>
<artifactId>Awesome_Plugin</artifactId>
<version>0.1.0-SNAPSHOT</version>

www.it-ebooks.info

http://www.it-ebooks.info/

Explanation of ImageJ Constructs

[154]

<packaging>pom</packaging>

<properties>
<project.build.sourceEncoding>UTF-8</project.build.sourceEncoding>
</properties>

<name>Awesome_Plugin</name>
</project>

As you can see, NetBeans added a few more properties to the <project> tag,
identifying the XML schema that was used for this POM file. It also set the
<properties> tag with a tag stating the source file encoding that will be used (UTF-
8). It also states which packaging will be used. For plugins, we need to change this
to JAR. There are two ways to change a parameter in the POM file. The first one is
to modify the pom.xml file directly by adding or modifying tags. The other option
is to select Properties from the context menu by right-clicking on the project. This
will provide a form that contains many of the fields that are placed in the pom.xml
file. For the remainder of this section, I will assume we edit the pom.xml file directly,
as this allows for more flexibility and gives access to more tags than the properties
dialog provides.

In order to state that we require ImageJ to be present for our plugin, we will
include the <parent> tag and its contents, as shown earlier. Next, we will take the
<dependencies> tag and its contents and add them to the pom.xml file. When we
now save the pom.xml file, you may notice that the folder structure in the project
view changes. There are now only two folders called Dependencies and Project
Files. You may also notice that the Dependencies folder contains two files: ij-
1.50a.jar and tools.jar. These files are required to launch ImageJ. The former
file is the actual ImageJ program, while the latter is a jar file that ImageJ requires to
run.

If we try to build or run our project at this stage, we will get an error from NetBeans.
It is complaining that the project is missing a file to build. This is not surprising as we
haven't stated which file we want to build. Also, we haven't defined a main class yet
to run, so we first need to fix this issue. To state where our main class will be, we will
add the <main-class> tag to the <properties> tag:

<main-class>Awesome_Plugin</main-class>

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 7

[155]

Now that we have stated where our main class will be found, we need to specify
how to build the project. We will do this using the <build> tag, as shown in the
minimal ImageJ POM earlier. The line within the <manifest> tag describes that we
wish to use the main class defined in the properties described by the <main-class>
tag:

<mainClass>${main-class}</mainClass>

After saving the POM file, we can try to build the plugin again, but we will still
get an error. This is because we are still missing the actual source code. We have
created a project description, but we haven't created a source file yet. We will now
add a source file to our project, which must have the same name as the value of the
<artifactId> tag. To add the source file, right-click on the project in the project
view and select New | Java Class. This will open the New Java Class dialog:

www.it-ebooks.info

http://www.it-ebooks.info/

Explanation of ImageJ Constructs

[156]

The filename needs to be set to Awesome_Plugin for this example, as this is the
artifactId that we used up to now. The folder where we wish to place the file
needs to be specified as /src/main/java, as this is the default location used in
POM projects. Since I did not change this value, we need to specify it here as well. If
you change the location of the source folder, you need to specify it in the new Java
class and POM files. After clicking on Finish, the file will be created and displayed
in your project inside a new folder. The Source Packages folder has been added
and contains a package called <default package>, which contains your source file
called Awesome_Plugin.java.

If you wish to place the plugin in a specified package, you can add
a package declaration to your source file and ask NetBeans to move
the file to the correct folder. The latter can be done after we add the
package statement. We can then press Alt + Enter while the cursor is on
the package statement and select Move class to correct folder from the
context menu. This example assumes that we kept the default package.

When we now build the project, we will see that the build is successful, meaning that
everything is set up correctly for building. However, when we try to run the project,
we will need to supply the main class:

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 7

[157]

The problem now is that we don't have a main class at this stage. The source code
only has a class declaration, but we haven't added any code or a main method. To fix
this, we need to add a main method to the source file:

public static void main(String[] args) {
 //set the plugins.dir property to make the plugin appear in the
Plugins menu
 Class<?>clazz = Awesome_Plugin.class;
 String url = clazz.getResource("/" + clazz.getName().replace('.',
'/') + ".class").toString();
 int lastIdx = url.lastIndexOf('/');
 String pluginsDir = url.substring(5, lastIdx);
 System.setProperty("plugins.dir", pluginsDir);

 // start ImageJ
 new ImageJ();
}

This is a standard main method that is common to Java programs. This method is not
required for ImageJ plugins. The standard entry point for plugins is usually the run
method (Plugin and PlugInFilter) or the constructor (PlugInFrame). This main
method is only for the purpose of the Maven build process and to make sure that
ImageJ is started by instantiating a new ImageJ object.

The first line gets a reference to the plugin class that we created. In the next line,
we extracted the full path, including the class file. This URL will have the following
format: file:/path/to/Awesome_Plugin.class. In the next line, we removed
the file: and the Awesome_Plugin parts from the beginning and end of the URL,
respectively, using the lastIndexOf() method. The clazz.getName() call will
return a string that will have the following format:

•	 class Awesome_Plugin

•	 class package.name.Awesome_Plugin

The second format would be used if you used a package for your plugin, while the
first format is used when you omit the package statement from your plugin. Using
the lastIndexOf() method, we can include the package folders in the path as well,
resulting in an error-free compilation and the correct placement of the plugin in the
Plugins menu. We will then add the folder that contains the class to the plugins.
dir property. Finally, we will start ImageJ by invoking a new instance using the new
keyword.

www.it-ebooks.info

http://www.it-ebooks.info/

Explanation of ImageJ Constructs

[158]

At this stage, we have the minimal code to run and debug our plugin. When we run
the project now, ImageJ should open, and the plugin should be visible in the Plugins
menu. We can select it, but it may generate an error when we select the plugin from
the menu:

This would occur if you used a package definition in your class file (in my example,
I used the analysis.tools package). You can solve this by adding the following
line to the end of your main method:

// run the plugin
IJ.runPlugIn(clazz.getName(), "");

This will run the plugin immediately after ImageJ has started. If you defined the
class without a package statement, you would not encounter this problem. It is,
therefore, easier to start by developing plugins using the source files without a
package statement. In the upcoming chapters, we will look at what we need to do to
make a functional plugin.

Creating an ImageJ2 plugin
The steps to create a Maven project for an ImageJ2 plugin is very similar to the steps
taken in the previous section. Only a small change is required in the POM file within
the <dependencies> tag:

<dependencies>
 <dependency>
 <groupId>net.imagej</groupId>
 <artifactId>imagej</artifactId>
 </dependency>
</dependencies>

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 7

[159]

By changing the value of the <artifactId> tag from ij to imagej, we specify that
we wish to implement an ImageJ2 instance. When we Save and Build the project, we
will see that the imagej-2.0.0-rc-41.jar file has replaced the earlier ij-1.50a.
jar file. We would also need the repository for the ImageJ2 project:

<repositories>
 <repository>
 <id>imagej.public</id>
 <url>http://maven.imagej.net/content/groups/public</url>
 </repository>
</repositories>

The final change that is required is within the plugin source code. We need to use
different import statements and change the way ImageJ is launched:

import net.imagej.ImageJ;
[...]
public static void main(String[] args) {
 [...]
 // start ImageJ
 final ImageJ ij = net.imagej.Main.launch(args);
}

The syntax of ImageJ2 used in plugins is also different compared to ImageJ1.x, which
is a topic we will discuss in the following chapters.

Pros and cons of using an IDE
Using an IDE such as NetBeans has some benefits to help you write code. There
are options to autocorrect coding errors and the possibility to automatically import
dependencies. The disadvantages are not very big, but working with an IDE has a
lot of overhead in terms of preparations and setting up. No matter how complete the
IDE is, it can still not tell you how to solve a problem. Also, in some cases, it can be
faster to just type the code directly using the script editor supplied with Fiji. The IDE
is also not well suited to develop ImageJ macros, because macros in ImageJ are not
compiled and are, therefore, not easy to integrate in the workflow of the IDE.

www.it-ebooks.info

http://www.it-ebooks.info/

Explanation of ImageJ Constructs

[160]

Summary
In this chapter, we looked at the framework of macros and plugins that are available
in ImageJ. We looked at some of the constructs that the ImageJ API exposes for use in
scripting and plugins. Finally, we described how to set up an IDE to develop ImageJ
and plugins using it as standalone project or as a Maven-based project. You also saw
how to generate documentation using the Javadoc utility.

In the next chapter, we will look at some plugins that are available and how they
provide a solution to image-processing problems.

www.it-ebooks.info

http://www.it-ebooks.info/

[161]

Anatomy of ImageJ Plugins
In this chapter, we will examine how a plugin is organized in ImageJ and how it
is implemented in the main interface. We will examine both the legacy plugins
(ImageJ1.x) and the new format based on SciJava's model (ImageJ2). The following
topics will be discussed in this chapter:

•	 The basic anatomy of a plugin in ImageJ1.x and ImageJ2
•	 Types of plugins
•	 Implementing a plugin
•	 Combining macros and plugins
•	 Running and debugging plugins
•	 Examples of available plugins

The basic anatomy of a plugin
A plugin within ImageJ has to adhere to specific rules. The syntax conforms to the
Java language, but some of the elements are unique to ImageJ. In the following
sections, I will discuss the conventions and constructs used by ImageJ1.x plugins
(referred to as legacy from here on) and the new SciJav-based conventions and
constructs (referred to as scijava from here on). Note that when using the scijava
model, you are required to use Java 1.7.x or higher when running and compiling
your plugins. Also, the scijava model was designed with the Maven and Git systems
in mind. This means that it is advantageous to use those systems when developing
plugins for the future releases of ImageJ. The following sections will look at the basic
anatomy of a plugin in both formats.

www.it-ebooks.info

http://www.it-ebooks.info/

Anatomy of ImageJ Plugins

[162]

Legacy plugins
A plugin within ImageJ1.x has to adhere to specific rules. The syntax conforms
to the Java language, but some of the elements are unique to ImageJ. The legacy
plugin consists of three main types of plugins: the basic PlugIn, PlugInFilter,
and PlugInFrame. A short description and use case for each of these types will
follow in the upcoming sections.

The PlugIn type
The PlugIn type is used for basic plugins that do not require an image to be open by
design. The PlugIn type is a Java interface, and it only has one method that needs
to be overridden, which is the run() method. The run() method of the PlugIn
type is the entry point for this type, and after that, it can be structured in any shape
or form using Java syntax. This plugin is very basic, but can perform any task you
can design. It can also deal with images. However, selecting an image or opening
an image for processing needs to be handled explicitly by the programmer. Also,
checking the image type before processing needs to be verified by the programmer
explicitly.

The PlugInFilter type
This type of plugin requires an image to be open when the plugin is being executed,
and the image also is an input parameter for the plugin. It has two methods that are
required to be overridden by the programmer: the setup() method and the run()
method. The setup method does a basic check on the image and allows for the plugin
to verify that the current image meets the requirements that are necessary for the
processing. It returns an integer value that indicates which types of images can be
handled by the plugin. When you wish to specify an image type, you can use the
fields defined for the PlugInFilter interface:

•	 DOES_ALL: These are any type of image can be processed
•	 DOES_8G: These are the 8-bit gray scale images
•	 DOES_16: These are the 16-bit gray scale images
•	 DOES_32: These are the 32-bit float images
•	 DOES_RGB: These are the RGB images
•	 DOES_STACKS: These are all types of stacks (channels, slices or frames)

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 8

[163]

When using the DOES_STACKS field, be aware that any multidimensional image will
be considered a stack, and processing will run over all the channels, slices, and/
or frames that are present in the image. When using this field, you have to perform
checks to make sure that your plugin will process the correct dimension. If the image
does not fit the type specified by the field(s), the plugin will abort and give a warning
that the image type is not supported by the plugin. If you wish to support different
types, you can return the sum of the supported types. The run() method is the main
entry point of this type, although you could also perform some preprocessing in the
setup method.

The PlugInFrame type
This type of plugin is designed to create an interface for your plugin to show
the user. There is no method to be overridden, and the only required element is
the constructor for the class. The constructor is the entry point of the plugin. The
PlugInFrame type extends the Abstract Window Toolkit (AWT) model for the user
interface, which can be filled with controls or tabbed panels to allow for a clear user
experience. This type does not assume that any images are open, and the developer
needs to implement all the logic for the user interface.

Implementing a legacy plugin
Once you have decided on a plugin type, all you need to do is implement your
plugin. This sounds simple, and it can be as well. There are a few things you need
to consider before you start. ImageJ requires a plugin to have an underscore in the
name in order for it to show up in the Plugins menu if you use a single class file.
This requirement is lifted when you develop the plugin as a Java archive (JAR) file.
When creating your plugin, you need to adhere to the Java syntax. This means that
you need to declare and initialize your variables. When creating functions, you need
to specify the return type, if any, and the access type (public/private/protected).
The regular coding advice applies to ImageJ plugins as well. Adding comments can
be helpful. It is also possible to create documentation for your functions using the
Javadoc system that was set up in Chapter 7, Explanation of ImageJ Constructs. This
allows for a comprehensive documentation of your code, as well as being useful as
an extended memory when you need to modify something later on.

www.it-ebooks.info

http://www.it-ebooks.info/

Anatomy of ImageJ Plugins

[164]

When selecting a plugin type, you need to consider certain points. When using
PlugInFilter, the active image will be used when the plugin is called, causing the
image to be locked by ImageJ. When a command is issued on the image from outside
of your plugin, the image is not accessible as it is locked by the plugin. This causes the
Image locked error. If you wish to process images using macros from within a plugin,
it is better to use the basic PlugIn (or PlugInFrame) type instead of the PlugInFilter
type. In the next section, we will look at the constructs for scijava plugins.

Combining macros and legacy plugins
It is possible to combine macros and plugins as well. The run command can be used
from within a plugin to execute a specific macro or ImageJ command. The only
difference is that you need to precede it with the root class IJ:

IJ.run("Green"); //ImageJ command
String status = IJ.runMacro("/PATH/TO/Macro"); //macro

The first line will change the lookup table to green for the currently active image
and channel. The second line will run a macro specified by a path. The runMacro
method returns a string that contains the return value of the macro or NULL if the
macro does not return a value. It returns [Aborted] when the macro was aborted or
when it encountered an error. The IJ class contains a few useful methods that allow
us to run macros and plugins as well as open images using an open dialog. Another
useful method is the IJ.log() method, which accepts a string that will be displayed
in the log window. This can be used to provide feedback for the user as well as aid in
debugging a plugin, as will be shown in a later section. In Chapter 9, Creating ImageJ
Plugins for Analysis we will look at a basic implementation where we combine ImageJ
commands within PlugInFilter.

SciJava plugins
Since ImageJ was developed, many plugins were built using the legacy system
described earlier. However, certain shortcomings in the design of the legacy format
necessitated a redesign of the ImageJ core. This new framework is the SciJava
framework, which consists of scijava-common at its core (among other components).
The following sections will describe how plugins are implemented in this new
framework. It should be noted that the way plugins are developed in the SciJava
framework does not split a plugin in the same types as the legacy system. There is
no concept of a plugin that requires an image or that creates a user interface. In the
framework, all plugins have the same construction, and they define the components
that are required.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 8

[165]

The @Plugin annotation
In the SciJava framework, a plugin is a class that is annotated with the @Plugin
annotation. Classes with this annotation are automatically recognized by ImageJ
and indexed for use when the plugin is launched by the user. Under this framework,
you will typically create one of two types of plugins: a service or a command. A
service-type plugin will consist of utility methods for internal use in ImageJ. Services
provide methods that can be used throughout the framework. Command-type
plugins, on the other hand, are meant as plugins that execute a specific function with
a specific goal. These are the types of plugins that the user will encounter when using
the ImageJ interface: a menu item in ImageJ is a form of a command-type plugin.
Command-type plugins can use Service methods to allow for common tasks such as
opening images.

