
[1]

www.it-ebooks.info

http://www.it-ebooks.info/

Apache Solr Search Patterns

Leverage the power of Apache Solr to power up your
business by navigating your users to their data quickly
and efficiently

Jayant Kumar

BIRMINGHAM - MUMBAI

www.it-ebooks.info

http://www.it-ebooks.info/

Apache Solr Search Patterns

Copyright © 2015 Packt Publishing

All rights reserved. No part of this book may be reproduced, stored in a retrieval
system, or transmitted in any form or by any means, without the prior written
permission of the publisher, except in the case of brief quotations embedded in
critical articles or reviews.

Every effort has been made in the preparation of this book to ensure the accuracy
of the information presented. However, the information contained in this book
is sold without warranty, either express or implied. Neither the author nor Packt
Publishing, and its dealers and distributors will be held liable for any damages
caused or alleged to be caused directly or indirectly by this book.

Packt Publishing has endeavored to provide trademark information about all of the
companies and products mentioned in this book by the appropriate use of capitals.
However, Packt Publishing cannot guarantee the accuracy of this information.

First published: April 2015

Production reference: 1210415

Published by Packt Publishing Ltd.
Livery Place
35 Livery Street
Birmingham B3 2PB, UK.

ISBN 978-1-78398-184-7

www.packtpub.com

www.it-ebooks.info

www.packtpub.com
http://www.it-ebooks.info/

Credits

Author
Jayant Kumar

Reviewers
Ramzi Alqrainy

Damiano Braga

Omar Shaban

Commissioning Editor
Edward Bowkett

Acquisition Editor
Vinay Argekar

Content Development Editor
Sumeet Sawant

Technical Editor
Tanmayee Patil

Copy Editors
Janbal Dharmaraj

Pooja Iyer

Project Coordinator
Akash Poojary

Proofreaders
Ting Baker

Simran Bhogal

Safis Editing

Indexer
Monica Ajmera Mehta

Graphics
Sheetal Aute

Ronak Dhruv

Production Coordinator
Shantanu N. Zagade

Cover Work
Shantanu N. Zagade

www.it-ebooks.info

http://www.it-ebooks.info/

About the Author

Jayant Kumar is an experienced software professional with a bachelor of
engineering degree in computer science and more than 14 years of experience in
architecting and developing large-scale web applications.

Jayant is an expert on search technologies and PHP and has been working with
Lucene and Solr for more than 11 years now. He is the key person responsible for
introducing Lucene as a search engine on www.naukri.com, the most successful job
portal in India.

Jayant is also the author of the book Apache Solr PHP Integration, Packt Publishing,
which has been very successful.

Jayant has played many different important roles throughout his career, including
software developer, team leader, project manager, and architect, but his primary
focus has been on building scalable solutions on the Web. Currently, he is associated
with the digital division of HT Media as the chief architect responsible for the job site
www.shine.com.

Jayant is an avid blogger and his blog can be visited at http://jayant7k.
blogspot.in. His LinkedIn profile is available at http://www.linkedin.com/in/
jayantkumar.

I would like to thank the guys at Packt Publishing for giving me the
opportunity to write this book. Special thanks to Vinay Argekar and
Mohammed Fahad from Packt Publishing for keeping me engaged
and dealing with my drafts and providing feedback at all stages.

I would like to thank my wife, Nidhi, and my parents for taking care
of our kids while I was engaged in writing this book. And finally, I
would like to thank my kids, Ashlesha and Banhishikha, for bearing
with me while I was writing this book.

www.it-ebooks.info

www.naukri.com
www.shine.com
http://jayant7k.blogspot.in
http://jayant7k.blogspot.in
http://www.linkedin.com/in/jayantkumar
http://www.linkedin.com/in/jayantkumar
http://www.it-ebooks.info/

About the Reviewers

Ramzi Alqrainy is one of the most recognized experts within artificial intelligence
and information retrieval fields in the Middle East. He is an active researcher and
technology blogger with a focus on information retrieval.

He is a Solr engineer at Lucidworks and head of technology of www.openSooq.com,
where he capitalizes on his solid experience in open source technologies in scaling
up the search engine and supportive systems.

His experience in Solr, Elasticsearch, Spark, Mahout, and Hadoop stack contributed
directly to the business growth through the implementations and projects that
helped the key people to slice and dice information easily throughout the dashboards
and data visualization solutions.

By developing more than eight full stack search engines, he was able to solve many
complicated challenges about agglutination and stemming in the Arabic language.

He holds a master's degree in computer science, was among the first rank in his class,
and was listed on the honor roll. His website address is http://ramzialqrainy.
com. His LinkedIn profile is http://www.linkedin.com/in/ramzialqrainy. He can
be contacted at ramzi.alqrainy@gmail.com.

I would like to thank my parents and sisters for always being there
for me.

www.it-ebooks.info

www.openSooq.com
http://ramzialqrainy.com
http://ramzialqrainy.com
http://www.linkedin.com/in/ramzialqrainy
http://www.it-ebooks.info/

Damiano Braga is a senior software engineer at Trulia, where he helps the
company to scale the search infrastructure and make search better. He's also an
open source contributor and a conference speaker.

Prior to Trulia, he studied at and worked for the University of Ferrara (Italy),
where he completed his master's degree in computer science engineering.

Omar Shaban is a software architect and software engineer with a passion for
programming and open source. He began programming as a youngster in 2001.
He is the lead maintainer of PHP's PECL Solr Extension and a proud PHP member.

Omar enjoys resolving complex problems, designing web applications architecture,
and optimizing applications' performance. He is interested in Natural Language
Processing (NLP) and machine learning.

www.it-ebooks.info

http://www.it-ebooks.info/

www.PacktPub.com

Support files, eBooks, discount offers, and more
For support files and downloads related to your book, please visit www.PacktPub.com.

Did you know that Packt offers eBook versions of every book published, with PDF
and ePub files available? You can upgrade to the eBook version at www.PacktPub.
com and as a print book customer, you are entitled to a discount on the eBook copy.
Get in touch with us at service@packtpub.com for more details.

At www.PacktPub.com, you can also read a collection of free technical articles, sign
up for a range of free newsletters and receive exclusive discounts and offers on Packt
books and eBooks.

TM

https://www2.packtpub.com/books/subscription/packtlib

Do you need instant solutions to your IT questions? PacktLib is Packt's online digital
book library. Here, you can search, access, and read Packt's entire library of books.