Whether you create a command or service-style plugin, either will run in what
is called Context. Context in the SciJava framework describes the services and
commands that the plugin will use. It functions as a type of sandbox. It is not
possible to directly use the methods of services and commands within another
plugin's context. If this is required, you have to inject your outside plugin into the
context of the plugin of which you wish to use its methods. Alternatively, you can
request a service from within a context using a special annotation to request an
instance of a type in your plugin using the @Parameter annotation. For instance, if
you wish to use logService in your plugin to allow for logging events, you could
use the following annotation:

@Parameter
private logService logService;

When the plugin is run, the context will automatically generate an instance of
logService and give you access to its methods:

public void log(String msg) {
 logService.info(msg);
}

In the upcoming sections, we will look at the two basic types of the @Plugin
annotation in more detail.

www.it-ebooks.info

http://www.it-ebooks.info/

Anatomy of ImageJ Plugins

[166]

Services
The SciJava framework contains a large number of generic services that can be used
to perform basic tasks and deal with datasets. Some of the more important ones
include the following services:

•	 AppService: This deals with applications (that is, ImageJ)
•	 EventService: This deals with events such as mouse clicks
•	 PluginService: This deals with the available plugins and their execution
•	 DatasetService: This deals with tools to handle image data
•	 OverlayService: This deals with tools for overlays and ROIs

To create your own service, you will need to create a context for it and define its
methods. If you wish to use the generic services available in the SciJava framework,
you can add them as parameters to your own service. This allows for very extensible
code that can be reused over and over consistently. In most cases, you will obtain a
reference to these services using the @Parameter annotation in your plugins, giving
you access to its methods and functionality.

Commands
When creating plugins yourself, the command type will be the most commonly used
type. Commands describe plugins that face the user and describe an action that
the user can perform by launching the command. When creating a plugin, you can
specify the type as a Command class, and you can specify where the command will be
placed in the menu structure:

@Plugin(type=Command.class, menuPath="Plugins>My Menu>My Plugin")
public class My_Plugin implements Command {
 //code for the plugin

}

The type specifies that this plugin is concerned with a command interface, which it
implements as stated in the class definition. The menuPath parameter allows you to
set the menu position where the plugin will be placed when it is discovered. This
allows for fine control and grouping of your plugins. In this case, in a predefined
submenu (My Menu) within the plugins menu of ImageJ.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 8

[167]

Running and debugging plugins
Once you have created your code, you are ready to compile it. Java is not an
interpreted language and requires that the source code is compiled into byte code
that can be processed by the Java Virtual Machine (JVM). Depending on how
you're developing the code, there are different ways to proceed. You can use ImageJ
directly, use the Fiji Code Editor, or use the NetBeans IDE. How you proceed also
depends on whether you are developing a legacy plugin or a scijava plugin. The
following sections will look at the legacy plugins first.

Compiling plugins
Compiling and running plugins differs a little between vanilla ImageJ and Fiji due to
the fact that Fiji is based on the SciJava framework. Also, when using an IDE, there
will be different steps involved in compiling and running your plugin.

When you have finished writing the source code for your plugin using vanilla
ImageJ, you can run the plugin by first compiling it and then running it. To do so, go
to Plugins | Compile and Run… and select your plugin. If your code was correctly
written, it would compile and then run. If there were any errors during compilation,
an error dialog would pop up indicating which line(s) contained error(s). Most of the
time, error messages can be very cryptic and may not always point directly to the
point where the code failed.

If you are using Fiji, you can compile and run your plugin using the Run button
at the bottom of the script editor window. The Compile and Run… method is not
available in Fiji! Any error messages will be displayed in the field below to indicate
where and why the compilation or running failed.

If you are using an IDE for your development, you can use the compile function of
the IDE. In NetBeans, you can compile your file by going to Run | Compile File or
by pressing F9. If there were no errors during compilation, you can run your plugin
using Run | Run Project from the menu or by pressing F6. If no errors were found, a
new instance of ImageJ will be started, and under the Plugin menu, your developed
plugin should show up. Errors in syntax will prevent the compilation, and the IDE
will highlight these errors using a red symbol with a white exclamation mark (as
well as a red wavy line):

www.it-ebooks.info

http://www.it-ebooks.info/

Anatomy of ImageJ Plugins

[168]

When hovering the pointer above the red symbol in the margin, a suggestion is given
about the error. In this case, the message tells us that ; was expected at the end of the
statement. The symbol above it does not signify an error, but a warning. Warnings
will not halt compilation or prevent the running of a plugin. However, they can
cause problems during runtime. In this example, the warning tells us that the use of
the keyword this used in the constructor is not advised and might cause problems.
For plugins based on the SciJava framework, the procedures and results are the
same. However, there are a few important things to consider. The next section will
briefly explain some of the main points.

Compiling SciJava plugins
To compile plugins that implement the SciJava framework, you need to make sure
that you have all the dependencies as well as that the ImageJ framework you will
run the plugins on supports the framework. For Fiji, this is not a problem. It runs on
the framework by default already. You can also use the vanilla ImageJ, but you must
make sure it is the ImageJ2 variant and not the ImageJ1.x variant.

You can check which variant you're using by clicking on the status line of
the main interface. If it reads something like ImageJ 2.0.0-[…], it indicates
you are using ImageJ2. If it reads something similar to ImageJ 1.50a, then
you are running the ImageJ1.x variant.

Due to the modular nature of the framework, it is strongly recommended that you
use the Maven tools to create and compile your plugins. This will take care of all the
dependencies required to build your plugin. To make this more streamlined and
efficient, it is a best practice to use an IDE that supports Maven, although you can
also use the Command-line Interface (CLI) if you wish. To refresh your memory,
refer to the previous chapter, which explains you how to set up your IDE with a
Maven-based plugin.

To compile your plugin using NetBeans using a Maven-based project, you just need
to select your project and go to Run | Build Project or press F11. To launch your
plugin, go to Run | Run Project from the menu or press F6. Problems that were
encountered during compilation will be displayed in a similar way as described for
the legacy plugins.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 8

[169]

Debugging plugins
As ImageJ is a tool to run the code, it does not have many utilities to debug code.
This does not mean, however, that it is not possible to do some debugging. For
legacy plugins, you can use the IJ.log method. It is possible to log statements to
a log window or to look at the value of variables. For plugins built on the SciJava
framework, you can use logService and use the info() and warn() methods after
declaring @Parameter to create an instance to the required service. An example use
of this method of debugging plugins can be as follows:

int someVar = 1;
int newVar = doSomething(someVar);

//legacy method
IJ.log("Old value: "+someVar+"; New value: "+newVar);

//SciJava method
logService.info("Old value: "+someVar+"; New value: "+newVar);

When using this type of method, it can be useful to include a simple control
statement such as the if statement. This allows you to easily disable or control the
amount of logging that is done in your final incarnation of the plugin. Using a global
variable that sets a debugging level, you can control to show a certain log message or
not:

private static int dbglvl = 3;
...

//implement the logging based on the dbglvl value
if (dbglvl> 2) {
 IJ.log("The current value is "+currValue);
}
...
//implement the logging based on the dbglvl value
if (dbglvl> 4) {
 IJ.log("This statement was evaluated...");
}

www.it-ebooks.info

http://www.it-ebooks.info/

Anatomy of ImageJ Plugins

[170]

In this case, the global variable dbglvl will dictate which messages will be shown.
The first if statement will be executed with the current debug level (set to 3), while
the second statement will not be displayed with the current level. In the final version
of your plugin, you can change the value of dbglvl to 1 or 0 to disable all low-
level debugging statements. Note that this assumes that a high value for dbglvl is
associated with minor logging statements, and a low value will only show the most
minimal statements. Finally, you might want to remove all the if statements when
the code is working correctly. The evaluation of each statement does require a finite
amount of time, so it will slow down your code in the end.

When using the NetBeans IDE to develop plugins, there are more options to debug
and profile your code. The advantage of using an IDE such as NetBeans is you can
set breakpoints where you wish to halt the execution of the plugin and look at the
contents of the variables. To do so, click on the margin before the line where you
wish to stop. A red square will be displayed, indicating a breakpoint:

The entire line is also colored red to indicate the line where the debugger will
wait when you run it. Keep in mind that if you place a breakpoint in a statement
that will never be executed, the debugger will never stop, and your code will run
uninterrupted.

To run the code using the debugger, you can go to Debug | Debug Project (…)
or press Ctrl + F5 on the keyboard. When the debugger hits a breakpoint, the line
will become green, and you can continue using the different step functions. In the
variables tab at the bottom of the IDE, you will see all the variables that are available
at the current breakpoint. Note that you can also evaluate expressions and change
the values that are currently assigned to variables. Doing this may cause problems or
may lead to infinite loops or crashes, so be careful when changing values!

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 8

[171]

There is also a profiler to help with identifying sections of code that are not efficient
in terms of processing speed or memory usage. However, many of these advanced
features are not always necessary when developing simple plugins. Once you start
Profiler by selecting Profile | Profile Project (…), you can select whether you wish
to monitor the CPU processing, garbage collection (GC) and/or memory usage.
You can use the telemetry to see whether there are problems with excessive CPU
cycles as well as problems with garbage collection and memory management. The
use of Profiler extends a little too far beyond the scope of this book. However, there
are excellent resources available online on how to use and interpret the results from
profiling.

As profiling an application is very close to an art form, use it carefully and only
when you really notice very slow performance or memory problems in your
application. Choosing how much development overhead you wish to dedicate for
your plugin should always be weighed against the amount of time it gains. Spending
hours of optimizing your code or algorithm so that it executes 1 second faster may
not be worth it if it is called only once and is a part of a larger chain of commands.
However, if you optimize code that is called hundreds of time within a loop, the
optimization might be worth the extra development time many times over.

In the upcoming section, we will look at some plugins that are available and are used
for scientific research.

Examples of available plugins
In this section, I will discuss a few plugins that are available for ImageJ, most of
which have also been published in scientific journals. They will show you how to
use ImageJ for advanced image processing, with different degrees of automation
and user interaction. They also provide a few examples of the design of a plugin,
either with its own interface or just as a single command that executes. Some of
these examples also have their source code available so that you can see how the
developers implemented their algorithms. Be aware that having the source code
and being able to understand it fully might be difficult: depending on the level of
documentation or comments in the code. It might be very difficult to completely
retrace the functioning of the code. As a program grows and new functions and
algorithms are added, it deviates more from a single core algorithm to a more
convoluted group of files. Developers using the Javadoc capabilities available in IDEs
can create detailed documentation relatively easy, making the understanding of code
slightly easier.

www.it-ebooks.info

http://www.it-ebooks.info/

Anatomy of ImageJ Plugins

[172]

One point that is very important when trying to analyze source code is to realize
which file or function is the entry point of the program. You can be sure that when
the code executes, it will always go into this main entry point, and every user
interaction or function will be set up in the main entry point. The entry points for
the different types of plugins were indicated in the previous sections. Also, plugins
developed using the SciJava framework generally have a main() method, which
is not necessarily the entry point for the plugin. This depends on the way that the
plugin was launched. When launched through the IDE using Maven, the main()
method is used to instantiate ImageJ and launch the plugin. However, when
launching the plugin from the ImageJ instance using the menu for example, the
main() method will not be invoked.

When using an interface for your plugin, a lot of the action comes from the user
pressing a button, adding a number to a field or selecting an option. The main
interface just waits for the user to do something. In Java, this means that the
ActionPerformed() method becomes the entry point for many algorithms or
processing. When a user clicks a button, this will fire an action event that can be used
by the programmer to catch it and connect it to further statements. First, we will
look at some examples of plugins that are available on the ImageJ website (http://
imagej.nih.gov/ij/plugins/index.html) to show how to develop ImageJ
solutions to image processing problems.

Example plugins available in ImageJ and Fiji
ImageJ has a large collection of plugins available that extend the core functionality.
With the arrival of ImageJ2, the model for distribution of plugins is changing as well.
In the older ImageJ1.x framework, you were required to download a source file of
a plugin or a compiled .class file and place it in the plugins folder. When the plugin
was updated, you would need to repeat the whole process again. With ImageJ2,
an updating mechanism has been provided that uses a repository system. In this
system, communication between ImageJ and the repository will determine whether
there are updates available. When there are updates, the user can automatically
install the updates without having to search for the plugin.

For most of the plugins that are available, the source code can be viewed or studied
to look at the way other people have solved a particular image-processing problem.
For the following example plugins, I will describe the specific problem or challenge
they are designed to tackle. I will then show a bit of code to explain how the plugin
tries to solve the problem. Feel free to view or download the source code where
available to look at the complete implementation.

www.it-ebooks.info

http://imagej.nih.gov/ij/plugins/index.html
http://imagej.nih.gov/ij/plugins/index.html
http://www.it-ebooks.info/

Chapter 8

[173]

MultipleKymograph
An example of such a plugin is the MultipleKymograph plugin
(MultipleKymograph_.java), which creates a kymograph along a (segmented)
line selection. It was designed by Jens Rietdorf and Arne Seitz from the European
Molecular Biology Laboratory (EMBL) in Heidelberg, Germany. It contains a small
set of tools and macros that can be used to create and measure kymographs. We
already saw kymographs back in Chapter 5, Basic Measurements with ImageJ, where
we saw how they visualized dynamics in time series. There, we used the Reslice
command to generate the kymograph, which worked OK, but there are a few small
drawbacks of that method.

The first problem is that Reslice only considers the pixels that are on the line that
was selected. This makes it more sensitive to inaccurate placement of the line and
pixel noise. The MultipleKymograph plugin is a legacy plugin that tries to solve this
problem by providing the user with an input field to ask for the line width to be used
to create the averaged output pixels. When the user calls the plugin without a line
selection or an open image, it generates an error message indicating that action needs
to be taken by the user before calling the plugin. As the creation of the kymograph
image itself hinges on the correct values for the pixels, I will focus on how the plugin
calculates the average pixel intensity for the line that was placed by the user.

The main generation of the pixel values happens in the sKymo(…) method, which has
the following definition:

public double[] sKymo(ImagePlus imp, ImageProcesso rip, Roi roi, int
linewidth, int proflength){

 int numStacks=imp.getStackSize();
 int dimension = proflength*numStacks;
 double[] sum = new double [dimension];

 int roiType = roi.getType();
 int shift=0;
 int count=0;

 for (int i=1; i<=numStacks; i++) {
 imp.setSlice(i);

 for (int ii=0;ii<linewidth;ii++){
 shift=(-1*(linewidth-1)/2)+ii;

 if (roiType==Roi.LINE) {
 profile = getProfile(roi,ip,shift);
 }

www.it-ebooks.info

http://www.it-ebooks.info/

Anatomy of ImageJ Plugins

[174]

 else {
 profile = getIrregularProfile(roi, ip,shift);
 }
 for (int j=0;j<proflength;j++){
 count = (i-1)*proflength+j;
 sum[count]+=(profile[j]/linewidth);
 }
 }
 }
 return sum;
}

The sum variable that is returned contains the result of the averaged profiles along
the stack. The method requires five input parameters, which are as follows:

•	 ImagePlus imp: This is the source stack that we want to use for the
calculations

•	 ImageProcessor ip: This is the image processor to access the pixels of the
stack

•	 Roi roi: This is the ROI that marks the line we wish to make into a
kymograph

•	 int linewidth: This is the width of the line as specified by the user input
•	 int proflength: This is the length of the line specified by the user

The method starts by declaring the parameters that will be needed for processing.
Specifically, the output variable sum is defined as a double[] vector with a length
equal to length of the line multiplied with the number of slices (or frames). The
method then iterates over the slices in the stack (the outer for loop) and retrieves
the profile using a method called getProfile() or getIrregularProfile().
These methods extract the pixel values from the selection, where the shift parameter
determines how far the line is shifted compared to the selection. The only difference
between the two is that one is meant to be used for straight lines (getProfile),
while the other is used for segmented lines (getIrregularProfile). For the sake of
brevity, I will only show the code for the former method:

double[] getProfile(Roi roi,ImageProcessor ip, int shift){
 double[] values;

 int x1=((Line)roi).x1;
 int x2=((Line)roi).x2;
 int y1=((Line)roi).y1;
 int y2=((Line)roi).y2;

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 8

[175]

 ((Line)roi).x1=x1+shift;
 ((Line)roi).x2=x2+shift;
 ((Line)roi).y1=y1+shift;
 ((Line)roi).y2=y2+shift;

 values=((Line)roi).getPixels();
 ((Line)roi).x1=x1;
 ((Line)roi).x2=x2;
 ((Line)roi).y1=y1;
 ((Line)roi).y2=y2;

 return values;
}

This method takes the ROI that the user specified and shifts it by the amount
specified in the shift parameter. It then uses the getPixels() method from the
Roi class to extract the gray values and returns them. As a line is defined by only
two points, each with an x and y coordinate, this method is fairly brief. The irregular
case requires that the line is moved along all the N coordinates required to define the
segmented line. Otherwise, it functions in the same way.