Why subscribe?
•	 Fully searchable across every book published by Packt
•	 Copy and paste, print, and bookmark content
•	 On demand and accessible via a web browser

Free access for Packt account holders
If you have an account with Packt at www.PacktPub.com, you can use this to access
PacktLib today and view 9 entirely free books. Simply use your login credentials for
immediate access.

www.it-ebooks.info

www.PacktPub.com
www.PacktPub.com
www.PacktPub.com
www.PacktPub.com
https://www2.packtpub.com/books/subscription/packtlib
www.PacktPub.com
http://www.it-ebooks.info/

www.it-ebooks.info

http://www.it-ebooks.info/

[i]

Table of Contents
Preface	 vii
Chapter 1: Solr Indexing Internals	 1

The job site problem statement – Solr indexing fundamentals	 2
Working of analyzers, tokenizers, and filters	 7
Handling a multilingual search	 13
Measuring the quality of search results	 17
The e-commerce problem statement	 19
The job site problem statement	 21
Challenges of large-scale indexing	 22

Using multiple threads for indexing on Solr	 22
Using the Java binary format of data for indexing	 23
Using the ConcurrentUpdateSolrServer class for indexing	 24

Solr configuration changes that can improve indexing performance	 24
Planning your commit strategy	 25
Using better hardware	 26
Distributed indexing	 26

The SolrCloud solution	 26
Summary	 28

Chapter 2: Customizing the Solr Scoring Algorithm	 29
Relevance calculation	 30
Building a custom scorer	 32
Drawbacks of the TF-IDF model	 38
The information gain model	 42
Implementing the information gain model	 43
Options to TF-IDF similarity	 44

BM25 similarity	 44
DFR similarity	 48

Summary	 50

www.it-ebooks.info

http://www.it-ebooks.info/

Table of Contents

[ii]

Chapter 3: Solr Internals and Custom Queries	 51
Working of a scorer on an inverted index	 52
Working of OR and AND clauses	 54
The eDisMax query parser	 58

Working of the eDisMax query parser	 58
The minimum should match parameter	 62
Working of filters	 64

Using BRS queries instead of DisMax	 66
Building a custom query parser	 67

Proximity search using SWAN queries	 67
Creating a parboiled parser	 69
Building a Solr plugin for SWAN queries	 74
Integrating the SWAN plugin in Solr	 75

Summary	 77
Chapter 4: Solr for Big Data	 79

Introduction to big data	 80
Getting data points using facets	 81

Field faceting	 84
Query and range faceting	 86

Radius faceting for location-based data	 89
The geofilt filter	 89
The bounding box filter	 90
The rectangle filter	 92
Distance function queries	 92
Radius faceting	 93

Data analysis using pivot faceting	 94
Graphs for analytics	 98

Getting started with Highcharts	 98
Displaying Solr data using Highcharts	 102

Summary	 106
Chapter 5: Solr in E-commerce	 107

Designing an e-commerce search	 107
Handling unclean data	 112
Handling variations in the product	 115
Sorting	 118
Problems and solutions of flash sale searches	 121
Faceting with the option of multi-select	 123
Faceting with hierarchical taxonomy	 127

www.it-ebooks.info

http://www.it-ebooks.info/

Table of Contents

[iii]

Faceting with size	 130
Implementing semantic search	 130
Optimizations	 136
Summary	 138

Chapter 6: Solr for Spatial Search	 139
Features of spatial search	 140

Java Topology Suite	 143
Well-known Text	 144
The Spatial4j library	 144

Lucene 4 spatial module	 145
SpatialRecursivePrefixTreeFieldType	 145
BBoxField (to be introduced in Solr 4.10)	 148

Indexing for spatial search	 148
Searching and filtering on a spatial index	 152

The bbox query	 152
Distance sort and relevancy boost	 158
Advanced concepts	 162

Quadtree	 162
Indexing data	 162
Searching data	 163

Geohash	 163
Summary	 167

Chapter 7: Using Solr in an Advertising System	 169
Ad system functionalities	 169
Architecture of an ad distribution system	 171
Requirements of an ad distribution system	 174

Schema for a listing ad	 175
Schema for targeted ads	 176

Performance improvements	 177
fieldCache	 177
fieldValueCache	 179
documentCache	 180
filterCache	 181
queryResultCache	 182
Application cache	 184
Garbage collection	 184

Merging Solr with Redis	 185
Summary	 190

www.it-ebooks.info

http://www.it-ebooks.info/

Table of Contents

[iv]

Chapter 8: AJAX Solr	 191
The purpose of AJAX Solr	 192
The AJAX Solr architecture	 193

The Manager controller	 196
The ParameterStore model	 198

Available parameters	 198
Exposed parameters	 199
Using the ParameterHashStore class	 200
Extending the ParameterStore class	 200

Widgets	 201
Working with AJAX Solr	 201

Talking to AJAX Solr	 203
Displaying the result	 206
Adding facets	 210
Adding pagination	 213
Adding a tag cloud	 214

Performance tuning	 219
Summary	 220

Chapter 9: SolrCloud	 221
The SolrCloud architecture	 222
Centralized configuration	 224
Setting up SolrCloud	 224

Test setup for SolrCloud	 224
Setting up SolrCloud in production	 229

Setting up the Zookeeper ensemble	 229
Setting up Tomcat with Solr	 231

Distributed indexing and search	 238
Routing documents to a particular shard	 242
Adding more nodes to the SolrCloud	 247
Fault tolerance and high availability in SolrCloud	 249
Advanced sharding with SolrCloud	 251

Shard splitting	 251
Deleting a shard	 255
Moving the existing shard to a new node	 256
Shard splitting based on split key	 257

Asynchronous calls	 258
Migrating documents to another collection	 260
Sizing and monitoring of SolrCloud	 262
Using SolrCloud as a NoSQL database	 264
Summary	 265

www.it-ebooks.info

http://www.it-ebooks.info/

Table of Contents

[v]

Chapter 10: Text Tagging with Lucene FST	 267
An overview of FST and text tagging	 267
Implementation of FST in Lucene	 269

Fuzzy string matching algorithm	 272
The Levenshtein distance algorithm	 273
Damerau–Levenshtein distance	 274

Using Solr for text tagging	 275
Implementing a text tagger using Solr	 276
Summary	 286

Index	 287

www.it-ebooks.info

http://www.it-ebooks.info/

www.it-ebooks.info

http://www.it-ebooks.info/

[vii]

Preface
Apache Solr is the most widely used full text search solution. Almost all the websites
today use Solr to provide the search function. Development of the search feature
with a basic Solr setup is the starting point. At a later stage, most developers find it
imperative to delve into Solr to provide solutions to certain problems or add specific
features. This book will provide a developer working on Solr with a deeper insight
into Solr. The book will also provide strategies and concepts that are employed in
the development of different solutions using Solr. You will not only learn how to
tweak Solr, but will also understand how to use it to handle big data and solve
scalability problems.

What this book covers
Chapter 1, Solr Indexing Internals, delves into how indexing happens in Solr and how
analyzers and tokenizers work during index creation.

Chapter 2, Customizing the Solr Scoring Algorithm, discusses different scoring
algorithms in Solr and how to tweak these algorithms and implement them in Solr.

Chapter 3, Solr Internals and Custom Queries, discusses in-depth how relevance
calculation happens and how scorers and filters work internally in Solr. This chapter
will outline how to create custom plugins in Solr.

Chapter 4, Solr for Big Data, focuses on churning out big data for analysis purposes,
including various faceting concepts and tools that can be used with Solr in order to
plot graphs and charts.

Chapter 5, Solr in E-commerce, discusses the problems faced during the
implementation of Solr in an e-commerce website and the related strategies
and solutions.

www.it-ebooks.info

http://www.it-ebooks.info/

Preface

[viii]

Chapter 6, Solr for Spatial Search, focuses on spatial capabilities that the current and
previous Solr versions possess. This chapter will also cover important concepts such
as indexing and searching or filtering strategies together with varied query types that
are available with a spatial search.

Chapter 7, Using Solr in an Advertising System, discusses the problems faced during the
implementation of Solr to search in an advertising system and the related strategies
and solutions.

Chapter 8, AJAX Solr, focuses on an AJAX Solr feature that helps reduce dependency
on the application. This chapter will also cover an in-depth understanding of AJAX
Solr as a framework and its implementation.

Chapter 9, SolrCloud, provides the complete procedure to implement SolrCloud and
examines the benefits of using a distributed search with SolrCloud.

Chapter 10, Text Tagging with Lucene FST, focuses on the basic understanding of an
FST and its implementation and guides us in designing an algorithm for text tagging,
which can be implemented using FSTs and further integrated with Solr.

What you need for this book
You will need a Windows or Linux machine with Apache configured to run the
web server. You will also need the Java Development Kit (JDK) installed together
with an editor to write Java programs. You will need Solr 4.8 or higher to understand
the procedures.

Who this book is for
Basic knowledge of working with Solr is required to understand the advanced topics
discussed in this book. An understanding of Java programming concepts is required
to study the programs discussed in this book.

Conventions
In this book, you will find a number of styles of text that distinguish between
different kinds of information. Here are some examples of these styles and an
explanation of their meanings.

Code words in text, database table names, folder names, filenames, file extensions,
pathnames, dummy URLs, user input, and Twitter handles are shown as follows:
"The mergeFactor class controls how many segments a Lucene index is allowed to
have before it is coalesced into one segment."

www.it-ebooks.info

http://www.it-ebooks.info/

Preface

[ix]

A block of code is set as follows:

//Create collection of documents to add to Solr server
SolrInputDocument doc1 = new SolrInputDocument();
document.addField("id",1);
document.addField("desc", "description text for doc 1");

When we wish to draw your attention to a particular part of a code block, the
relevant lines or items are set in bold:

//Create collection of documents to add to Solr server
SolrInputDocument doc1 = new SolrInputDocument();
document.addField("id",1);
document.addField("desc", "description text for doc 1");

Any command-line input or output is written as follows:

java -jar post.jar *.xml

New terms and important words are shown in bold. Words that you see on the
screen, in menus or dialog boxes, appear as follows: "In the index, we can see that the
token Harry appears in both documents."

Warnings or important notes appear in a box like this.

Tips and tricks appear like this.

Reader feedback
Feedback from our readers is always welcome. Let us know what you think about
this book—what you liked or may have disliked. Reader feedback is important for us
to develop titles that you really get the most out of.

To send us general feedback, simply send an e-mail to feedback@packtpub.com,
and mention the book title on the subject line of your message.

If there is a topic that you have expertise in and you are interested in either writing
or contributing to a book, see our author guide on www.packtpub.com/authors.

www.it-ebooks.info

www.packtpub.com/authors
http://www.it-ebooks.info/

Preface

[x]

Customer support
Now that you are the proud owner of a Packt book, we have a number of things to
help you to get the most from your purchase.

Downloading the example code
You can download the example code files for all Packt books you have purchased
from your account from http://www.packtpub.com. If you purchase this book
elsewhere, you can visit http://www.packtpub.com/support and register to have
the files e-mailed directly to you.

Errata
Although we have taken care to ensure the accuracy of our content, mistakes do
happen. If you find a mistake in any of our books—maybe a mistake in the text or
the code—we would be grateful if you reported this to us. By doing so, you can save
other readers from frustration and help us improve the subsequent versions of this
book. If you find any errata, please report them by visiting http://www.packtpub.
com/submit-errata, selecting your book, clicking on the Errata Submission Form
link, and entering the details of your errata. Once your errata are verified, your
submission will be accepted and the errata will be uploaded on our website, or
added to any list of existing errata, under the Errata section of that title.

To view the previously submitted errata, go to https://www.packtpub.com/books/
content/support and enter the name of the book in the search field. The required
information will appear under the Errata section.

Piracy
Piracy of copyright material on the Internet is an ongoing problem across all media.
At Packt, we take the protection of our copyright and licenses very seriously. If you
come across any illegal copies of our works, in any form, on the Internet, please
provide us with the location address or website name immediately so that we can
pursue a remedy.

Please contact us at copyright@packtpub.com with a link to the suspected
pirated material.

We appreciate your help in protecting our authors, and our ability to bring you
valuable content.

www.it-ebooks.info

http://www.packtpub.com
http://www.packtpub.com/support
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
http://www.it-ebooks.info/

Preface

[xi]

Questions
You can contact us at questions@packtpub.com if you are having a problem with
any aspect of the book, and we will do our best to address it.

www.it-ebooks.info

http://www.it-ebooks.info/

www.it-ebooks.info

http://www.it-ebooks.info/

[1]

Solr Indexing Internals
This chapter will walk us through the indexing process in Solr. We will discuss
how input text is broken and how an index is created in Solr. Also, we will delve
into the concept of analyzers and tokenizers and the part they play in the creation
of an index. Second, we will look at multilingual search using Solr and discuss
the concepts used for measuring the quality of an index. Third, we will look at the
problems faced during indexing while working with large amounts of input data.
Finally, we will discuss SolrCloud and the problems it solves. The following topics
will be discussed throughout the chapter. We will discuss use cases for Solr in
e-commerce and job sites. We will look at the problems faced while providing search
in an e-commerce or job site:

•	 Solr indexing fundamentals
•	 Working of analyzers, tokenizers, and filters
•	 Handling a multilingual search
•	 Measuring the quality of search results
•	 Challenges faced in large-scale indexing
•	 Problems SolrCloud intends to solve
•	 The e-commerce problem statement

www.it-ebooks.info

http://www.it-ebooks.info/

Solr Indexing Internals

[2]

The job site problem statement – Solr
indexing fundamentals
The index created by Solr is known as an inverted index. An inverted index contains
statistics and information on terms in a document. This makes a term-based search
very efficient. The index created by Solr can be used to list the documents that
contain the searched term. For an example of an inverted index, we can look at
the index at the back of any book, as this index is the most accurate example of an
inverted index. We can see meaningful terms associated with pages on which they
occur within the book. Similarly, in the case of an inverted index, the terms serve
to point or refer to documents in which they occur.