ColorTransformer2
This legacy plugin is useful when dealing with color images such as those acquired
by digital color cameras or videos from cameras such as webcams. It was originally
developed by Maria E. Barilla as ColorTransformer and modified by Russel Cottrell,
resulting in the ColorTransformer2 plugin. The source code can be found at http://
www.russellcottrell.com/photo/downloads/Color_Transformer_2.java.

A problem with color images, such as RGB images, is that the intensity is not well-
defined in the RGB color space. Light blue might appear more intense than dark
blue, but the intensity value for the blue channel might be higher for dark blue than
for light blue. In order to segment RGB images effectively based on specific colors,
it is better that you transform it to a color space that is more suited for this purpose.
The HSB color space separates an image in three components: Hue, Saturation, and
Brightness (sometimes also labeled as Value or Intensity). The hue indicates the
color ranging from red to orange, yellow, green, cyan, blue, and magenta. See
Chapter 2, Basic Image Processing with ImageJ for details on the use of the HSB
color space.

www.it-ebooks.info

http://www.russellcottrell.com/photo/downloads/Color_Transformer_2.java
http://www.russellcottrell.com/photo/downloads/Color_Transformer_2.java
http://www.it-ebooks.info/

Anatomy of ImageJ Plugins

[176]

This plugin implements a PlugInFilter, meaning that it overrides the setup()
and run() methods, which form the entry points for the plugin. The setup method
checks whether an image is open and screens the type of image that this plugin can
process. The run method shows a dialog, which allows the user to choose the color
space to convert from and to. The method I want to describe here is the conversion
from RGB to HSI, which is a common format to use in segmentation of RGB images
where segmentation needs to be performed based on color.

The main method that performs the actual RGB-to-HSI conversion is the getHSI()
method. This method looks as follows:

public void getHSI(){
 for(int q=0; q<size; q++){
 float var_Min = Math.min(rf[q], gf[q]); //Min. value of RGB
 var_Min = Math.min(var_Min, bf[q]);
 float var_Max = Math.max(rf[q], gf[q]); //Max. value of RGB
 var_Max = Math.max(var_Max, bf[q]);
 float del_Max = var_Max - var_Min; //Delta RGB value

 c3[q] = (rf[q] + gf[q] + bf[q])/3f;

 if (del_Max == 0f){ //This is a gray, no chroma...
 c1[q] = 0f; //HSL results = 0 ? 1
 c2[q] = 0f;
 }
 else{//Chromatic data...
 c2[q] = 1 - (var_Min / c3[q]);

 float del_R = (((var_Max-rf[q])/6f)+(del_Max/2f))/del_Max;
 float del_G = (((var_Max-gf[q])/6f)+(del_Max/2f))/del_Max;
 float del_B = (((var_Max-bf[q])/6f)+(del_Max/2f))/del_Max;

 if(rf[q] == var_Max) c1[q] = del_B - del_G;
 else if(gf[q] == var_Max) c1[q] = (1f/3f)+del_R-del_B;
 else if(bf[q] == var_Max) c1[q] = (2f/3f)+del_G-del_R;

 if (c1[q] < 0) c1[q] += 1;
 if (c1[q] > 1) c1[q] -= 1;
 }
 }
}

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 8

[177]

These conversions are based on the methodology described in Color Vision and
Colorimetry, Theory and Applications, D Malacara. The transformation is based
on transforming the original RGB values stored in the rf, gf, and bf arrays,
respectively. The transformed values are stored in the c1, c2, c3, and optionally, c4
arrays. For the transformation to HSI, the c4 array is not used, as an HSI image only
has three channels. For example, the CMYK color space requires all four channels.
At the end of the run method, the values for the channels are placed in a new image,
which will be the transformed image.

MtrackJ
This plugin is useful when you wish to track objects over time and, optionally, in
three dimensions. It was developed by Eric Meijering at the University of Lausanne
in Switzerland. The source code can be found on GitHub at https://github.com/
fiji/MTrackJ/. It was published in Methods in Enzymology, vol 504 in February 2012.
The main interface of the plugin consists of groups of buttons that allow you to add,
delete, or move tracks or points and perform measurements or change settings:

www.it-ebooks.info

https://github.com/fiji/MTrackJ/
https://github.com/fiji/MTrackJ/
http://www.it-ebooks.info/

Anatomy of ImageJ Plugins

[178]

The function of this plugin is to track objects or particles over time in order to
establish their speed and direction. Although automated tracking algorithms do
exist, some data is just too difficult or too dense for automated tracking algorithms
to cope with. For these types of challenges, this plugin will provide a tool that can
help establish useful parameters for objects. The goal of this plugin is similar to
that of the MultipleKymograph plugin described earlier: measuring the velocity of
multiple objects. When the tracks are created and measured, the results are presented
in a results window. These results can then be used for direct plotting and analysis
outside of ImageJ or as input for more advanced analysis.

As this plugin is quite extensive and has many features, I will focus on one very tiny
detail that makes this interface great to track objects with amazing accuracy. In the
options for tracking, accessed through the Tracking button, you can set a snapping
function for the mouse cursor. This type of feature might be familiar to many people.
Many different applications use it to make it easier to align objects nice and evenly.
When you check the Apply local cursor snapping during tracking checkbox, you
can choose a snap feature. This snap feature will determine when you position
your mouse cursor over an object where the tracking point will be added. Without
snapping, it would be placed at the pixel that you clicked. However, when using
bright centroid as the snap feature, something interesting will happen (when using
fluorescent images). When you add a tracking point by clicking, MtrackJ determines
the centroid of the snap range that you defined. The centroid is the weighted
intensity point and is not necessarily a single pixel, but it can be a position such as
(x = 12.4, y = 13.45). For image data with good signal-to-noise ratio, you can achieve
better tracking resolution than the optical system can provide (so-called subpixel
resolution). The location of the snap coordinates are calculated in a method called
snapcoords(). I will not reproduce the entire method as it is quite extensive, but I
will show you how it achieves the bright centroid calculation:

double ox=0, oy=0;
switch (settings.snapfeature) {

 //other cases skipped

 case MTJSettings.BRIGHT_CENTROID: {
 // Make all weights > 0:
 if (minval<= 0) {
 final double offset = -minval + 1;
 for (int y=0; y<snaprect.height; ++y)
 for (int x=0; x<snaprect.width; ++x)
 snaproi[y][x] += offset;
 minval += offset;
 maxval += offset;
 }

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 8

[179]

 // Calculate Otsu threshold:
 double otsu = minval;
 final double maxi = OTSU_BINS;
 final double range = maxval - minval;
 double maxvari = -Double.MAX_VALUE;
 for (int i=1; i<OTSU_BINS; ++i) {
 double sum1=0, sum2=0, n1=0, n2=0;
 final double thres = minval + (i/maxi)*range;
 // Notice that we always have minval<thres<maxval,
 // so sum1, sum2, n1, n2 are > 0 after the loop:
 for (int y=0; y<snaprect.height; ++y)
 for (int x=0; x<snaprect.width; ++x) {
 final double val = snaproi[y][x];
 if (val<thres) { ++n1; sum1 += val; }
 else { ++n2; sum2 += val; }
 }
 final double mean1 = sum1/n1;
 final double mean2 = sum2/n2;
 final double vari = n1*n2*(mean1-mean2)*(mean1-mean2);
 if (vari > maxvari) {
 maxvari = vari;
 otsu = thres;
 }
 }
 // Calculate centroid >= threshold:
 double val=0, sum=0;
 for (int y=0; y<snaprect.height; ++y)
 for (int x=0; x<snaprect.width; ++x) {
 val = snaproi[y][x];
 if (val>= otsu) {
 val -= otsu;
 ox += x*val;
 oy += y*val;
 sum += val;
 }
 }
 ox /= sum; // sum can never be 0
 oy /= sum;
 break;
 }
 }
 snapos.x = snaprect.x + ox;
 snapos.y = snaprect.y + oy;

www.it-ebooks.info

http://www.it-ebooks.info/

Anatomy of ImageJ Plugins

[180]

As the plugin supports multiple methods for snapping, there are multiple cases
in this switch statement, which I omitted for the sake of brevity. The goal of the
method is to assign values to the snapos.x and snapos.y variables. For the bright
centroid method, a threshold is used based on the Otsu method. In the first loop
using the x and y indices, we went over the pixels of the snapping rectangle and sum
all the pixel intensities (val) that are above the threshold value (thres) in sum2 and
the intensities below the threshold in sum1. We used these to calculate the variation,
and if it exceeds the maximum value in the rectangle, we adjust the value and the
Otsu threshold value.

In the second loop over the pixels in the snapping rectangle, the centroid is
determined by summing the products of each pixel's x and y coordinates multiplied
by the intensity above the Otsu threshold. A running sum of the intensities above
the threshold is also kept and used to divide the final coordinates with. These final
values are used in the draw() method function that shows the bright centroid in the
image:

public void draw(final Graphics g) { try {

 if (!(g instanceofGraphics2D)) return;
 final Graphics2D g2d = (Graphics2D)g;

 //some code skipped for brevity...

 // Draw snapping objects:
 if (snapping()) {
 g2d.setColor(settings.hilicolor);
 try { g2d.setComposite(settings.snapopacity); } catch
 (Throwable e) { }
 // Snap ROI:
 g2d.setStroke(settings.snapstroke);
 final int slx = (int)((snaprect.x-vof.x + 0.5)*mag);
 final int sly = (int)((snaprect.y-vof.y + 0.5)*mag);
 final int sux = (int)((snaprect.x+snaprect.width-vof.x-0.5)*mag);
 final int suy = (int)((snaprect.y+snaprect.height-vof.y-0.5)*mag);
 g2d.drawLine(slx,sly,sux,sly);
 g2d.drawLine(sux,sly,sux,suy);
 g2d.drawLine(sux,suy,slx,suy);
 g2d.drawLine(slx,suy,slx,sly);
 // Snap cursor:
 g2d.setStroke(settings.pointstroke);
 final int xi = (int)((snapos.x - vof.x + 0.5)*mag);
 final int suy = (int)((snapos.y - vof.y + 0.5)*mag);
 final int hps = 6;

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 8

[181]

 g2d.drawLine(xi,yi-hps,xi,yi+hps);
 g2d.drawLine(xi-hps,yi,xi+hps,yi);
 }
}

This method uses a Graphics2D object referenced by g2d to create a square box
indicating the snap region (the // Snap ROI section), whose size is determined by
the values of the snaprect object. Finally, it draws a small + to indicate the snap
coordinate defined by the snapos.x and snapos.y variables (the // Snap cursor
section).

Coloc2
For certain types of research questions, it is important to know whether two objects
overlap or colocalize. The Coloc2 is a plugin included in the Colocalisation_
Analysis.jar file as developed by Daniel J. White, Tom Kazimiers, and
Johannes Schindelin. The source is available on GitHub at https://github.com/
fiji/Colocalisation_Analysis/. The Coloc2 command is used to measure
colocalization between two images, usually representing different channels in
fluorescent images.

The main functionality is placed in the colocalise method, which compares the
pixel intensities between the two images using different methods. As an example of
how this plugin functions, I will look at a more basic function that is used whenever
a selection is present in the ROI manager and needs to be used for the colocalization
analysis. The method is called createMasksFromRoiManager, and it calls a second
method called createMasksAndRois:

protected boolean createMasksFromRoiManager(int width, int height) {
 RoiManager roiManager = RoiManager.getInstance();
 if (roiManager == null) {
 IJ.error("Could not get ROI Manager instance.");
 return false;
 }
 Roi[] selectedRois = roiManager.getSelectedRoisAsArray();
 // create the ROIs
 createMasksAndRois(selectedRois, width, height);
 return true;
}

protected void createMasksAndRois(Roi[] rois, int width, int height) {
 // create empty list
 masks.clear();

www.it-ebooks.info

https://github.com/fiji/Colocalisation_Analysis/
https://github.com/fiji/Colocalisation_Analysis/
http://www.it-ebooks.info/

Anatomy of ImageJ Plugins

[182]

 for (Roi r : rois){
 MaskInfo mi = new MaskInfo();
 // add it to the list of masks/ROIs
 masks.add(mi);
 // get the ROIs/masks bounding box
 Rectangle rect = r.getBounds();
 mi.roi = new BoundingBox(
 new long[] {rect.x, rect.y} ,
 new long[] {rect.width, rect.height});
 ImageProcessor ipMask = r.getMask();
 // check if we got a regular ROI and return if so
 if (ipMask == null) {
 continue;
 }

 // create a mask processor of the same size as a slice
 ImageProcessor ipSlice = ipMask.createProcessor(width, height);
 // fill the new slice with black
 ipSlice.setValue(0.0);
 ipSlice.fill();
 // position the mask on the new mask processor
 ipSlice.copyBits(ipMask, (int)mi.roi.offset[0],
 (int)mi.roi.offset[1], Blitter.COPY);
 // create an Image<T> out of it
 ImagePlus maskImp = new ImagePlus("Mask", ipSlice);
 // and remember it and the masks bounding box
 mi.mask = ImagePlusAdapter.<T>wrap(maskImp);
 }
}

The first step is to retrieve the ROIs from the manager using the
getSelectedRoisAsArray() method, which then passes the ROIs to the
createMasksAndRois method. This method stores the regions in the mi.mask
variable where it can be used by the colocalise method. This plugin uses some
constructs derived from ImageJ2. The ImagePlusAdapter is a wrapper function from
the ImgLib2 library. This convenience method allows ImageJ1.x images to be placed
inside an ImgLib2 container as used by ImageJ2. These functions are essential during
the transition between ImageJ1.x and ImageJ2 and allow for interoperability. Next, I
will take a look at a plugin that was developed within the SciJava framework using
the annotations and the Command and Service framework specifically for ImageJ2.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 8

[183]

Goutte_pendante
The Goutte_pendante plugin (pendant drop) is a plugin built under the SciJava
framework by Adrian Daerr at the Université Paris Diderot. The source code can
be found on GitHub at https://github.com/adaerr/pendent-drop. This project
is written using the Maven system, so I will briefly show the pom.xml file as an
example of how to define a plugin within the framework:

<?xml version="1.0" encoding="UTF-8"?>
<project xmlns="http://maven.apache.org/POM/4.0.0" xmlns:xsi="http://
www.w3.org/2001/XMLSchema-instance" xsi:schemaLocation="http://maven.
apache.org/POM/4.0.0 http://maven.apache.org/xsd/maven-4.0.0.xsd">
 <modelVersion>4.0.0</modelVersion>
 <parent>
 <groupId>net.imagej</groupId>
 <artifactId>pom-imagej</artifactId>
 <version>7.1.0</version>
 <relativePath />
 </parent>
 <groupId>name.adriandaerr.imagejplugins.pendentdrop</groupId>
 <artifactId>pendent_drop</artifactId>
 <version>2.0.1</version>
 <name>Pendent Drop ImageJ Plugin</name>
 <description>Surface tension measurement through the pendent
 drop method.</description>
 <properties>
 <main-class>Goutte_Pendante</main-class>
 </properties>
 <repositories>
 <repository>
 <id>imagej.public</id>
 <url>http://maven.imagej.net/content/groups/public</url>
 </repository>
 </repositories>
 <dependencies>
 <dependency>
 <groupId>net.imagej</groupId>
 <artifactId>imagej</artifactId>
 </dependency>
 </dependencies>
</project>

www.it-ebooks.info

https://github.com/adaerr/pendent-drop
http://www.it-ebooks.info/

Anatomy of ImageJ Plugins

[184]

You can see that the project description is very simple using the POM model. The
<parent> tag describes that this utilizes ImageJ. The dependencies state that the
ImageJ2 code base should be used, as identified by the <artifactId> tag using
imagej instead of ij for ImageJ1.x plugins. Plugins built for ImageJ2 also tend to
have a main method. To illustrate its function, I will highlight some of the code from
this plugins' main method:

public static void main(final String... args) throws Exception {
 final String testImagePath =
 "/home/adrian/Programmes/plugins_ImageJ_src/Traitement_Gouttes/src
 /test/resources/eauContrasteMaxStack.tif";

 // Launch ImageJ as usual.
 //final ImageJ ij = net.imagej.Main.launch(args);
 final ImageJ ij = new ImageJ();
 ij.ui().showUI();

 // Open test image.
 final ServiceHelper sh = new ServiceHelper(ij.getContext());
 final IOService io = sh.loadService(DefaultIOService.class);
 final Dataset dataset = (Dataset) io.open(testImagePath);

 // create a display for the dataset
 final ImageDisplay imageDisplay =
 (ImageDisplay) ij.display().createDisplay(dataset);

 // create a rectangle
 final RectangleOverlay rectangle = new
 RectangleOverlay(ij.getContext());
 rectangle.setOrigin(110, 0);
 rectangle.setOrigin(60, 1);
 rectangle.setExtent(340, 0);
 rectangle.setExtent(420, 1);
 rectangle.setLineColor(Colors.HONEYDEW);
 rectangle.setLineWidth(1);

 // add the overlays to the display
 final List<Overlay> overlays = new ArrayList<Overlay>();
 overlays.add(rectangle);
 ij.overlay().addOverlays(imageDisplay, overlays);
 for (final net.imagej.display.DataView view : imageDisplay) {
 if (view instanceofnet.imagej.display.OverlayView) {
 view.setSelected(true);
 }

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 8

[185]

 }

 // display the dataset
 ij.ui().show(imageDisplay);

 // Launch the "CommandWithPreview" command.
 ij.command().run(Goutte_pendante.class, true);
}

This code is only used when testing the plugin and performs a few steps that are
useful when testing code but not when actually using the plugin outside of the
testing phase. It starts by defining a test image with a hard-coded path string. It then
performs the step that all plugins for ImageJ will perform in their main method:
launching an instance of ImageJ. It then goes on to open the image specified by the
string using IOService and finally displaying it using the ImageDisplay service.
The result of this process is the image of a drop hanging from an aperture:

www.it-ebooks.info

http://www.it-ebooks.info/

Anatomy of ImageJ Plugins

[186]

Next, a rectangle object is generated over the drop image that was opened. This
image will be used as an initial search space for the plugin to detect the drop. This
is done using the RectangleOverlay class in the net.imagej.overlay package.
Finally, it adds the overlay to the display and displays the image before calling the
plugin in the last statement of the method:

ij.command().run(Goutte_pendante.class, true);

The used pattern in this plugin is similar to that described in the previous chapter.
However, there are additional steps inserted here to make sure that the plugin works
fast and correctly. If you would install the plugin using Update site through Fiji and
try to run it immediately by selecting Plugins | Drop Analysis | Pendant Drop
from the menu, you will get an error message. This error message states that there
is an error executing the Goutte_pendante#paramInitializer method. If you run
Plugins | Drop Analysis | About Pendant Drop, you will see a brief explanation
and a usage section for the plugin. In the usage section, there will be an explanation
of why it failed. There was no rectangular ROI or image when you launched
it. At the bottom of the about dialog, there are buttons with information and
documentation, as well as a way to retrieve the image of the drop (bottom button).

The goal of this plugin is to fit the shape of the drop, and the parameters of that fit
can be used to say something about the surface tension of the liquid. To do so, it
needs a class that describes the shape of the drop that is defined as an object called
Contour within the plugin. It needs to fit a polynomial to the drop shape in order
to determine Contour parameters. To do so, it is necessary to determine the borders
of the drop. This is achieved by a method called findDropBorders(). This function
will find the shoulders of the drop and store the locations in arrays for the left and
right borders:

private boolean findDropBorders(ImageProcessor ip) {
 leftBorder = null;
 rightBorder = null;

 for (int y = bounds.height - 1; y >= 0; y--) {

 // find border positions with integer precision
 // left border first
 int xl = 0;
 while (xl <bounds.width &&
 ip.getPixelValue(bounds.x + xl, bounds.y + y) > threshold)
 xl ++;

 if (xl >= bounds.width) {// drop not detected in this scanline
 if (leftBorder != null) {

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 8

[187]

 leftBorder[y] = Double.NaN;
 rightBorder[y] = Double.NaN;
 }
 continue;
 } else if (leftBorder == null) {
 // allocate array on drop tip detection
 leftBorder = new double[y+1];
 rightBorder = new double[y+1];
 }

 // right border next
 int xr = bounds.width - 1;
 while (xr> xl &&
 ip.getPixelValue(bounds.x + xr, bounds.y + y) > threshold)
 xr --;
 xr ++; // so xl and xr point just to the right of the interface

 // don't go further if not enough pixels for subpixel-fitting
 if (xr - xl <= voisinage ||
 xl - voisinage< 0 || xr + voisinage>bounds.width) {
 leftBorder[y] = xl - 0.5;
 rightBorder[y] = xr - 0.5;
 continue;
 }

 // now determine drop borders with sub-pixel precision
 leftBorder[y] = fitStep(ip, xl, y, voisinage, false);
 rightBorder[y] = fitStep(ip, xr, y, voisinage, true);
 } // end for y

 if (leftBorder == null)
 return false;
 else
 return true;
}

This method performs a line scan method to find the index where the drop falls
below the threshold. In this case, the drop has a low value compared to the
background. It starts by going in the left-to-right direction. As soon as it has found
that pixel, the variable xl will no longer increase and will be smaller than the width
of the bounds. This will activate the else if clause and will allocate the arrays for
the borders. The next step is to determine the index on the right-hand side using
the same methodology. However, now, the search goes in the right-to-left direction,
starting at the bounding box, and will determine xr.

www.it-ebooks.info

http://www.it-ebooks.info/

Anatomy of ImageJ Plugins

[188]

The code mentioned in this method is generic Java code that is not specific for
ImageJ2, but it performs the task in a similar way. It illustrates the fact that ImageJ2
plugins are not necessarily more complicated than or different from their legacy
counterparts in terms of development. A difference between this plugin and a legacy
plugin is the use of services such as the LogService interface. When the plugin is
launched, it requests an instance of LogService using the @Parameter annotation:

@Parameter
private LogService log;

In the functional part of the plugin, this service is called to perform the logging of
errors and other messages. An example can be found in the run() method of the
plugin:

public void run() {
 HashMap<SHAPE_PARAM,Boolean> fitMe = tagParamsToFit();
 if (! fitMe.containsValue(Boolean.TRUE)) {
 log.error("At least one parameter must be selected !");
 return;
 }
 //code skipped for brevity...
}

The log variable can be used to write messages to the log window. Based on the
function used, they will be preceded by a label that indicates the type of the message.
Methods such as error, warn, and info allow for different categories of messages to
be reported.

Summary
In this chapter, we looked at the anatomy of plugins for ImageJ1.x and ImageJ2.
We also looked at some of the specific constructs that are used in plugins for both
frameworks. We examined how to compile, run, and debug our plugins using the
tools provided by ImageJ or using the IDE. We looked at some established plugins
and how they implemented plugins to perform a task in image processing.

This knowledge will be applied in the next chapter where we will create a plugin
from scratch to perform image processing.

www.it-ebooks.info

http://www.it-ebooks.info/

[189]

Creating ImageJ Plugins
for Analysis

In this chapter, we will examine how to create plugins to perform analyses. This
chapter will examine how to make a flexible plugin, and how to implement it in
ImageJ to perform a simple analysis. The following topics will be dealt with in
this chapter:

•	 Setting up a new plugin project
•	 Using a plugin to process and analyze images
•	 Adding user interaction and preferences
•	 Using external libraries
•	 Sharing your plugin

Plugin background and goal
In this section, I will briefly describe an image-processing problem that we will try
to solve using a plugin. The problem is a general one that is encountered in many
experiments involving living cells or organisms: they move and change shape. When
we want to quantify certain aspects of the cells that we have imaged, we need to
perform three basic steps:

1.	 Detect the object of interest.
2.	 Measure our object in the current frame.
3.	 Detect each object in our time series independently.

www.it-ebooks.info

http://www.it-ebooks.info/

Creating ImageJ Plugins for Analysis

[190]

These steps are encountered in many different problems involving time series.
For each of the three steps, we need to create a solution that solves the problem or
quantifies the object in a meaningful manner. For detection, we can think of many
methods that may be suitable to detect the object. When we think back to the topics
discussed in Chapter 4, Image Segmentation and Feature Extraction with ImageJ we
may think of a threshold-based technique to segment the image, and use a particle
analyzer to find objects that contain specific features. For measurements, we can
go back to Chapter 5, Basic Measurements with ImageJ where we looked at the basic
methods to measure objects using ImageJ commands. The final component for this
example uses the previous two methods for each of the identified objects.

To make our plugin more general and widely usable, we will also need to specify
some parameters that will influence the outcome for each of these steps. The
detection might need different criteria about what is a valid object depending on the
data. To this end, we can create a generic dialog that will ask the user for input using
a few input fields. I will give different examples of the same code that can be used in
different scenarios.

Basic project setup
For this project, I will be using the Maven system to set up the project and the
dependencies that are required. Most of the source code can also be run without
these steps, but I will set it up using the NetBeans IDE using a Maven POM project.
As we saw in Chapter 7, Explanation of ImageJ Constructs setting up a new project
for ImageJ using Maven is done by navigating to File | New Project, and choosing
POM Project from the Maven category in the wizard. For this plugin, I will use
the project name Object_Tracker. After clicking Finish, the project will be created
and should show up in the Projects view. If you cannot see the Projects view, go to
Window | Projects from the menu to display it.

To start with, we need to tell Maven that we require ImageJ as a dependency. We
do this by adding a <dependencies> section to our pom.xml file, as was shown in
Chapter 7, Explanation of ImageJ Constructs. We will first look at how to create this
plugin as a legacy plugin using all the standard coding of a legacy plugin. To code it
as a legacy plugin, we will use ImageJ version 1.50b as a dependency by adding the
following code to our pom.xml file:

<repositories>
<repository>
 <id>imagej.public</id>

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 9

[191]

 <url>http://maven.imagej.net/content/groups/public</url>
 </repository>
</repositories>

<dependencies>
<dependency>
 <groupId>net.imagej</groupId>
 <artifactId>ij</artifactId>
 <version>1.50b</version>
 </dependency>
</dependencies>

The <repositories> section tells Maven where to find the sources for our
dependencies, and in the optional <version> tag, we specify which version of
ImageJ we wish to use. Note that if you start typing the version number in the tag,
NetBeans will suggest version numbers that you can enter. At the time of writing
1.50b was the latest version of ImageJ. If you leave this tag out, the version will be
automatically set to the latest managed version. We will save the modifications to
our POM file, which will trigger NetBeans to load the requested dependency from
the repository and place it in the Dependencies folder within your project. If you
issue the build command (Run | Build Project) for the project at this stage, we will
still get an error. We are missing the source code for the plugin; this will be our next
step.

To add our source code, we will need to add a new Java class file to our project. The
following steps will let you create the main class file for this project; however, these
steps are identical to generate other classes that you want to add to the same project:

1.	 Right-click on the Object_Tracker project and go to New | Java Class…
from the context menu.

2.	 Enter Object_Tracker as the name for the new class, and set the Location to
/src/main/java.

You will get a new java source file, and in the Projects view you will see the Source
Packages directory is added to your project. You can now try and build the project
again, which should now finish successfully. As a Maven project can also create
Javadoc documentation for a project, we will also make sure that we add Javadoc
comments to our class, and methods to document the API of our plugin. We will
start the development of our plugin by implementing it as a PlugInFilter type.

www.it-ebooks.info

http://www.it-ebooks.info/

Creating ImageJ Plugins for Analysis

[192]

Creating a basic PlugInFilter
To create a PlugInFilter implementation, we add the implements keyword behind
the class name and specify PlugInFilter as the implementation. When you do
this using an IDE, such as NetBeans, it will place a red squiggly underline under
this statement. When you place the cursor on the line with the squiggly underline
and press Alt + Enter (in NetBeans), the editor will give you a list of suggestions
to rectify the mistake that we made. The first complaint is that NetBeans cannot
find the PlugInFilter symbol because we haven't added it yet. Press Alt + Enter
and select the option called Add import for ij.plugin.filter.PlugInFilter.
You will now see that the import statement is added to your source file (usually
at the top of the source file). We now still have a squiggly underline in our class
statement as it is missing the overrides for the abstract setup and run methods. As
explained in Chapter 8, Anatomy of ImageJ Plugins PlugInFilter requires these two
methods to be present and overridden with your initialization code (setup) and your
programming logic (run). Use the Alt + Enter method, and choose the option called
Implement all abstract methods from the list of choices. At this stage, we have a
basic PlugInFilter implementation that contains all the required elements.

Testing our current implementation
There is no functional code yet, but let's test what happens when we try to run the
project at this stage. When you go to Run | Run Project from the menu, you will
get a dialog that asks for the main class to be run. Since we did not specify a main
method (yet), we cannot proceed and can only select cancel. We need to do two
things: first, we need to add a main method to our source code file, and secondly, we
need to tell Maven which class contains the main method. We will start with the first
item on the list.

To add the main() method, we add the following code somewhere within the body
of our class:

public static void main(String... args) {

}

This is a standard Java style declaration of a main method that takes a String list
of parameters stored in the args variable. The triple dots behind the String type
indicate that this method can be called with a variable number of String arguments
ranging from none to many. This type of calling structure can be helpful if you want
to run your plugin via a Command Line Interface (CLI). Since we will mostly ignore
the input parameters for now, it is not important to use them within the body of the
main method.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 9

[193]

For the second step, we can modify our project in two separate ways. We can type the
<main-class> tag in the <properties> tag in the POM file (see Chapter 7, Explanation
of ImageJ Constructs), or we can use the features of the IDE. To edit how the project is
run, you can right-click on the project in the Projects view and select Properties from
the context menu. This will open the properties available for this type of project. Select
the Run category from the left-hand side of the properties dialog:

You can now see that there is an option to set the Main Class. By pressing the
Browse… button, you are able to select the Object_Tracker class that contains our
main method. You may also notice that you can specify Arguments to your main
method. The content of this field will be used as input parameters to your main
method's argument args. One option we might also want to enter at a later stage is
the VM Options field. This option will allow us to control the amount of memory
that is allocated to the application. For now, only select the Object_Tracker
as the Main Class. This will generate two new files in NetBeans where the run
configuration is stored: nbactions.xml and nb-configuration.xml. Alternatively,
you can add the sections to the pom.xml file, as described in Chapter 7, Explanation of
ImageJ Constructs.

www.it-ebooks.info

http://www.it-ebooks.info/

Creating ImageJ Plugins for Analysis

[194]

Please note that using the Properties method, you will limit your
application to the NetBeans framework. If you wish to exchange your
code with others that do not use NetBeans, you always want to choose
the pure Maven approach and define your main class in the pom.xml
file directly.