Inverted index example

Let us study the Solr index in depth. A Solr index consists of documents, fields, and
terms, and a document consists of strings or phrases known as terms. Terms that refer
to the context can be grouped together in a field. For example, consider a product on
any e-commerce site. Product information can be broadly divided into multiple fields
such as product name, product description, product category, and product price.
Fields can be either stored or indexed or both. A stored field contains the unanalyzed,
original text related to the field. The text in indexed fields can be broken down into
terms. The process of breaking text into terms is known as tokenization. The terms
created after tokenization are called tokens, which are then used for creating the
inverted index. The tokenization process employs a list of token filters that handle
various aspects of the tokenization process. For example, the tokenizer breaks a
sentence into words, and the filters work on converting all of those words to lowercase.
There is a huge list of analyzers and tokenizers that can be used as required.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 1

[3]

Let us look at a working example of the indexing process with two documents
having only a single field. The following are the documents:

Documents with Document Id and content (Text)

Suppose we tell Solr that the tokenization or breaking of terms should happen
on whitespace. Whitespace is defined as one or more spaces or tabs. The tokens
formed after the tokenization of the preceding documents are as follows:

Tokens in both documents

The inverted index thus formed will contain the following terms and associations:

Inverted index

In the index, we can see that the token Harry appears in both documents. If we
search for Harry in the index we have created, the result will contain documents 1
and 2. On the other hand, the token Prince has only document 1 associated with it
in the index. A search for Prince will return only document 1.

www.it-ebooks.info

http://www.it-ebooks.info/

Solr Indexing Internals

[4]

Let us look at how an index is stored in the filesystem. Refer to the following image:

Index files on disk

For the default installation of Solr, the index can be located in the <Solr_directory>/
example/solr/collection1/data. We can see that the index consists of files starting
with _0 and _1. There are two segments* files and a write.lock file. An index is
built up of sub-indexes known as segments. The segments* file contains information
about the segments. In the present case, we have two segments namely _0.* and _1.*.
Whenever new documents are added to the index, new segments are created
or multiple segments are merged in the index. Any search for an index involves all
the segments inside the index. Ideally, each segment is a fully independent index
and can be searched separately.

Lucene keeps on merging these segments into one to reduce the number of segments
it has to go through during a search. The merger is governed by mergeFactor and
mergePolicy. The mergeFactor class controls how many segments a Lucene index
is allowed to have before it is coalesced into one segment. When an update is made
to an index, it is added to the most recently opened segment. When a segment fills
up, more segments are created. If creating a new segment would cause the number
of lowest-level segments to exceed the mergeFactor value, then all those segments
are merged to form a single large segment. Choosing a mergeFactor value involves
a trade-off between indexing and search. A low mergeFactor value indicates a small
number of segments and a fast search. However, indexing is slow as more and more
mergers continue to happen during indexing. On the other hand, maintaining a
high value of mergeFactor speeds up indexing but slows down the search, since the
number of segments to search increases. Nevertheless, documents can be pushed to
newer segments on disk with fewer mergers. The default value of mergeFactor is
10. The mergePolicy class defines how segments are merged together. The default
method is TieredMergePolicy, which merges segments of approximately equal
sizes subject to an allowed number of segments per tier.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 1

[5]

Let us look at the file extensions inside the index and understand their importance.
We are working with Solr Version 4.8.1, which uses Lucene 4.8.1 at its core.
The segment file names have Lucene41 in them, but this string is not related to
the version of Lucene being used.

The index structure is almost similar for Lucene 4.2 and later.

The file types in the index are as follows:

•	 segments.gen, segments_N: These files contain information about segments
within an index. The segments_N file contains the active segments in an index
as well as a generation number. The file with the largest generation number is
considered to be active. The segments.gen file contains the current generation
of the index.

•	 .si: The segment information file stores metadata about the segments.
It contains information such as segment size (number of documents in the
segment), whether the segment is a compound file or not, a checksum to
check the integrity of the segment, and a list of files referred to by this segment.

•	 write.lock: This is a write lock file that is used to prevent multiple
indexing processes from writing to the same index.

•	 .fnm: In our example, we can see the _0.fnm and _1.fnm files. These files
contain information about fields for a particular segment of the index.
The information stored here is represented by FieldsCount, FieldName,
FieldNumber, and FieldBits. FieldCount is used to generate and store
ordered number of fields in this index. If there are two fields in a document,
FieldsCount will be 0 for the first field and 1 for the second field. FieldName
is a string specifying the name as we have specified in our configuration.
FieldBits are used to store information about the field such as whether the
field is indexed or not, or whether term vectors, term positions, and term
offsets are stored. We study these concepts in depth later in this chapter.

•	 .fdx: This file contains pointers that point a document to its field data. It
is used for stored fields to find field-related data for a particular document
from within the field data file (identified by the .fdt extension).

•	 .fdt: The field data file is used to store field-related data for each document.
If you have a huge index with lots of stored fields, this will be the biggest file
in the index. The fdt and fdx files are respectively used to store and retrieve
fields for a particular document from the index.

www.it-ebooks.info

http://www.it-ebooks.info/

Solr Indexing Internals

[6]

•	 .tim: The term dictionary file contains information related to all terms in
an index. For each term, it contains per-term statistics, such as document
frequency and pointers to the frequencies, skip data (the .doc file), position
(the .pos file), and payload (the .pay file) for each term.

•	 .tip: The term index file contains indexes to the term dictionary file.
The .tip file is designed to be read entirely into memory to provide fast
and random access to the term dictionary file.

•	 .doc: The frequencies and skip data file consists of the list of documents that
contain each term, along with the frequencies of the term in that document. If
the length of the document list is greater than the allowed block size, the skip
data to the beginning of the next block is also stored here.

•	 .pos: The positions file contains the list of positions at which each term
occurs within documents. In addition to terms and their positions, the file
also contains part payloads and offsets for speedy retrieval.

•	 .pay: The payload file contains payloads and offsets associated with certain
term document positions. Payloads are byte arrays (strings or integers)
stored with every term on a field. Payloads can be used for boosting certain
terms over others.

•	 .nvd and .nvm: The normalization files contain lengths and boost factors
for documents and fields. This stores boost values that are multiplied
into the score for hits on that field.

•	 .dvd and .dvm: The per-document value files store additional scoring
factors or other per-document information. This information is indexed
by the document number and is intended to be loaded into main memory
for fast access.

•	 .tvx: The term vector index file contains pointers and offsets to the .tvd
(term vector document) file.

•	 .tvd: The term vector data file contains information about each document
that has term vectors. It contains terms, frequencies, positions, offsets, and
payloads for every document.

•	 .del: This file will be created only if some documents are deleted from the
index. It contains information about what files were deleted from the index.

•	 .cfs and .cfe: These files are used to create a compound index where all files
belonging to a segment of the index are merged into a single .cfs file with
a corresponding .cfe file indexing its subfiles. Compound indexes are used
when there is a limitation on the system for the number of file descriptors the
system can open during indexing. Since a compound file merges or collapses
all segment files into a single file, the number of file descriptors to be used
for indexing is small. However, this has a performance impact as additional
processing is required to access each file within the compound file.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 1

[7]

For more information please refer to: http://lucene.apache.org/core/4_6_0/
core/org/apache/lucene/codecs/lucene46/package-summary.html.