If you try to run the project now by navigating to Run | Run Project, you will get no
errors and the building will be successful. The only problem is that nothing happens;
we don't see ImageJ, and our plugin cannot be found. We still need to implement
our main method to make sure that ImageJ is launched. To do this, we add a new
instance of ImageJ to our main method, and save the source file:

public static void main(String... args) {
 new ImageJ();
}

After fixing the error by adding the import for ij.ImageJ, we run our project and
we will see the ImageJ interface. If you go to Help | About ImageJ, you will see
that the version is indeed set to 1.50b. However, when we look in the Plugins menu,
we will not find our plugin there. We will use the same trick as shown in Chapter 7,
Explanation of ImageJ Constructs to fix our plugins directory mix-up by adding the
following code to our main method before calling new ImageJ():

/* set the plugins.dir property to make the plugin appear in the
Plugins menu */
Class<?> clazz = Object_Tracker.class;
String url = clazz.getResource("/" + clazz.getName().replace('.',
 '/') + ".class").toString();
int lastIdx = url.lastIndexOf('/');

String pluginsDir = url.substring(5, lastIdx);
System.setProperty("plugins.dir", pluginsDir);

After saving the source file and running the project, we will now see our plugin in
the Plugins menu. When you launch the plugin you will get an error specifying that
this method is not implemented yet. This is caused by the fact that the body of the
abstract setup and run methods only contain an exception that is being thrown (this
depends on your installation of NetBeans and your templates). We have the plugin
framework completed, and next, we will implement our functionality.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 9

[195]

Implementing the setup method
We will start with implementing the setup method, which serves as a basic
checkpoint to see if our plugin can process the currently active image. We can also
use this method to make some preparations and perform some basic checks before
we run our plugin. We will start with clearing the current statement from the body
of the setup method and add a return value. The setup method requires that an
integer value be returned, which tells ImageJ the type of image that can be processed
using this plugin. We will also add some Javadoc comments to this function to
explain what is going on in this function. For this project, I will assume that the
following structure is the structure of the source code file:

//import section
import ij.ImageJ;

//class declaration
public class Object_Tracker implements PlugInFilter {
 //class-wide variables
 private ImagePlus imp;
 /*etc...*/

 //constructor
 public void Object_Tracker() {}

 //main method
 public static void main(String... args) {}

 //setup method
 public int setup(String arg, ImagePlus imp) {}

 //run method
 public void run(ImageProcessor ip) {}

 //additional methods follow below this point
 /*methods for image processing*/

}

You are of course free to deviate from this template (within the bounds of Java
syntax and programming logic). This type of structure is common to Java files, and
it contains some elements that are not strictly required, but which can be useful.
The constructor is not required to be present in an ImageJ plugin. However, it can
be useful to add it, as it allows an increase in usability when you want to call your
plugin from within other projects. Using the constructor, you can implement certain
initializations or assert control over how the plugin is created.

www.it-ebooks.info

http://www.it-ebooks.info/

Creating ImageJ Plugins for Analysis

[196]

The return type and autocomplete
We will start with adding the return statement specifying the type of images that we
expect to process. For this project, we are interested in quantifying objects over time
in a single channel (for now), so we will expect to process stacks of either 8 or 16-bit.
Therefore, we add the following return statement:

return DOES_8C+DOES_8G+DOES_16;

When typing in an IDE, you can use its autocomplete functionality to determine
which type you wish to return. If you type DOES and press Ctrl + Spacebar you will
get a list of the possible autocomplete options. You can use the mouse or the arrow
keys to select an option from the list, and by double-clicking it or pressing enter,
it will be inserted at the point you were typing. If the list of options is very long,
you can also continue typing after you have pressed Ctrl + Spacebar. For every
character that you add, the list will become more selective to match what you are
typing. For example, when you type _1 after you typed DOES, you will only get the
single option DOES_16. Another nice feature is that when you select an option from
the autocomplete list, it will also show the Javadoc for that selection. However, you
may have noticed that this didn't work here; the IDE stated that the Javadoc was not
found. We will remedy this in the next section.

Javadoc for methods
As we saw, the Javadoc for our ImageJ project was not found. We will now fix
this using the IDE, which only takes a few simple steps. First, we make sure that
our Javadoc view is open by activating it. Go to Window | IDE Tools | Javadoc
Documentation from the menu to activate the view. When we place our cursor on an
object such as the DOES_16 statement that we entered above, the Javadoc view will
display the same message that we noticed in the autocomplete window. However, it
also displays an option at the bottom called Attach Javadoc… in the form of a link.
When you click on it, a window will ask you for the location of the documentation.
There is also a button called Download, which will automatically download the
Javadoc for the ImageJ version that we listed as a dependency in our project. After
clicking OK, you will now see that the Javadoc view shows the documentation
for the DOES_16 field. You can also generate the Javadoc for your project by right-
clicking on your project in the Projects view and selecting Generate Javadoc from the
context menu.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 9

[197]

We will now create our own Javadoc comments for our setup method. The easiest
way to do this using the IDE is to place the cursor on the setup method and press Alt
+ Enter. An option will be displayed stating Create missing Javadoc for setup, which
we will choose.

You can also place your cursor above the method you wish to document,
and type /**, and press Enter. In NetBeans, typing the start of a Javadoc
comment and pressing Enter will autocomplete the Javadoc comment,
and it will add the arguments and return type of your method as well.

After selecting this option, a Javadoc comment is added above the setup method
containing the following information:

/**
 *
 * @param arg
 * @param ip
 * @return
 */

This is the standard content for a Javadoc section that describes a method with
input parameters and a return value. Parameters are designated as @param followed
by the variable name. There is one @param line for each parameter in the methods
arguments list. To add information about the parameter, you can start typing right
after the variable name (make sure that there is a space between the variable name
and your description). The first line above the parameter list is meant to provide a
brief description of the methods purpose. Let's add some of the information about
the setup method:

/**
 * This is the setup method for the Object Tracker plugin
 *
 * @param arg input argument for control
 * @param ip Currently active image
 * @return DOES_8G, DOES_8C and DOES_16
 */

www.it-ebooks.info

http://www.it-ebooks.info/

Creating ImageJ Plugins for Analysis

[198]

When you look at the Javadoc viewer now, you will see the text that you added is
displayed and formatted. Please note that you can use standard HTML tags to format
your text with paragraphs, headings, tables, and lists. At this stage it is possible to
generate the Javadoc for your plugin and view it in a browser. To do so, right-click
on your project in the Projects view and select Generate Javadoc from the context
menu. After waiting a bit while the IDE is busy scanning the project and building the
documentation, you can open the Javadoc in a browser by opening the index.html
file from the target/site/apidocs/ folder in the root of your project. Alternatively,
you can click on the link in the Output view which can be activated by navigating to
Window | Output from the menu. The result will be as follows:

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 9

[199]

In the preceding screenshot, you can see the setup method with the text that we
added as a description, and at the bottom, we see the details we entered for the
parameters and the return value.

It is good practice to add this information as you develop your source code, both for
your own benefit when you review your code weeks from now, as well as for other
developers who may wish to use or expand your code for their own projects. As the
Javadoc tool takes care of all the processing and layout of the documentation, you
only need to add the descriptions for the methods and classes. I will not explicitly
add the documentation sections in the code snippets in this chapter, but they will be
part of the final source code. After this small digression, we will return to creating a
plugin to detect objects.

Finishing the setup method
After completing the previous sections, we now have a setup method with a return
value indicating that we will be processing all 8 or 16-bit images and stacks. We will
now perform a few more checks that will be required for the processing to complete.
The first step is to make sure that the ROI Manager is open so that we can see the
detections and the results of our detection. At this stage, it might also be a good idea
to think about the type of images we may want to process. Do we want to process
RGB or multichannel images and stacks or only single channel stacks?

We will start with checking if the ROI Manager is available. To do this, we can use
the getInstance() method from the RoiManager class. This method will return a
value of null when it is not open yet; otherwise, it will return the reference of the
ROI Manager instance. Add the following to the setup method before the return
statement:

if(RoiManager.getInstance() == null) {
 new RoiManager();
}

If you used the autocomplete option to select the RoiManager class, NetBeans also
automatically added the required import statement at the top of your source code
file. If you copied and pasted the code, you will need to add the import statement
yourself using either the Alt + Enter option or by typing it manually.

www.it-ebooks.info

http://www.it-ebooks.info/

Creating ImageJ Plugins for Analysis

[200]

The only thing left to do in the setup is to check the image type; it needs to be a single
channel image with a single frame or slice, or multiple frames and a single slice. The
first step is to obtain the dimensions of the current image and then check whether
it matches our specifications. For the current incarnation of the plugin, I will make
these specifications binding so that when it fails, the plugin will not run. The code for
retrieving the dimensions and checking whether they match our specifications is as
follows:

//get the dimensions of the current image
int[] dims = ip.getDimensions();
if (dims[2] > 1){
 //more than 1 channel
 return DONE;
}
else if(dims[3] > 1 && dims[4] > 1) {
 //multiple slices AND frames
 return DONE;
}

The getDimensions() method returns a vector of length 5, with the width, height,
channels, slices, and frames (in that order).

At this stage, I would like to introduce another useful feature of an IDE that will
make your coding life much easier. When the IDE added the abstract methods for
setup and run, it used the ip parameter name for both the ImagePlus type in the
setup method and the ImageProcessor type in the run method. This is slightly
confusing and inconsistent. The convention for ImagePlus objects is to use imp
as a reference name, and ip for ImageProcessor references. We will now use the
Refactor option in the IDE to fix this problem.

We will start by selecting the parameter that we would like to change; in this case,
the ip parameter in the setup method. We then go to Refactor | Rename from the
context menu or press Ctrl + R. You will now see that there is a red box around the
parameter, and you can change the name by typing a new name. When you now
type imp, you will see that only the names associated with the setup method are
changed. This does not affect the parameter of the run method. Also, the Javadoc
section is updated to reflect the new variable name. This is a great feature to use
when changing the name of a variable, and it is much more effective than a search-
and-replace style approach. If you would have used search and replace, the variable
name in the run method may have also been changed, making it inconsistent again.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 9

[201]

If we now run our project, we should see the plugin in the Plugins menu, but when
we launch it, we will receive a NullPointerException exception. This is caused by
the fact that we tried to retrieve the dimensions from a nonexistent image. So, we
need to add a final check before we call the getDimensions() method to check if the
imp parameter is not equal to null:

if (imp == null) { return DONE; }

This will make sure that nothing happens when you have no image open or the
wrong kind of image compared to what the plugin expects. It is currently not very
user-friendly. When the user activates a plugin, he or she would expect something
to happen. It would be nice if there were some feedback to indicate why nothing
happened. As an example, I will add a message stating that the plugin requires a
stack to be opened before exiting. To do so, we add the following statement to the
body of the statement checking for the image:

if (imp == null) {
 IJ.showMessage("We need a single channel stack to continue!");
 return DONE;
}

Now when you run your project and launch the plugin, the following message will
be displayed:

This is much more user-friendly and avoids generating unnecessary errors,
which can be confusing to users. Most of the errors and exceptions generated by
compilers are cryptic at best, and most non-programmers will not understand what
went wrong. Now that we have finished the setup method, we will now focus on
implementing the actual functional code that will perform the processing.

www.it-ebooks.info

http://www.it-ebooks.info/

Creating ImageJ Plugins for Analysis

[202]

Implementing the run method
As mentioned in Chapter 8, Anatomy of ImageJ Plugins the run method is the entry
point for the PlugInFilter type. At this stage we know for sure that we have an 8
or 16-bit stack with a single channel; otherwise, we would have never reached the
run method. We can now start implementing our algorithm to detect the object. After
that, we will look at the required methods to measure the object in the current frame,
and finally, how to process each object across frames in the case of multiple objects.
We will start with the detection first, as this is the primary step that needs to be
solved.

Detecting an object
To be able to detect an object, we need to know about some of the properties that
make the object identifiable. This may sound simpler than it really is. The human
visual system is highly capable of finding objects in all types of lighting conditions
and situations. Computer algorithms are only starting to approach the same levels
of detection that feel natural to humans. For this example, I will limit the detection
of objects based on the intensity of the object relative to the background. I'm
going to assume that the object we wish to detect is bright compared to the darker
background, as is the case in fluorescence imaging for example. We will use the
Confocal Series sample image to practice with as an example.

We need to make a few small preparations before we can start using this image.
The image contains two channels, which is an exclusion criterion for our plugin! So
we split the image into separate channels, and convert one of them to 16-bit before
saving them both to disk as TIFF files. Using the knowledge from Chapter 2, Basic
Image Processing with ImageJ and Chapter 3, Advanced Image Processing with ImageJ
you should be capable of performing these steps. We will use a threshold to detect
the object based on the intensity, and based on that threshold, create a selection that
will be added to the ROI manager. For the detection, we will create a method called
performDetection() that will be called from the run method. As we assume a stack,
we will also need to add a loop to go over each of the slices. We will start with the
loop statement in the run method:

int nFrames = imp.getImageStackSize();
for (int f=0; f<nFrames; f++) {
 imp.setSlice(f+1);
 ip = imp.getProcessor();
 performDetection(ip);
}

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 9

[203]

Notice the slightly odd behavior for the setSlice method. Unlike arrays and
other indexed objects in Java, the slice indices for an image are not zero-based. This
idiosyncrasy was observed back in Chapter 2, Basic Image Processing with ImageJ. Next,
we create the method to perform the detection, and we add the following statements:

private void performDetection(ImageProcessor ip) {
 ip.setAutoThreshold(AutoThresholder.Method.Default, true);
 imp.setProcessor(ip);
 Roi roi = ThresholdToSelection.run(imp);
 rm.addRoi(roi);
}

This sets an automatic threshold using the default method (first parameter) and
using a dark background (second parameter). When using the autocomplete option,
many of these values will be filled in by default making it easier to write code, but
not necessarily to understand it. We then add the new threshold to the current image
using a reference to a class-wide variable that we added to our class definition (see
the template for the class file that was mentioned earlier).

public class Object_Tracker implements PlugInFilter{
 private ImagePlus imp;
 private RoiManager rm;

This allows us access to the current image and the ROI Manager throughout our
class. We also modify the setup method slightly to accommodate these changes using
the rm reference to get the instance or store a new reference to the ROI Manager. We
do the same for the class-wide ImagePlus variable (this.imp) by storing the current
image that comes in with the setup method.

rm = RoiManager.getInstance();
if(rm == null) { rm = new RoiManager();}

this.imp = imp;

To add our thresholded object to the ROI manager, we use the
ThresholdToSelection class (another PlugInFilter type) that comes with ImageJ.
This is the class that is activated when you navigate to Edit | Selection | Create
Selection from the ImageJ menu. This is a nice example of one plugin calling the run
method of another plugin. This means that we can also use the run method of our
plugin in other plugins or macros.

www.it-ebooks.info

http://www.it-ebooks.info/

Creating ImageJ Plugins for Analysis

[204]

We will now test our plugin by running the project and opening one of the images
we saved, before launching our plugin. It should now run through all the slices of
the stack and populate the ROI manager at every frame. The ROIs look quite good,
but there are still a few small problems. There are holes in some of the ROIs, and
some ROIs have small isolated pixels that are not connected to the main object. In the
next section, we will examine ways to refine the detection using the techniques that
we learned back in Chapter 4, Image Segmentation and Feature Extraction with ImageJ.

Refining the detection
When we tested the plugin at the end of the previous section, we noted some
shortcomings of the current detection method using only a threshold. We saw
holes in the object and small isolated pixels that we would like to remove. This is
something that can be achieved using binary processing as discussed in Chapter 4,
Image Segmentation and Feature Extraction with ImageJ. We will now implement this
processing before we convert the threshold to a selection. The first step is to take our
ROI and use it to create a mask image, which we will process using the techniques
that we learned in Chapter 4, Image Segmentation and Feature Extraction with ImageJ. To
create our mask image, we do the following:

ImagePlus impMask = new ImagePlus("mask", new
 ByteProcessor(imp.getWidth(), imp.getHeight()));
impMask.setRoi(roi);

ImageProcessor ipMask = impMask.getProcessor();
ipMask.setColor(255);
ipMask.fill(impMask.getMask());
ipMask.invertLut();

This code is inserted between the Roi roi... statement and the rm.addRoi(roi)
statement in the performDetection method. The first line creates a new image
called mask with a ByteProcessor for the ImageProcessor; this results in an 8-bit
image. The width and the height are set to be equal to the original image. This is
important when you want to measure the object in the original image. If you create
a mask directly from the image, its size will be the size of the bounding rectangle
of the ROI. Next we add the ROI to the new image, and get a reference to the
ImageProcessor for this image. This will allow us to modify the pixels of the mask.
Next, we set the foreground color to white (255) and fill the mask with white.
Finally, we invert the LUT for the binary processing. Next, we will perform the
binary processing. We want to fill the holes and get rid of the isolated pixels.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 9

[205]

We will start with filling the holes in the shape using the Binary plugin. This is a
class that implements a PlugInFilter; however, the use is a little different this
time. We first need to create an instance of the class, and then set up the class for our
purpose. We will add the following code directly underneath the last statement of
the previous code listing:

Binary B = new Binary();
B.setup("fill", impMask);
B.run(ipMask);

First, we create a new instance of the Binary class and add the import statement for
ij.plugin.filter.Binary at the top of our source code file. Next, we set up the
plugin to perform the task that we want, in this case, filling the holes in our mask.
We do this by calling the setup method with a String argument ("fill") and an
ImagePlus argument (our mask image). Our own plugin has a similar form for the
setup; this means that we could also choose to implement a similar system later on.
In the last step, we call the run method of the Binary plugin, which will perform the
actual processing on our image.