Ideally, when an index is created using Solr, the document to be indexed is broken
down into tokens and then converted into an index by filling relevant information
into the files we discussed earlier. We are now clear with the concept of tokens, fields,
and documents. We also discussed payload. Term vectors, frequencies, positions, and
offsets form the term vector component in Solr. The term vector component in Solr is
used to store and return additional information about terms in a document. It is used
for fast vector highlighting and some other features like "more like this" in Solr. Norms
are used for calculating the score of a document during a search. It is a part of the
scoring formula.

Now, let us look at how analyzers, tokenizers, and filters work in the conversion
of the input text into a stream of tokens or terms for both indexing and searching
purposes in Solr.

Working of analyzers, tokenizers,
and filters
When a document is indexed, all fields within the document are subject to analysis.
An analyzer examines the text within fields and converts them into token streams. It
is used to pre-process the input text during indexing or search. Analyzers can be used
independently or can consist of one tokenizer and zero or more filters. Tokenizers
break the input text into tokens that are used for either indexing or search. Filters
examine the token stream and can keep, discard, or convert them on the basis of
certain rules. Tokenizers and filters are combined to form a pipeline or chain where
the output from one tokenizer or filter acts as an input to another. Ideally, an analyzer
is built up of a pipeline of tokenizers and filters and the output from the analyzer is
used for indexing or search.

Let us see the example of a simple analyzer without any tokenizers and filters.
This analyzer is specified in the schema.xml file in the Solr configuration with the
help of the <analyzer> tag inside a <fieldtype> tag. Analyzers are always applied
to fields of type solr.TextField. An analyzer must be a fully qualified Java class
name derived from the Lucene analyzer org.apache.lucene.analysis.Analyzer.
The following example shows a simple whitespace analyzer that breaks the input
text by whitespace (space, tab, and new line) and creates tokens, which can then be
used for both indexing and search:

<fieldType name="whitespace" class="solr.TextField">
 <analyzer class="org.apache.lucene.analysis.WhitespaceAnalyzer"/>
</fieldType>

www.it-ebooks.info

http://lucene.apache.org/core/4_6_0/core/org/apache/lucene/codecs/lucene46/package-summary.html
http://lucene.apache.org/core/4_6_0/core/org/apache/lucene/codecs/lucene46/package-summary.html
http://www.it-ebooks.info/

Solr Indexing Internals

[8]

Downloading the example code
You can download the example code files from your account at
http://www.packtpub.com for all Packt Publishing books that
you have purchased. If you purchased this book elsewhere, you
can visit http://www.packtpub.com/support and register
yourself to have the files e-mailed directly to you.

A custom analyzer is one in which we specify a tokenizer and a pipeline of filters.
We also have the option of specifying different analyzers for indexing and search
operations on the same field. Ideally, we should use the same analyzer for indexing
and search so that we search for the tokens that we created during indexing.
However, there might be cases where we want the analysis to be different during
indexing and search.

The job of a tokenizer is to break the input text into a stream of characters or strings,
or phrases that are usually sub-sequences of the characters in the input text. An
analyzer is aware of the field it is configured for, but a tokenizer is not. A tokenizer
works on the character stream fed to it by the analyzer and outputs tokens. The
tokenizer specified in schema.xml in the Solr configuration is an implementation
of the tokenizer factory - org.apache.solr.analysis.TokenizerFactory.

A filter consumes input from a tokenizer or an analyzer and produces output in
the form of tokens. The job of a filter is to look at each token passed to it and to pass,
replace, or discard the token. The input to a filter is a token stream and the output is
also a token stream. Thus, we can chain or pipeline one filter after another. Ideally,
generic filtering is done first and then specific filters are applied.

An analyzer can have only one tokenizer. This is because the input to a
tokenizer is a character stream and the output is tokens. Therefore, the
output of a tokenizer cannot be used by another.

In addition to tokenizers and filters, an analyzer can contain a char filter. A char
filter is another component that pre-processes input characters, namely adding,
changing, or removing characters from the character stream. It consumes and
produces a character stream and can thus be chained or pipelined.

Let us look at an example from the schema.xml file, which is shipped with the
default Solr:

<fieldType name="text_general" class="solr.TextField"
positionIncrementGap="100">
 <analyzer type="index">

www.it-ebooks.info

http://www.packtpub.com
http://www.packtpub.com/support
http://www.it-ebooks.info/

Chapter 1

[9]

 <tokenizer class="solr.StandardTokenizerFactory"/>
 <filter class="solr.StopFilterFactory" ignoreCase="true"
words="stopwords.txt" />
 <filter class="solr.LowerCaseFilterFactory"/>
 </analyzer>
 <analyzer type="query">
 <tokenizer class="solr.StandardTokenizerFactory"/>
 <filter class="solr.StopFilterFactory" ignoreCase="true"
words="stopwords.txt" />
 <filter class="solr.SynonymFilterFactory"
synonyms="synonyms.txt" ignoreCase="true" expand="true"/>
 <filter class="solr.LowerCaseFilterFactory"/>
 </analyzer>
</fieldType>

The field type specified here is named text_general and it is of type solr.
TextField. We have specified a position increment gap of 100. That is, in a
multivalued field, there would be a difference of 100 between the last token of one
value and first token of the next value. A multivalued field has multiple values for
the same field in a document. An example of a multivalued field is tags associated
with a document. A document can have multiple tags and each tag is a value
associated with the document. A search for any tag should return the documents
associated with it. Let us see an example.

Example of multivalued field – documents with tags

Here each document has three tags. Suppose that the tags associated with a
document are tokenized on comma. The tags will be multiple values within the index
of each document. In this case, if the position increment gap is specified as 0 or not
specified, a search for series book will return the first document. This is because the
token series and book occur next to each other in the index. On the other hand, if a
positionIncrementGap value of 100 is specified, there will be a difference of 100
positions between series and book and none of the documents will be returned in
the result.

www.it-ebooks.info

http://www.it-ebooks.info/

Solr Indexing Internals

[10]

In this example, we have multiple analyzers, one for indexing and another for
search. The analyzer used for indexing consists of a StandardTokenizer class
and two filters, stop and lowercase. The analyzer used for the search (query)
consists of three filters, stop, synonym, and lowercase filters.

The standard tokenizer splits the input text into tokens, treating whitespace and
punctuation as delimiters that are discarded. Dots not followed by whitespace are
retained as part of the token, which in turn helps in retaining domain names. Words
are split at hyphens (-) unless there is a number in the word. If there is a number
in the word, it is preserved with hyphen. @ is also treated as a delimiter, so e-mail
addresses are not preserved.

The output of a standard tokenizer is a list of tokens that are passed to the stop filter
and lowercase filter during indexing. The stop filter class contains a list of stop
words that are discarded from the tokens received by it. The lowercase filter converts
all tokens to lowercase. On the other hand, during a search, an additional filter
known as synonym filter is applied. This filter replaces a token with its synonyms.
The synonyms are mentioned in the synonyms.txt file specified as an attribute in
the filter.

Let us make some modifications to the stopwords.txt and synonyms.txt files
in our Solr configuration and see how the input text is analyzed.

Add the following two words, each in a new line in the stopwords.txt file:

and
the

Add the following in the synonyms.txt file:

King => Prince

We have now told Solr to treat and and the as stop words, so during analysis they
would be dropped. During the search phrase, we map King to Prince, so a search
for king will be replaced by a search for prince.

In order to view the results, perform the following steps:

•	 Open up your Solr interface, select a core (say collection1), and click on the
Analysis link on the left-hand side.

•	 Enter the text of the first document in text box marked field value (index).
•	 Select the field name and field type value as text.
•	 Click on Analyze values.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 1

[11]

Solr analysis for indexing

We can see the complete analysis phase during indexing. First, a standard tokenizer
is applied that breaks the input text into tokens. Note that here Half-Blood was
broken into Half and Blood. Next, we saw the stop filter removing the stop words
we mentioned previously. The words And and The are discarded from the token
stream. Finally, the lowercase filter converts all tokens to lowercase.

During the search, suppose the query entered is Half-Blood and King. To check
how it is analyzed, enter the value in Field Value (Query), select the text value
in the FieldName / FieldType, and click on Analyze values.

Solr analysis during a search

www.it-ebooks.info

http://www.it-ebooks.info/

Solr Indexing Internals

[12]

We can see that during the search, as before, Half-Blood is tokenized as Half and
Blood, And and is dropped in the stop filter phase. King is replaced with prince
during the synonym filter phase. Finally, the lowercase filter converts all tokens
to lowercase.

An important point to note over here is that the lowercase filter appears as the
last filter. This is to prevent any mismatch between the text in the index and that
in the search due to either of them having a capital letter in the token.

The Solr analysis feature can be used to analyze and check whether the analyzer we
have created gives output in the desired format during indexing and search. It can
also be used to debug if we find any cases where the results are not as expected.

What is the use of such complex analysis of text? Let us look at an example to
understand a scenario where a result is expected from a search but none is found.
The following two documents are indexed in Solr with the custom analyzer we
just discussed:

After indexing, the index will have the following terms associated with the
respective document ids:

A search for project will return both documents 1 and 2. However, a search for
manager will return only document 2. Ideally, manager is equal to management.
Therefore, a search for manager should also return both documents. This intelligence
has to be built into Solr with the help of analyzers, tokenizers, and filters. In this case,
a synonym filter mentioning manager, management, manages as synonyms should
do the trick. Another way to handle the same scenario is to use stemmers. Stemmers
reduce words into their stem, base, or root form. In this chase, the stem for all the
preceding words will be manage. There is a huge list of analyzers, tokenizers, and
filters available with Solr by default that should be able to satisfy any scenario we
can think of.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 1

[13]

For more information on analyzers, tokenizers, and filters, refer to: http://wiki.
apache.org/solr/AnalyzersTokenizersTokenFilters

AND and OR queries are handled by respectively performing an intersection or
union of documents returned from a search on all the terms of the query. Once the
documents or hits are returned, a scorer calculates the relevance of each document
in the result set on the basis of the inbuilt Term Frequency-Inverse Document
Frequency (TF-IDF) scoring formula and returns the ranked results. Thus, a search
for Project AND Manager will return only the 2nd document after the intersection
of results that are available after searching both terms on the index.

It is important to remember that text processing during indexing and search affects
the quality of results. Better results can be obtained by high-quality and well thought
of text processing during indexing and search.

TF-IDF is a formula used to calculate the relevancy of search terms in
a document against terms in existing documents. In a simple form, it
favors a document that contains the term with high frequency and has
lower occurrence in all the other documents.
In a simple form, a document with a high TF-IDF score contains the
search term with high frequency, and the term itself does not appear
as much in other documents.
More details on TF-IDF will be explained in Chapter 2, Customizing a
Solr Scoring Algorithm.

Handling a multilingual search
Content is produced and consumed in native languages. Sometimes even normal-
looking documents may contain more than one language. This makes language an
important aspect for search. A user should be able to search in his or her language.
Each language has its own set of characters. Some languages use characters to form
words, while some use characters to form sentences. Some languages do not even
have spaces between the characters forming sentences. Let us look at some examples
to understand the complexities that Solr should handle during text analysis for
different languages.

Suppose a document contains the following sentence in English:

Incorporating the world's largest display screen on the slimmest of
bodies the Xperia Z Ultra is Sony's answer to all your recreational
needs.

www.it-ebooks.info

http://wiki.apache.org/solr/AnalyzersTokenizersTokenFilters
http://wiki.apache.org/solr/AnalyzersTokenizersTokenFilters
http://www.it-ebooks.info/

Solr Indexing Internals

[14]

The question here is whether the words world's and Sony's should be indexed. If
yes, then how? Should a search for Sony return this document in the result? What
would be the stop words here—the words that do not need to be indexed? Ideally,
we would like to ignore stop words such as the, on, of, is, all, or your. How
should the document be indexed so that Xperia Z Ultra matches this document?
First, we need to ensure that Z is not a stop word. The search should contain the
term xperia z ultra. This would break into +xperia OR z OR ultra. Here
xperia is the only mandatory term. The results would be sorted in such a fashion
that the document (our document) that contains all three terms will be at the top.
Also, ideally we would like the search for world or sony to return this document in
the result. In this case, we can use the LetterTokenizerFactory class, which will
separate the words as follows:

World's => World, s
Sony's => Sony, s

Then, we need to pass the tokens through a stop filter to remove stop words. The
output from the stop filter passes through a lowercase filter to convert all tokens
to lowercase. During the search, we can use a WhiteSpaceTokenizer and a
LowerCaseFilter tokenizer to tokenize and process our input text.

In a real-life situation, it is advisable to take multiple examples with different use
cases and work around the scenarios to provide the desired solutions for those use
cases. Given that the numbers of examples are large, the derived solution should
satisfy most of the cases.

If we translate the same sentence into German, here is how it will look:

German

Solr comes with an inbuilt field type for German - text_de, which has a
StandardTokenizer class followed by a lowerCaseFilter class and a stopFilter
class for German words. In addition, the analyzer has two German-specific filters,
GermanNormalizationFilter and GermanLightStemFilter. Though this text
analyzer does a pretty good job, there may be cases where it will need improvement.