Next, we will use the erode and dilate operators to get rid of isolated pixels. We
will run the erode operator three times and the dilate operator five times to create a
smooth mask:

for (int i=0;i<3; i++) {ipMask.erode();}
for (int i=0;i<5; i++) {ipMask.dilate();}

These values are quite arbitrary and other values might be more suitable when using
different images. Finally, we set a threshold on our mask image to obtain a new ROI
using the ThresholdToSelection method, just like we did before:

roi = ThresholdToSelection.run(impMask);
impMask.setRoi(roi);
rm.addRoi(roi);

www.it-ebooks.info

http://www.it-ebooks.info/

Creating ImageJ Plugins for Analysis

[206]

We use the roi variable again because we don't need the ROI that we created in the
original image. We then add the new ROI to the ROI Manager, which is the last step
for our detection. If you run the project and try it on the test images, you will see the
effect of the binary processing—the ROIs are a bit more smooth and contain almost
no isolated pixels anymore. The following image shows all the ROIs overlaid on the
first frame of the original stack. I used the green channel for this example, but you
can also try to run the plugin on the red channel.

Detecting multiple objects
Up to this point, we assumed that we have only a single object in our frames. I will
now look at a method that allows detecting multiple objects. To do this, we will use
another technique that we learned in Chapter 3, Advanced Image Processing with ImageJ.
There, we looked at Z-projections and how they can be used to flatten a stack into
a single image. We will now use this same technique to define our search space to
detect the objects in the time series. By creating a maximum intensity projection, we
can visualize all the pixels that our object will occupy at one time or another during
the time series. This projection will help us define the search space. For N number of
objects that do not overlap, you will get N search spaces.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 9

[207]

To start with, we need to create the maximum intensity projection. To do this, we can
use the ZProjector class and set it to maximum intensity using MAX_METHOD:

//create a maximum intensity projection
ZProjector zp = new ZProjector(imp);
zp.setMethod(ZProjector.MAX_METHOD);
zp.doProjection();
ImagePlus impMax = zp.getProjection();

//set a threshold in the maximum intensity projection
ImageProcessor ipMax = impMax.getProcessor();
ipMax.setAutoThreshold(AutoThresholder.Method.Default, true);
impMax.setProcessor(ipMax);

We start by creating a new ZProjector instance using the original stack as an input.
Next, we set the method to be used, and perform the projection. Finally, we retrieve
the maximum intensity projection image using the getProjection() method. Next
up, we will use the ParticleAnalyzer class to detect the objects in our maximum
intensity projection that will define our search spaces.

To use the particle analyzer, we create an instance of the class and set its parameters
to determine the search spaces. For this example, we want to find objects that are
relatively large, so we will set a minimum size limit for the particles but not for the
shape. To do this, we can use the following code:

//set the options for the particle analyzer
int nOpts = ParticleAnalyzer.ADD_TO_MANAGER;
int nMeasures = ParticleAnalyzer.SHOW_NONE;
double dMin = 500.0;
double dMax = Double.MAX_VALUE

//perform the particle analysis
ParticleAnalyzer pa = new ParticleAnalyzer(nOpts, nMeasures, new
ResultsTable(), dMin, dMax);
RoiManager rmMax = new RoiManager(true);
ParticleAnalyzer.setRoiManager(rmMax);
pa.analyze(impMax);

//get the detected particles
Roi[] searchSpaces = rmMax.getRoisAsArray();

www.it-ebooks.info

http://www.it-ebooks.info/

Creating ImageJ Plugins for Analysis

[208]

We start by setting the options and the measurements that we want. In this case,
we only care about the found objects' location, so we need ROIs at the end of the
detection (indicated by the ADD_TO_MANAGER option). The option for measurements
is set to none to avoid generating results or other objects (indicated by SHOW_NONE).
We then initialize the particle analyzer using the options and sizes that we specified.
Next, we create an instance of an ROI Manager that will not be displayed. This
instance of our ROI Manager will be assigned to our particle analyzer before we
analyze our image using the analyze() method. This is necessary because we don't
want to measure these intermediate ROIs, we only use them to identify and process
each search space. In the last step, we extract the search spaces as ROI objects from
our temporary ROI Manager instance. With our search spaces defined, we can start
the detections for each search space individually.

The detections can be created in a similar way as we saw before with a small
alteration: instead of using the entire image, we want to perform our detection
within the search space for the individual object. We can achieve this by setting the
search space ROI on our image and duplicate it using the duplicate() method. We
then have access to the pixels from this cropped region:

//perform the detection for each search space
for (Roi searchSpace : searchSpaces) {
 imp.setRoi(searchSpace);
 impProcess = imp.duplicate();
 for (int f = 0; f < nFrames; f++) {
 impProcess.setSlice(f + 1);
 ip = impProcess.getProcessor();
 performDetection(impProcess, ip);
 }
}

We do this for each of our search spaces using the for-each syntax, and perform
the detection as before. There are some other alterations that are required to make
this work, so take a look at the complete code listed in the code bundle at Packt
Publishing's website.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 9

[209]

Implementing the measurements
Now that we have our objects identified for each slice, we can start to look at
measuring our object. We will use some of the knowledge from Chapter 5, Basic
Measurements with ImageJ to design a measurement for this object. Depending on
the type of object, we may want to look at different measurements that may be
important, but I will start with some of the obvious ones for the type of ROIs that
we created. Our ROIs are area selections, so the first metric that seems relevant is the
area of the object(s). Other relevant measurements are the mean intensity and the
shape of the object(s). We will implement the measurements in a separate method
that we will add to our class. The method will have the following declaration:

private void performMeasurements() {
 Analyzer.setMeasurements(msrmnt);
 imp.unlock();
 rm.runCommand(imp,"Measure");
}

We will be using the ROIs in the ROI Manager so that we don't require an input
argument. We will set the measurements according to the values that we discussed
before by adding a variable called msrmnt at the beginning of our class declaration:

private static final int msrmnt = Measurements.SLICE + Measurements.
AREA + Measurements.CIRCULARITY + Measurements.MEAN;

This is used to set the measurements to the slice number, area, circularity, and
mean. We use the Analyzer class and its setMeasurements method to get the
desired results. Finally, we call the unlock method on our image to allow the macro
command of the ROI Manager to gain access to our image for the measurements. If
you omit this statement, the plugin will run without visible errors, but you will not
get any results. To get the results, we call our measurement method directly after
the loop has finished. In the next section, we will add some user interaction to our
plugin, allowing us to change some of the parameters that are used in the detection.
We will also introduce the preferences system of ImageJ to allow the storage of our
parameters for future use.

www.it-ebooks.info

http://www.it-ebooks.info/

Creating ImageJ Plugins for Analysis

[210]

Adding user interaction and preferences
The plugin that we have created thus far runs fine as a standalone plugin. However,
it is also very easy to increase its power by allowing it to run in batch mode over
a folder containing a large set of data files. This section will look at some of the
changes that need to be incorporated for it to work. By setting certain steps as
individual methods that can be called when the main class is instantiated, we can
perform specific steps in a similar way as we have been doing for other classes. In
our example, we used the ParticleAnalyzer, ThresholdToSelection and the
Binary plugin classes in a similar way. The only requirements that we need to add
are some constants and default settings that allow this class to work with minimal
configuration. In the following sections, I will show you a few alterations that can
make this class a bit more flexible to use in other plugins.

Settings and options dialog
We have several parameters in our plugin that will influence how it behaves.
Variables, such as particle size and the thresholding method, will influence the
outcome, and have to be adjusted to match the data. ImageJ allows you to set and get
preferences that can be stored specifically for your plugin. It uses a key-value system
that stores the value for a preference using a specific key name. The key name is a
string, which must be unique to your plugin preferably. To set and get a preference,
such as the minimum particle size, you can use the following syntax:

Prefs.set("object_tracker.minParticleSize", 500.0);
double DMIN = Prefs.getDouble("object_tracker.minParticleSize",
500.0);
Prefs.savePreferences();

The first line shows you how to store the double value 500.0 into a preference using
the object_tracker.minParticleSize key. The naming of keys does not really
have a strict convention, but using the <class name>.<key name> construction
makes sure that the key will be unique and identifiable. The second line retrieves the
setting from the preferences. The second value that is supplied is a default value. If
the key does not exist, the DMIN variable will be set to this default value (in this case
500.0). Finally, we can save the preferences using the savePreferences() method.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 9

[211]

To change the values used in our plugin, we can display a small dialog that allows
the user to enter values or make selections. When we use the dialog, we will save
the results in the preferences. This means that we can run it as a batch process from
this moment onward. To let the user set the key parameters for the detection, we can
create the following preference dialog:

This is done using the GenericDialog class available in the ij.gui package. You
start with creating an instance of the GenericDialog class, and then adding your
fields of choice to it in the order that you wish for them to be displayed. For this
example, we want to set the detection mode, the threshold method, the minimum
particle size, and the maximum particle size. If you want, you could add more
parameters to the preferences to allow more flexibility. The following code will
create a dialog, add the fields, and display it:

//construct and show the options dialog
GenericDialog gd = new GenericDialog("Options Object Tracker");
gd.addChoice("Detection mode", (new String[]{"multi", "single"}),
DETECT_METHOD);
gd.addChoice("Threshold method", AutoThresholder.getMethods(), THRESH_
METHOD);
gd.addNumericField("Min. particle size", DMIN, 0);
gd.addNumericField("Max. particle size", DMAX, 0);
gd.showDialog();

//store the values

www.it-ebooks.info

http://www.it-ebooks.info/

Creating ImageJ Plugins for Analysis

[212]

Prefs.set("object_tracker.detectMethod", gd.getNextChoice());
Prefs.set("object_tracker.threshMethod", gd.getNextChoice());
Prefs.set("object_tracker.minParticleSize", gd.getNextNumber());
Prefs.set("object_tracker.maxParticleSize", gd.getNextNumber());

At the end, we store the values that the user selected in the preferences using the
keys. To obtain the values, we use the getNext<> methods. These are called in the
order that the fields were added to the dialog, so the first call to getNextChoice
will get the value from the first choice list (in this case the detection mode selection).
The call to getNextNumber will retrieve the number from the first numeric field (in
this case the minimum particle size). The order of the fields in a GenericDialog
implementation becomes fixed when the fields are added, so this needs to be
accounted for when retrieving the values. Refer to listing 9.2 for the complete code of
the plugin.

Adding external libraries
When you have created a plugin for processing, you may want to add some
functionality that is not available in the ImageJ core API. In this case, you may
want to use an external library that has the functionality that you require. If you
use Maven to set up your project, adding a library is as easy as listing it in your
<dependencies> section of your POM file. As an example, I will show you how to
add the Apache POI library to add an option to export the results of our work to an
MS Excel file. The advantage of this library is that it can create an .xls(x) file on all
platforms, regardless of whether MS Excel is installed. I will briefly show you how to
create an Excel file, write some data to it, and then save the result as an .xls file.

Adding the dependency for Apache POI
To add the dependency of the POI project in your POM file, you will need to add
the org.apache.poi project to your <dependencies> section. The IDE can help you
with this process using its autocomplete feature. Let's suppose you create a basic
dependency template similar to the one shown as follows:

<dependency>
 <groupId></groupId>
 <artifactId></artifactId>
 <version></version>
</dependency>

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 9

[213]

In this case, you can then place your cursor within the <groupId> tag and press Ctrl
+ Spacebar. You will then get a list of possible IDs that you can select. When you
start typing the first part (org.), you will notice that the list becomes more limited
as you continue to type. When you get to org.apache.po, the list only contains two
options, including the POI package. If you repeat the process for the remaining tags,
you may end up with the following dependency section:

<dependency>
 <groupId>org.apache.poi</groupId>
 <artifactId>poi</artifactId>
 <version>3.13</version>
</dependency>

At this point you can start to use the library and its interfaces, classes, and methods
to create an Excel file (or Word documents and PowerPoint presentations). Please
note that the packages for Excel files are designated with the HSSF moniker
(Horrible SpreadSheet Format). After saving the POM file, you will get a new JAR
file in your projects dependencies folder. In this, case it is the poi-3.13.jar file, and
it contains the packages for the POI project. Make sure you build your project before
proceeding further by navigating to Run | Build Project from the menu. We will
now look at how to implement this library in the next section.

Creating an Excel file
To create an Excel file, we need to create a new instance of an Excel workbook using
Apache POI. This is relatively simple using the usermodel package in org.apache.
poi.ss. We create an instance of the Workbook interface and add a sheet with a
specific name that will contain the data in a method we call saveResultsToExcel.
Every time we add a new class, we can add our import statements automatically by
pressing Alt + Enter. Just make sure that you select the correct ones. If you want to
add the Cell class, you have multiple options, but we require the package for org.
apache.poi.ss.usermodel.Cell in this example:

public void saveResultsToExcel(String xlFile, ResultsTable rt) {
 FileOutputStream xlOut;
 try { xlOut = new FileOutputStream(xlFile); }
 catch (FileNotFoundException ex) {
 Logger.getLogger(Object_Tracker.class.getName()).log(Level.SEVERE,
null, ex);
 }

 Workbook xlBook = new HSSFWorkbook();
 Sheet xlSheet = xlBook.createSheet("Results Object Tracker");

www.it-ebooks.info

http://www.it-ebooks.info/

Creating ImageJ Plugins for Analysis

[214]

 Row r = null;
 Cell c = null;
 CellStyle cs = xlBook.createCellStyle();
 Font f = xlBook.createFont();
 Font fb = xlBook.createFont();
 DataFormat df = xlBook.createDataFormat();
 f.setFontHeightInPoints((short) 12);
 fb.setFontHeightInPoints((short) 12);
 fb.setBoldweight(Font.BOLDWEIGHT_BOLD);
 cs.setFont(f);
 cs.setDataFormat(df.getFormat("#,##0.000"));
 cb.setDataFormat(HSSFDataFormat.getBuiltinFormat("text"));
 cb.setFont(fb);

 int numRows = rt.size();
 String[] colHeaders = rt.getHeadings();
 int rownum = 0;
 //create a header
 r = xlSheet.createRow(rownum);
 for (int cellnum=0; cellnum<colHeaders.length; cellnum++) {
 c = r.createCell(cellnum);
 c.setCellStyle(cb);
 c.setCellValue(colHeaders[cellnum]);
 }
 rownum++;

 for (int row=0; row<numRows; row++) {
 r = xlSheet.createRow(rownum+row);
 int numCols = rt.getLastColumn() + 1;
 for (int cellnum=0; cellnum<numCols; cellnum++) {
 c = r.createCell(cellnum);
 c.setCellValue(rt.getValueAsDouble(cellnum, row));
 }
 }
 try { xlBook.write(xlOut); xlOut.close();}
 catch (IOException ex) {
 Logger.getLogger(Object_Tracker.class.getName()).log(Level.SEVERE,
null, ex);
 }
}

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 9

[215]

In this example, I assumed that the data is in the form of an ImageJ ResultsTable
object. In the loop, we go over the rows and then add cells to each row, one column
at a time. We use the headers of the results table to make a header in the Excel file as
well. We use a separate Font object (fb in this example) to make the style different
from the data by making it bold. At the end, we save the results to a file using the
generic FileOutputStream class.

To get the results table that is generated when you press the Measure button in the
ROI manager, you can use the following code:

ResultsTable rt = ResultsTable.getResultsTable();

After asking the user for a file name, you can call the saveResultsToExcel method
to generate an Excel file. The example code above works only to generate .xls files.
To generate .xlsx files, you need to implement a workbook of the XSSFWorkbook
class. The main difference between these two Excel formats is that the size of the
data that can be contained on a sheet; .xls files have a limitation of 255 columns per
sheet. If you expect to generate tables with more columns, you need to make sure to
use the XSSFWorkbook class.

Sharing your plugin
When you have finished implementing all the routines and completed (extensive)
testing, you are ready to distribute your plugin to the world. Currently, there are
several options available to distribute your plugin, ranging from sending it using
e-mail to an automated update mechanism in ImageJ. Here, I will discuss the latter
option, which has some great benefits that makes it very user-friendly and efficient.
Fiji, and ImageJ2 have a system that allows you to set a website as a source for
your plugin. This website will be checked to see whether there is a newer version
available, and if so, it will be automatically updated. The only thing your users have
to do is add that site to their list of update sites to install and update your plugin(s).
The following sections will describe how to setup this site, and how users can add
the site to ImageJ (ImageJ2 and Fiji, specifically).

www.it-ebooks.info

http://www.it-ebooks.info/

Creating ImageJ Plugins for Analysis

[216]

Creating a site
To create a site, you have different options available: you can host your own update
site, or you can use the ImageJ Wiki site. I will now focus on the latter option as it
is easy, free, and accessible to everyone. Note that your users need to have ImageJ2
or Fiji to be able to use this mechanism. For this section, I will assume that you are
using Fiji, but it works in a similar manner in ImageJ2. To create the site, you can
go to Help | Update… in the menu. In the window that opens, press the Manage
update sites button on the bottom right to get the sites currently available.