Let's translate the same sentence into Arabic and see how it looks:

Arabic

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 1

[15]

Note that Arabic is written from right to left. The default analyzer in the Solr schema
configuration is text_ar. Again tokenization is carried out with StandardTokenizer
followed by LowerCaseFilter (used for non-Arabic words embedded inside
the Arabic text) and the Arabic StopFilter class. This is followed by the Arabic
Normalization filter and the Arabic Stemmer. Another aspect used in Arabic is known
as a diacritic. A diacritic is a mark (also known as glyph) added to a letter to change the
sound value of the letter. Diacritics generally appear either below or above a letter or,
in some cases, between two letters or within the letter. Diacritics such as ' in English
do not modify the meaning of the word. In contrast, in other languages, the addition
of a diacritic modifies the meaning of the word. Arabic is such a language. Thus, it is
important to decide whether to normalize diacritics or not.

Let us translate the same sentence into Japanese and see what we get:

Japanese

Now that the complete sentence does not have any whitespace to separate the
words, how do we identify words or tokens and index them? The Japanese analyzer
available in our Solr schema configuration is text_ja. This analyzer identifies the
words in the sentence and creates tokens. A few tokens identified are as follows:

Japanese tokens

It also identifies some of the stop words and removes them from the sentence.

As in English, there are other languages where a word is modified by adding a
suffix or prefix to change the tense, grammatical mood, voice, aspect, person, number,
or gender of the word. This concept is called inflection and is handled by stemmers
during indexing. The purpose of a stemmer is to change words such as indexing,
indexed, or indexes into their base form, namely index. The stemmer has to be
introduced during both indexing and search so that the stems or roots are
compared during both indexing and search.

www.it-ebooks.info

http://www.it-ebooks.info/

Solr Indexing Internals

[16]

The point to note is that each language is unique and presents different challenges to
the search engine. In order to create a language-aware search, the steps that need to
be taken are as follows:

•	 Identification of the language: Decide whether the search would handle
the dominant language in a document or find and handle multiple languages
in the document.

•	 Tokenization: Decide the way tokens should be formed from the language.
•	 Token processing: Given a token, what processing should happen on

the token to make it a part of the index? Should words be broken up or
synonyms added? Should diacritics and grammars be normalized? A
stop-word dictionary specific to the language needs to be applied.

Token processing can be done within Solr by using an appropriate analyzer,
tokenizer, or filter. However, for this, all possibilities have to be thought through
and certain rules need to be formed. The default analyzers can also be used, but it
may not help in improving the relevance factor of the result set. Another way of
handling a multilingual search is to process the document during indexing and
before providing the data to Solr for indexing. This ensures more control on the
way a document can be indexed.

The strategies used for handling a multilingual search with the same content across
multiple languages at the Solr configuration level are:

•	 Use one Solr field for each language: This is a simple approach that
guarantees that the text is processed the same way as it was indexed. As
different fields can have separate analyzers, it is easy to handle multiple
languages. However, this increases the complexity at query time as the input
query language needs to be identified and the related language field needs
to be queried. If all fields are queried, the query execution speed goes down.
Also, this may require creation of multiple copies of the same text across
fields for different languages.

•	 Use one Solr core per language: Each core has the same field with
different analyzers, tokenizers, and filters specific to the language on that
core. This does not have much query time performance overhead. However,
there is significant complexity involved in managing multiple cores. This
approach would prove complex in supporting multilingual documents
across different cores.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 1

[17]

•	 All languages in one field: Indexing and search are much easier as there is
only a single field handling multiple languages. However, in this case, the
analyzer, tokenizer, and filter have to be custom built to support the languages
that are expected in the input text. The queries may not be processed in the
same fashion as the index. Also, there might be confusion in the scoring
calculation. There are cases where particular characters or words may be
stop words in one language and meaningful in another language.

Custom analyzers are built as Solr plugins. The following link gives
more details regarding the same: https://wiki.apache.org/
solr/SolrPlugins#Analyzer.

The final aim of a multilingual search should be to provide better search results to
the end users by proper processing of text both during indexing and at query time.

Measuring the quality of search results
Now that we know what analyzers are and how text analysis happens, we need
to know whether the analysis that we have implemented provides better results.
There are two concepts in the search result set that determine the quality of results,
precision and recall:

•	 Precision: This is the fraction of retrieved documents that are relevant.
A precision of 1.0 means that every result returned by the search was
relevant, but there may be other relevant documents that were not a
part of the search result.

Precision equation

•	 Recall: This is the fraction of relevant documents that are retrieved. A
recall of 1.0 means that all relevant documents were retrieved by the search
irrespective of the irrelevant documents included in the result set.

Recall equation

www.it-ebooks.info

https://wiki.apache.org/solr/SolrPlugins#Analyzer
https://wiki.apache.org/solr/SolrPlugins#Analyzer
http://www.it-ebooks.info/

Solr Indexing Internals

[18]

Another way to define precision and recall is by classifying the documents into four
classes between relevancy and retrieval as follows:

Precision and recall

We can define the formula for precision and recall as follows:

Precision = A / (A union B)
Recall = A / (A union C)

We can see that as the number of irrelevant documents or B increases in the result
set, the precision goes down. If all documents are retrieved, then the recall is perfect
but the precision would not be good. On the other hand, if the document set contains
only a single relevant document and that relevant document is retrieved in the search,
then the precision is perfect but again the result set is not good. This is a trade-off
between precision and recall as they are inversely related. As precision increases, recall
decreases and vice versa. We can increase recall by retrieving more documents, but
this will decrease the precision of the result set. A good result set has to be a balance
between precision and recall.

We should optimize our results for precision if the hits are plentiful and several results
can meet the search criteria. Since we have a huge collection of documents, it makes
sense to provide a few relevant and good hits as opposed to adding irrelevant results
in the result set. An example scenario where optimization for precision makes sense is
web search where the available number of documents is huge.

On the other hand, we should optimize for recall if we do not want to miss out any
relevant document. This happens when the collection of documents is comparatively
small. It makes sense to return all relevant documents and not care about the irrelevant
documents added to the result set. An example scenario where recall makes sense is
patent search.

Traditional accuracy of the result set is defined by the following formula:

Accuracy = 2*((precision * recall) / (precision + recall))

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 1

[19]

This combines both precision and recall and is a harmonic mean of precision and recall.
Harmonic mean is a type of averaging mean used to find the average of fractions. This
is an ideal formula for accuracy and can be used as a reference point while figuring out
the combination of precision and recall that your result set will provide.

Let us look at some practical problems faced while searching in different
business scenarios.

The e-commerce problem statement
E-commerce provides an easy way to sell products to a large customer base. However,
there is a lot of competition among multiple e-commerce sites. When users land on
an e-commerce site, they expect to find what they are looking for quickly and easily.
Also, users are not sure about the brands or the actual products they want to purchase.
They have a very broad idea about what they want to buy. Many customers nowadays
search for their products on Google rather than visiting specific e-commerce sites. They
believe that Google will take them to the e-commerce sites that have their product.

The purpose of any e-commerce website is to help customers narrow down their broad
ideas and enable them to finalize the products they want to purchase. For example,
suppose a customer is interested in purchasing a mobile. His or her search for a mobile
should list mobile brands, operating systems on mobiles, screen size of mobiles, and
all other features as facets. As the customer selects more and more features or options
from the facets provided, the search narrows down to a small list of mobiles that suit
his or her choice. If the list is small enough and the customer likes one of the mobiles
listed, he or she will make the purchase.