You can press the Add my site button in this window and either create a new
account or use an existing account. If you already have an account, you only have
to enter your user name, and if your password hasn't yet been stored, also enter
your password. If you want to create a new account, you can enter a user name.
If it doesn't yet exist, you can enter your e-mail address and press OK. You will
receive an e-mail message on the account that you provided with a temporary
password. You must then go to the Wiki login page at http://imagej.net/
Special:UserLogin to change your password. Once you have modified your
password, you can enter it in the Add personal site window of ImageJ. You are
now ready to add your plugins to the website.

www.it-ebooks.info

http://imagej.net/Special:UserLogin
http://imagej.net/Special:UserLogin
http://www.it-ebooks.info/

Chapter 9

[217]

Uploading your plugin
To upload your plugin, you cannot just upload your file directly to the server. In
order for it to be recognized as a proper update site and plugins, some additional
files are required. Luckily, the ImageJ updater can also take care of this process for
you. Open the updater by navigating to Help | Update… from the menu and click
on the Advanced mode button. The first time you upload a plugin, you need to select
the View local-only files from the View options drop-down list. You can now select
your plugin on the left-hand side, and edit the details in the Details view on the
right-hand side. By right-clicking on your plugin, you can open a context menu and
select Upload to My Site. The Status/Action column should now display Upload
it, and after pressing the Apply changes button and providing your credentials, the
upload will start.

Summary
In this chapter, we developed a legacy plugin from scratch using the Maven system
and the NetBeans IDE. We applied some of the image processing techniques that
we learned in the previous chapters in our plugin. We saw how to add a basic user
interface to our plugin, allowing the user to change some of the parameters that
influence the way the plugin functions. We also saw how to store our settings in the
preferences so that they can be recalled the next time we use the plugin. We added
an external library to provide additional functionality that was not present in ImageJ.
Finally, we looked at an automated way of publishing our plugin and sharing it with
the world.

In the next chapter, we will look at the resources that are available to further your
knowledge and skills in image processing and project development.

www.it-ebooks.info

http://www.it-ebooks.info/

www.it-ebooks.info

http://www.it-ebooks.info/

[219]

Where to Go from Here?
In this chapter, we will sum up the topics that were discussed and provide further
resources that are available to continue developing your own plugins. The chapter
will also look at some of the more advanced techniques that are available for
developers. This chapter will cover the following topics:

•	 Basic development
•	 Additional tools
•	 Project management and feedback
•	 Other resources

Basic development
In this book, we have looked at many different ways of performing image processing
and analysis. Automation using macros and plugins were introduced, allowing for
infinite possibilities in processing and analysis. The topics in this book have been
written for users who would like to start developing their own plugins and macros.
Naturally, this book can only provide so much information within its pages, so this
section is meant to provide some handles on how to proceed further along this path.

To start with, creating macros and plugins gets easier with repeated practice and
learning from previous code (or other people's code). When creating macros, it is a
good practice to make small macros that perform only a single step in processing.
Then, by combining multiple macros, you can create a very versatile toolbox. Many
useful tools in ImageJ, such as the ActionBar plugin, allow you to create a fast way to
launch many different macros in succession. When developing in this fashion, make
sure that you create macros that can be daisy-chained. The output of one macro can
be used as input to the next macro and so on. This method will save you a lot of time,
and it allows for almost any combination you wish to create.

www.it-ebooks.info

http://www.it-ebooks.info/

Where to Go from Here?

[220]

For plugins, a similar advice holds. When you use a specific function many times
over, it may be worth it to create a standalone class with helpful tools that you use
often. By instantiating the class to gain access to its methods, you can reuse your
code in many different projects. Some of the larger ImageJ projects use a specific tool
class or classes. For instance, MtrackJ and NeuronJ both use a library of methods
called imagescience.jar. When making plugins with an interface, it is also a good
idea to build your actual processing or analysis routines in separate classes, which
can easily be swapped when you develop new or better techniques.

There are many good resources available online to develop macros used in image
processing and analysis. The most basic one is the repository on the ImageJ website,
which contains many excellent macros that perform basic and more advanced tasks
and can be found at http://imagej.nih.gov/ij/macros/. Another good resource
is the Fiji website, which contains a lot of information about image processing and
analysis described in a cookbook (http://imagej.net/Cookbook). This cookbook
is based on the defunct MBF microscopy resources and explains how to process and
analyze specific images using the tools supplied with Fiji.

Some very good resources have been published as well. Digital Image Processing by
Burger and Burge is a comprehensive textbook that focuses on the algorithms used
by ImageJ functions. This provides a mathematical background to some of the
processing functions in ImageJ as well as image transformations and interpolations.
Examples in their work are based on or extracted from ImageJ source code.
Another good resource is Gonzalez and Woods' Digital Image Processing, which uses
MATLAB for image-processing examples. It, however, also provides a mathematical
background as well as techniques such as fuzzy logic in image processing. Many
of the examples used can be translated to ImageJ as an exercise. A good source for
algorithms is the Numerical recipes book series, which was written in the C/C++
language. Many of the algorithms can be translated into Java without too much
hassle. Another resource that can help in understanding the physics of image
formation, as well as the basics of signal processing, is The Scientist and Engineer's
Guide to Digital Signal Processing by Steven Smith (available on http://www.
dspguide.com/).

www.it-ebooks.info

http://imagej.nih.gov/ij/macros/
http://imagej.net/Cookbook
http://www.dspguide.com/
http://www.dspguide.com/
http://www.it-ebooks.info/

Chapter 10

[221]

Finally, if you wish to develop plugins that utilize a user interface, it is a good idea to
look at many different plugins with interfaces. In Chapter 8, Anatomy of ImageJ Plugins
we looked at different examples of plugins with a basic and advanced interface.
Some of these examples have a very clear and intuitive interface that can be used
with minimal documentation. There are many good publications on good designs
of interfaces as well as online resources that can show you examples of good and
bad designs. Examples of published books include Universal Principles of Design,
which examines common concepts in design based on experience and psychological
knowledge. Another good resource is the book Don't make me think, revisited, which
is written with web design in mind. However, the core principles are the same for
desktop applications and ImageJ plugins.

Another good online resource is the blog of Joel Spolsky, a developer involved
with Microsoft Excel, at http://www.joelonsoftware.com/uibook/chapters/
fog0000000057.html. Although the examples mentioned are slightly historic,
the general truth behind the observations still holds true. It also has a lot of useful
insights into designing and running projects.

To learn more about plugin development in the new ImageJ2 framework, there is
good documentation and background available on the Fiji website on the framework
(http://fiji.sc/ImageJ2) and some of the library functions such as ImgLib2
(http://fiji.sc/ImgLib2). There is also a good collection of example projects
available to test and discover how to use these concepts, for instance, how to work
with images using ImgLib2 (http://fiji.sc/ImgLib2_Examples). A set of ImageJ
tutorials is available on GitHub as well. They can be cloned using your favorite
Git implementation from https://GitHub.com/imagej/imagej-tutorials/. As
ImageJ2 is still under active development and currently is at release candidate status,
many changes will still be implemented before it is released as a final version.

www.it-ebooks.info

http://www.joelonsoftware.com/uibook/chapters/fog0000000057.html
http://www.joelonsoftware.com/uibook/chapters/fog0000000057.html
http://fiji.sc/ImageJ2
http://fiji.sc/ImgLib2
http://fiji.sc/ImgLib2_Examples
https://GitHub.com/imagej/imagej-tutorials/
http://www.it-ebooks.info/

Where to Go from Here?

[222]

Additional tools
Many of the examples described in this book can be designed and built using
the built-in editors of ImageJ and Fiji, but if you want to develop more advanced
plugins, setting up an IDE would make you work faster. As a learning tool, an IDE
might not be the best option. The learning curve of the IDE itself can be steep, and
also, it can make you lazy. IDEs can be quite clever and analyze your code to provide
automatic importing of classes, implementing the required methods, and variable
checking and casting. These tools are handy, but it is important to understand what
is happening when the IDE suggests these options. Of course, the spellchecking and
completion of variable names makes sure that you will make fewer typos, but you
should never blindly rely on it. The analysis of code can be quite sophisticated, but
it cannot predict what the developer has in mind. This can sometimes result in very
odd behavior or errors that may be hard to debug.

To work with an IDE such as NetBeans, as described in the previous chapters, many
resources are available from the developers of the software. Tutorials for NetBeans
can be found at https://netbeans.org/kb/index.html, which contains tutorials,
examples, and videos to use the IDE to develop projects. Packt Publishing also has
books about NetBeans IDE usage, specifically NetBeans IDE 8 cookbook and Mastering
NetBeans.

Besides investing time in an IDE, it is also helpful to invest time in understanding
and learning how to use a revision system, such as Git. The workflow when using
a revision system is a little different than when just developing code directly. A
revision system would only work if you commit your changes on a regular basis
and provide useful commit messages. If you are the only developer on a project, you
would not run into many problems such as difficult code mergers and conflicts, so
the process becomes relatively straightforward. With the help of a graphical frontend
for Git, the whole process becomes manageable and accessible, even for beginners.

www.it-ebooks.info

https://netbeans.org/kb/index.html
http://www.it-ebooks.info/

Chapter 10

[223]

Make sure you are comfortable with using Git before you start a multideveloper
project. Conflicts and mergers can get complicated and resolving them may become
hard if binary files are involved. Many IDEs have a revision system built in (many
times, it's under the Team menu, that is, in Eclipse and NetBeans). Whether you use
the built-in system or a standalone interface, there are a few good resources to look
at before using them. They will help in understanding what the system is capable
of (and what not). A very good resource is the Git Book, which can be downloaded
from https://git-scm.com/book/en/v2, while printed copies are also available.
Chapter 2, Basic Image Processing with ImageJ and Chapter 3, Advanced Image Processing
with ImageJ give a clear overview of how to use Git in daily life. It mostly uses the
command-line interface for the examples. However, the graphical frontends that are
available use the same terminology. Packt Publishing has practical books for working
with Git as well, including Git Version Control cookbook and Git: Version Control for
Everyone, which contain practical examples and use cases for development.

For Subversion, another revision software package, a similar online resource is
available at http://svnbook.red-bean.com/en/1.7/index.html. It details
the basis of subversion and explains the process of committing changes and the
revision process. This resource also assumes a mostly command-line approach to
dealing with the repository system, but the terminology is similar to most graphical
frontends. Most clients that are compatible with Git also support Subversion, and
there are packages available that can convert a Subversion repository into a Git
repository without (too much) loss of the structure of the repository. One graphical
frontend that I use on a regular basis is SmartGit/Hg by Syntevo. It runs on all
platforms and has support for GitHub repositories. It is free for non-commercial
work, but requires a license when used for commercial projects.

Project management and feedback
There are a few difficulties that come with working with a team on a project. Such
work requires an additional layer on top of the actual development. For this, there
are project-management solutions available that can organize projects. These
solutions usually contain multiple levels and are usually built on top or on part of a
revision system. Most project-management solutions contain (at least) issue trackers
and road maps. Most of these solutions are mostly built as administrative tools
and do not directly interface with the developed code (at least in the case of ImageJ
plugins). They, however, allow for developers to keep track of progress and plan
future development and for end users to provide feedback and indicate where bugs
and errors exist. Most of these solutions run on a server that can be approached via a
browser, and they support multiple users as well as unregistered guest users.

www.it-ebooks.info

https://git-scm.com/book/en/v2
http://svnbook.red-bean.com/en/1.7/index.html
http://www.it-ebooks.info/

Where to Go from Here?

[224]

Different solutions exist, and the choice for a solution should be based on your
needs and equipment available. Server hosting nowadays is not really complicated
or expensive, so the choices are quite broad. Some options are available are GitHub.
They can host projects, provided they are open source, for free. Other options are
hosting your own solution, such as Redmine. Redmine is an open source project
management solution written in the Ruby language. Other open source examples
are Launchpad, used by many Canonical projects related to Ubuntu and Trac used
by NASA's JPL and for Tor development. Besides bug trackers, they also have
some form of time management and road map. They also allow us to host files and
documentation. Redmine also supports news and forum pages for projects, as well as
user management on a project basis.

If you wish to develop code in a more managed setting, these tools may be useful to
investigate. Many of these systems can work on a small network or even just on your
local computer. To use any of these systems in a more accessible setting, you require
a computer system with a revision system installed, such as Git or Subversion,
and a functional and configured webserver application, such as Apache, Nginx, or
Tomcat. For Redmine, a Ruby, and a *SQL database installation is also required.
Some systems also require a PHP installation for certain functionality. Although this
may sound complicated, many of these functionalities come standard with a LAMP
(Linux, Apache, MySQL, PHP) server distribution, such as the Ubuntu Server
edition. Many server-hosting companies provide a fully configured LAMP server
without additional management. Also, many of these project-management suites
come with simple installers that are configurable for many different use cases.

Using the software is done via a basic login page, which allows different users
with different levels of access to the management system. Privileges can be granted
to allow certain users to create, modify, and manage projects. Other users can be
added as reporters. They can access most parts of the management systems, such as
the trackers and the forum pages, but not the settings of the project. In the case of
Redmine, most of the pages are based on a Wiki-like syntax for the content, allowing
rich and feature-rich documentation with graphics and other layout options. Most
issue trackers have room for different categories, such as bugs, features, or support.
This allows us to make classifications of the type of issue that is being reported as
well as their priority. Issues can also be assigned to specific developers, making the
division of labor for multiple developers clear and easy.

Resources and documentation for Redmine is available online at http://www.
redmine.org/projects/redmine/wiki/Guide, which uses Redmine itself and
functions as a clear example of the workflow. A published book called Mastering
Redmine is available as well.

www.it-ebooks.info

http://www.redmine.org/projects/redmine/wiki/Guide
http://www.redmine.org/projects/redmine/wiki/Guide
http://www.it-ebooks.info/

Chapter 10

[225]

Other resources
When developing code, it can be useful to check whether certain solutions to your
problem already exist. When a good implementation already exists and is used,
it saves you time in developing a library or functions. For example, many good
solutions to generate Excel files exist in the form of libraries written in Java. One
such example is the Apache POI project, which allows for the reading and writing of
Excel files (and other Microsoft Office products). Implementations of this library exist
for many software packages as well as other Java-based software. For instance, the
xlwrite wrapper function developed for Matlab by Alec de Zegher uses the Apache
POI project to create Excel files (http://www.mathworks.com/matlabcentral/
fileexchange/38591). It should not to be confused with the .xlswrite wrapper
function supplied by MATLAB, which uses ActiveX to write Excel files, thereby
requiring a Windows platform.

For resources that you wish to use as libraries, you can use Maven, as described in
Chapter 7, Explanation of ImageJ Constructs. Maven is part of most IDE installations
(either as part of the core or as a separate plugin). By including the libraries as
dependencies in the <dependencies> tag of the POM model, they will automatically
be added to your projects' dependencies list. Additional resources on how to use
Maven in a project can be found on the Apache Maven website (https://maven.
apache.org/guides/index.html), which is the main developer of the Maven
system. There are also some books and videos available to set up and develop
software using Maven, for instance, Apache Maven 3.0 cookbook and Maven: The
definitive guide.

Summary
In this chapter, we looked at some of the steps that can be taken after finishing this
book. I focused on some tools that are available to make the development of software
more organized and professional. Some resources for each of these components were
included, both ones available online as well as published works.

www.it-ebooks.info

http://www.mathworks.com/matlabcentral/fileexchange/38591
http://www.mathworks.com/matlabcentral/fileexchange/38591
https://maven.apache.org/guides/index.html
https://maven.apache.org/guides/index.html
http://www.it-ebooks.info/

www.it-ebooks.info

http://www.it-ebooks.info/

[227]

Index
A
ActionBar

about 126
documentation, URL 126

Add Macro Code selector 124
Apache Maven website

URL 225
Apache POI

URL 225
Application Programming Interface (API)

about 138
URL 138

area selections
about 75-78
oval 75
rectangles 75

AstroImageJ
URL 2

B
basic measurements

about 79
area selections, using 79, 80
line selections, using 86

basic measurements, with area selections
about 80
oval selections 80-82
polygon selections 83-85
rectangular selections 80

basic measurements, with line selections
about 86
kymographs 86-90
line profiles, creating 91-93

batch process mode
macros, running in 123, 124

BeanShell scripting
about 126, 130, 131
ImageJ main class 131, 132
image processing, functions 132, 133
running 134
saving 134
selections, functions for 133

Bio-Formats plugin 2, 5, 13
bleach correction 38-40

C
Coloc2 plugin 181, 182
colocalization

about 94
semiquantitative colocalization 94, 95

color images
about 15
thresholding 52, 53

ColorTransformer2 plugin 175-177
Command-line Interface (CLI) 168

D
dark noise

correcting 30-32
Differential Interference Contrast (DIC)

optic 33

E
EM-CCD (Electron-Multiplying CCD) 31
external libraries

adding 212
dependency, adding for Apache

POI 212, 213
Excel file, creating 213, 215

www.it-ebooks.info

http://www.it-ebooks.info/

[228]

F
feature extraction

about 69
edge detection 70, 71

FFMPEG plugin 3
Fiji

URL 2, 220, 221
File.directory() function 107
frame 20

G
gel quantification analysis

URL 93
Git Book

URL 223
Goutte_pendante plugin 183-188
grayscale images

about 15
thresholding 50, 51

H
HSB images 16
HSSF moniker (Horrible SpreadSheet For-

mat) 213
hyperstacks 18

I
Icy

URL 2
image, filtering

about 59, 60
in frequency domain 60-65
in spatial domain 65-69

ImageJ
area selections 75
basic development 219-221
basic package, URL 1
current state 4
distributions 1, 2
ellipses 80
folder structure 8
fresh ImageJ installation 10, 11
images 13, 14
installation 6

integrated environment 5
Linux, installing on 8
Mac OS X, installing on 7
online resource, URL 221
ovals 80
plugins 161
project management and feedback 223, 224
regions 74
resources 225
selections 74
source code, URL 140
tasks, URL 220
tools 222, 223
uses 3
Windows, installing on 6

ImageJ2 plugin
about 4, 130
creating 158, 159

ImageJ, folder structure
macros folder 9
plugins folder 9

ImageJ Javadoc 147
ImagePlus class 136
ImageProcessor class 137
images

about 13, 14
and pixel information, extracting 21, 22
bleach correction 38-40
calibrating 24
color images 15-19
correcting 29
dark noise, correcting 30-32
grayscale images 15
image normalization 36, 37
loading 22, 23
multichannel images, viewing 27
saving 23, 24
Shot noise, correcting 30
technical background 29
time series, viewing 28
types 15
URL 14
viewing, in ImageJ 24-26

image segmentation
about 49
grayscale images, thresholding 50, 51
image thresholding 50

www.it-ebooks.info

http://www.it-ebooks.info/

[229]

image thresholding
about 50
color images, thresholding 52, 53
grayscale images, thresholding 50-52
URL 51

ImgLib2
URL 221

installation
macros 125, 126

J
JavaScript 130
Java Runtime Environment (JRE) 6
Java Virtual Machine (JVM) 167

K
kernel 65
kymograph

about 86-90
creating 79

L
LAMP (Linux, Apache, MySQL, PHP) server

distribution 224
legacy plugins

about 162
and macros, combining 164
implementing 163
PlugInFilter type 162
PlugInFrame type 163
PlugIn type 162

line profiles
creating 91-93

line selections 79
lookup table (LUT) 15

M
macros

and scripting languages 130
built-in functions, URL 106
framework 129, 130
installing 125, 126
modifying 104-106

progress, showing 116
recording 99, 100
recording, for conversion 101-103
running, in batch process mode 123, 124
time series, processing 116-122
user input 106

Magnetic Resonance Imaging (MRI) imag-
ing 40

Maven plugin project 152-158
morphological operators

dilate 54-57
erode 54-57
skeletonize 57-59
watershed 57-59

morphological processing
about 54
morphological operators 54

MtrackJ plugin 177-181
multichannel images

viewing 27
multichannel stacks 18, 19
multidimensional images 20, 21
Multi Kymograph tool 89
MultipleKymograph plugin 173-175
My awesome tools (Mat) 126

N
NetBeans IDE

components, gathering 139, 140
cons 159
documentation, creating 147
ImageJ2 plugin, creating 158, 159
ImageJ, building 144
ImageJ Javadoc 147
Maven plugin project, creating 152-158
Maven, used for developing plugins 149
plugin, creating 144-147
Plugin Javadoc 147-149
POM, constructing 150, 151
project, setting up 140-143
project, URL 140
pros 159
setting up 139
URL 139, 222

NIH
URL 6

www.it-ebooks.info

http://www.it-ebooks.info/

[230]

O
OME-XML (Open Microscopy Environ-

ment-XML) project 5
Open… button 124

P
particle analysis

preparations 96-98
preprocessing 96-98
semiquantitative colocalization 95

PlugInFilter
creating 162, 192
current implementation, testing 192-194
measurements, implementing 209
setup method, implementing 195

PlugInFrame type 163
Plugin Javadoc 147
plugins

about 135
anatomy 161
background 189, 190
Coloc2 181, 182
ColorTransformer2 175, 177
compiling 167, 168
debugging 167-171
examples 171
framework 129, 130
goal 189, 190
Goutte_pendante 183-188
ImageJ main class 135, 136
ImagePlus class 136
ImageProcessor class 137
in Fiji 172
in ImageJ 172
legacy plugins 162
MtrackJ 177-181
MultipleKymograph 173-175
options dialog 210, 211, 212
preferences, adding 210
project setup 190, 191
Roi class 138
RoiManager class 137
settings dialog 210-212
sharing 215
site, creating 216

running 167
SciJava plugins, compiling 168
uploading 217
user interaction, adding 210
WindowManager class 136
Wiki login page, URL 216

PlugIn type 162
Point ROI 74
point selections 79
Poisson process 30
POM file 150, 151

R
regions

about 74
area selections 74
line selections 74

Regions Of Interest (ROIs)
about 74
class 138
Manager 74

RoiManager class 137, 138
run method, PlugInFilter

detection, refining 204, 205
implementing 202
multiple objects, detecting 206-208
object, detecting 202-204

S
saveAs command 108
SciFIO 5
SciJava plugins

@Plugin annotation 165
about 164
commands 166
compiling 168
services 166

segmentation 49
selections

area selections 75
line selections 79
point selections 79

sequences
loading 22, 23

www.it-ebooks.info

http://www.it-ebooks.info/

[231]

setup method, PlugInFilter
auto-complete 196
finishing 199-201
Javadoc, for methods 196-199
return type 196

Shot noise
correcting 30

signal processing
URL 220

signal-to-noise ratio (SNR) 30
stack 18
stack processing

about 40
maximum projection 41-43
projections 41
time series data, normalizing 46-48
time series data, processing 46-48
time series, processing 46
volume, rendering 43-46
volume, viewing 43-46
Z stacks, processing 40

Subversion
URL 223

syntax highlighting 103

T
Tagged Image File Format (TIFF) 3
time series

about 20
data, normalizing 46-48
processing 46
uneven illumination 33-35
viewing 28

tools 222, 223

U
user input, macro

about 106
choices, adding 109, 111
image, saving to folder 107-109
input check, performing 112-115
specific file, opening 106

V
volumes 20
Volume Viewer 44

W
WindowManager class 136

Z
Z stack

about 18
images 20
processing 40

www.it-ebooks.info

http://www.it-ebooks.info/

www.it-ebooks.info

http://www.it-ebooks.info/

Thank you for buying
Image Processing with ImageJ

Second Edition

About Packt Publishing
Packt, pronounced 'packed', published its first book, Mastering phpMyAdmin for Effective
MySQL Management, in April 2004, and subsequently continued to specialize in publishing
highly focused books on specific technologies and solutions.
Our books and publications share the experiences of your fellow IT professionals in adapting
and customizing today's systems, applications, and frameworks. Our solution-based books
give you the knowledge and power to customize the software and technologies you're using
to get the job done. Packt books are more specific and less general than the IT books you have
seen in the past. Our unique business model allows us to bring you more focused information,
giving you more of what you need to know, and less of what you don't.
Packt is a modern yet unique publishing company that focuses on producing quality,
cutting-edge books for communities of developers, administrators, and newbies alike.
For more information, please visit our website at www.packtpub.com.

About Packt Open Source
In 2010, Packt launched two new brands, Packt Open Source and Packt Enterprise, in order
to continue its focus on specialization. This book is part of the Packt Open Source brand,
home to books published on software built around open source licenses, and offering
information to anybody from advanced developers to budding web designers. The Open
Source brand also runs Packt's Open Source Royalty Scheme, by which Packt gives a royalty
to each open source project about whose software a book is sold.

Writing for Packt
We welcome all inquiries from people who are interested in authoring. Book proposals should
be sent to author@packtpub.com. If your book idea is still at an early stage and you would
like to discuss it first before writing a formal book proposal, then please contact us; one of our
commissioning editors will get in touch with you.
We're not just looking for published authors; if you have strong technical skills but no writing
experience, our experienced editors can help you develop a writing career, or simply get some
additional reward for your expertise.

www.it-ebooks.info

www.packtpub.com
http://www.it-ebooks.info/

OpenCV Computer Vision with
Python
ISBN: 978-1-78216-392-3 Paperback: 122 pages

Learn to capture videos, manipulate images, and
track objects with Python using the OpenCV Library

1.	 Set up OpenCV, its Python bindings, and
optional Kinect drivers on Windows, Mac
or Ubuntu.

2.	 Create an application that tracks and
manipulates faces.

3.	 Identify face regions using normal color images
and depth images.

OpenCV 2 Computer Vision
Application Programming
Cookbook
ISBN: 978-1-84951-324-1 Paperback: 304 pages

Over 50 recipes to master this library of programming
functions for real-time computer vision

1.	 Teaches you how to program computer vision
applications in C++ using the different features
of the OpenCV library.

2.	 Demonstrates the important structures and
functions of OpenCV in detail with complete
working examples.

3.	 Describes fundamental concepts in computer
vision and image processing.

Please check www.PacktPub.com for information on our titles

www.it-ebooks.info

http://www.it-ebooks.info/

Mastering OpenCV with Practical
Computer Vision Projects
ISBN: 978-1-84951-782-9 Paperback: 340 pages

Step-by-step tutorials to solve common real-world
computer vision problems for desktop or mobile,
from augmented reality and number plate recognition
to face recognition and 3D head tracking

1.	 Allows anyone with basic OpenCV experience
to rapidly obtain skills in many computer
vision topics, for research or commercial use.

2.	 Each chapter is a separate project covering
a computer vision problem, written by a
professional with proven experience on
that topic.

MATLAB Graphics and Data
Visualization Cookbook
ISBN: 978-1-84969-316-5 Paperback: 284 pages

Tell data stories with compelling graphics using this
collection of data visulaization recipes

1.	 Collection of data visualization recipes with
functionalized versions of common tasks
for easy integration into your data analysis
workflow.

2.	 Recipes cross-referenced with MATLAB
product pages and MATLAB Central File
Exchange resources for improved coverage.

3.	 Includes hand created indices to find exactly
what you need; such as application driven, or
functionality driven solutions.

Please check www.PacktPub.com for information on our titles

www.it-ebooks.info

http://www.it-ebooks.info/

	Cover
	Copyright
	Credits
	About the Authors
	About the Reviewer
	www.PacktPub.com
	Table of Contents
	Preface
	Chapter 1: Getting Started with ImageJ
	ImageJ distributions
	The uses of ImageJ
	The current state of ImageJ
	ImageJ2
	SciFIO and OME-XML
	Bio-formats

	Integrated environment for acquisition and processing
	Obtaining and installing ImageJ
	Installation of ImageJ
	Installing on Windows
	Installing on Mac OS X
	Installing on Linux

	The ImageJ folder structure
	Plugins folder
	Macros folder

	Configuring a fresh ImageJ installation
	Summary

	Chapter 2: Basic Image Processing
with ImageJ
	Images in ImageJ
	Image types
	Grayscale images
	Color images

	Stacks and hyperstacks
	Color images and multichannel stacks
	Z-stack images and volumes
	Time series
	Multidimensional images

	Extracting image and pixel information
	Loading and saving images
	Loading images and sequences
	Saving images

	Image calibration
	Viewing images in ImageJ
	Viewing multichannel images
	Viewing time series

	Summary

	Chapter 3: Advanced Image Processing with ImageJ
	Correcting images
	Technical background
	Correcting Shot noise
	Correcting dark noise
	Uneven illumination – background subtraction
	Image normalization
	Bleach correction

	Stack processing
	Processing Z-stacks
	Stack projections
	Volume viewing and rendering

	Processing time series
	Normalizing time series data

	Summary

	Chapter 4: Image Segmentation
and Feature Extraction
with ImageJ
	Image segmentation
	Image thresholding
	Thresholding grayscale images
	Thresholding color images

	Morphological processing
	Morphological operators
	Erode and dilate
	Skeletonize and watershed

	Image filtering
	Filtering in the frequency domain
	Image filtering in the spatial domain

	Feature extraction
	Edge detection

	Summary

	Chapter 5: Basic Measurements
with ImageJ
	Selections and regions in ImageJ
	Area selections
	Line selections
	Point selections

	Basic measurements
	Area selections and measurements
	Oval selections
	Polygon selections

	Line selections and measurements
	Kymographs
	Line profiles

	Colocalization
	Semiquantitative colocalization

	Particle analysis
	Preprocessing and preparations

	Summary

	Chapter 6: Developing Macros in ImageJ
	Recording macros
	Recording a macro for conversion

	Modifying macros
	User input in macros
	Opening a specific file
	Saving an image to a folder
	Adding choices
	Performing input checking

	Showing progress in macros
	Processing the time series

	Running macros in batch process mode
	Installing macros
	Summary

	Chapter 7: Explanation of ImageJ Constructs
	Frameworks for macros and plugins
	Macros and scripting languages
	BeanShell scripting
	Saving and running your scripts

	Plugins for ImageJ
	ImageJ main class
	WindowManager
	ImagePlus
	ImageProcessor
	RoiManager
	The Roi class

	The Application Programming Interface
	Setting up NetBeans IDE
	Gathering all components
	Setting up a project
	Building ImageJ
	Creating a plugin
	Creating documentation
	ImageJ Javadoc
	Plugin Javadoc

	Developing plugins using Maven
	Construction of the POM
	Creating a Maven plugin project
	Creating an ImageJ2 plugin

	Pros and cons of using an IDE

	Summary

	Chapter 8: Anatomy of ImageJ Plugins
	The basic anatomy of a plugin
	Legacy plugins
	The PlugIn type
	The PlugInFilter type
	The PlugInFrame type
	Implementing a legacy plugin
	Combining macros and legacy plugins

	SciJava plugins
	The @Plugin annotation
	Services
	Commands

	Running and debugging plugins
	Compiling plugins
	Compiling SciJava plugins

	Debugging plugins

	Examples of available plugins
	Example plugins available in ImageJ and Fiji
	MultipleKymograph
	ColorTransformer2
	MtrackJ
	Coloc2
	Goutte_pendante

	Summary

	Chapter 9: Creating ImageJ Plugins
for Analysis
	Plugin background and goal
	Basic project setup
	Creating a basic PlugInFilter
	Testing our current implementation
	Implementing the setup method
	The return type and autocomplete
	Javadoc for methods
	Finishing the setup method

	Implementing the run method
	Detecting an object
	Refining the detection
	Detecting multiple objects

	Implementing the measurements

	Adding user interaction and preferences
	Settings and options dialog

	Adding external libraries
	Adding the dependency for Apache POI
	Creating an Excel file

	Sharing your plugin
	Creating a site
	Uploading your plugin

	Summary

	Chapter 10: Where to Go from Here?
	Basic development
	Additional tools
	Project management and feedback
	Other resources
	Summary

	Index