The challenge is also that each category will have a different set of facets to be
displayed. For example, searching for books should display their format, as in
paperpack or hardcover, author name, book series, language, and other facets related
to books. These facets were different for mobiles that we discussed earlier. Similarly,
each category will have different facets and it needs to be designed properly so that
customers can narrow down to their preferred products, irrespective of the category
they are looking into.

www.it-ebooks.info

http://www.it-ebooks.info/

Solr Indexing Internals

[20]

The takeaway from this is that categorization and feature listing of products should
be taken care of. Misrepresentation of features can lead to incorrect search results.
Another takeaway is that we need to provide multiple facets in the search results.
For example, while displaying the list of all mobiles, we need to provide facets for a
brand. Once a brand is selected, another set of facets for operating systems, network,
and mobile phone features has to be provided. As more and more facets are selected,
we still need to show facets within the remaining products.

Example of facet selection on Amazon.com

Another problem is that we do not know what product the customer is searching
for. A site that displays a huge list of products from different categories, such as
electronics, mobiles, clothes, or books, needs to be able to identify what the customer
is searching for. A customer can be searching for samsung, which can be in mobiles,
tablets, electronics, or computers. The site should be able to identify whether the
customer has input the author name or the book name. Identifying the input would
help in increasing the relevance of the result set by increasing the precision of the
search results. Most e-commerce sites provide search suggestions that include the
category to help customers target the right category during their search.

Amazon, for example, provides search suggestions that include both latest
searched terms and products along with category-wise suggestions:

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 1

[21]

Search suggestions on Amazon.com

It is also important that products are added to the index as soon as they are available.
It is even more important that they are removed from the index or marked as sold
out as soon as their stock is exhausted. For this, modifications to the index should
be immediately visible in the search. This is facilitated by a concept in Solr known
as Near Real Time Indexing and Search (NRT). More details on using Near Real
Time Search will be explained later in this chapter.

The job site problem statement
A job site serves a dual purpose. On the one hand, it provides jobs to candidates,
and on the other, it serves as a database of registered candidates' profiles for
companies to shortlist.

A job search has to be very intuitive for the candidates so that they can find jobs
suiting their skills, position, industry, role, and location, or even by the company
name. As it is important to keep the candidates engaged during their job search, it is
important to provide facets on the abovementioned criteria so that they can narrow
down to the job of their choice. The searches by candidates are not very elaborate.
If the search is generic, the results need to have high precision. On the other hand,
if the search does not return many results, then recall has to be high to keep the
candidate engaged on the site. Providing a personalized job search to candidates on
the basis of their profiles and past search history makes sense for the candidates.

www.it-ebooks.info

http://www.it-ebooks.info/

Solr Indexing Internals

[22]

On the recruiter side, the search provided over the candidate database is required
to have a huge set of fields to search upon every data point that the candidate has
entered. The recruiters are very selective when it comes to searching for candidates
for specific jobs. Educational qualification, industry, function, key skills, designation,
location, and experience are some of the fields provided to the recruiter during
a search. In such cases, the precision has to be high. The recruiter would like a
certain candidate and may be interested in more candidates similar to the selected
candidate. The more like this search in Solr can be used to provide a search for
candidates similar to a selected candidate.

NRT is important as the site should be able to provide a job or a candidate for a
search as soon as any one of them is added to the database by either the recruiter
or the candidate. The promptness of the site is an important factor in keeping users
engaged on the site.

Challenges of large-scale indexing
Let us understand how indexing happens and what can be done to speed it up.
We will also look at the challenges faced during the indexing of a large number of
documents or bulky documents. An e-commerce site is a perfect example of a site
containing a large number of products, while a job site is an example of a search
where documents are bulky because of the content in candidate resumes.

During indexing, Solr first analyzes the documents and converts them into tokens
that are stored in the RAM buffer. When the RAM buffer is full, data is flushed into
a segment on the disk. When the numbers of segments are more than that defined
in the MergeFactor class of the Solr configuration, the segments are merged. Data
is also written to disk when a commit is made in Solr.

Let us discuss a few points to make Solr indexing fast and to handle a large index
containing a huge number of documents.

Using multiple threads for indexing on Solr
We can divide our data into smaller chunks and each chunk can be indexed in
a separate thread. Ideally, the number of threads should be twice the number of
processor cores to avoid a lot of context switching. However, we can increase the
number of threads beyond that and check for performance improvement.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 1

[23]

Using the Java binary format of data
for indexing
Instead of using XML files, we can use the Java bin format for indexing. This reduces
a lot of overhead of parsing an XML file and converting it into a binary format that is
usable. The way to use the Java bin format is to write our own program for creating
fields, adding fields to documents, and finally adding documents to the index.
Here is a sample code:

//Create an instance of the Solr server
String SOLR_URL = "http://localhost:8983/solr"
SolrServer server = new HttpSolrServer(SOLR_URL);

//Create collection of documents to add to Solr server
SolrInputDocument doc1 = new SolrInputDocument();
document.addField("id",1);
document.addField("desc", "description text for doc 1");

SolrInputDocument doc2 = new SolrInputDocument();
document.addField("id",2);
document.addField("desc", "description text for doc 2");

Collection<SolrInputDocument> docs = new
ArrayList<SolrInputDocument>();
docs.add(doc1);
docs.add(doc2);

//Add the collection of documents to the Solr server and commit.
server.add(docs);
server.commit();

Here is the reference to the API for the HttpSolrServer program http://lucene.
apache.org/solr/4_6_0/solr-solrj/org/apache/solr/client/solrj/impl/
HttpSolrServer.html.

Add all files from the <solr_directory>/dist folder to the classpath
for compiling and running the HttpSolrServer program.

www.it-ebooks.info

 http://lucene.apache.org/solr/4_6_0/solr-solrj/org/apache/solr/client/solrj/impl/HttpSolrServer.html
 http://lucene.apache.org/solr/4_6_0/solr-solrj/org/apache/solr/client/solrj/impl/HttpSolrServer.html
 http://lucene.apache.org/solr/4_6_0/solr-solrj/org/apache/solr/client/solrj/impl/HttpSolrServer.html
http://www.it-ebooks.info/

Solr Indexing Internals

[24]

Using the ConcurrentUpdateSolrServer class
for indexing
Using the ConcurrentUpdateSolrServer class instead of the HttpSolrServer
class can provide performance benefits as the former uses buffers to store
processed documents before sending them to the Solr server. We can also specify
the number of background threads to use to empty the buffers. The API docs for
ConcurrentUpdateSolrServer are found in the following link: http://lucene.
apache.org/solr/4_6_0/solr-solrj/org/apache/solr/client/solrj/impl/
ConcurrentUpdateSolrServer.html

The constructor for the ConcurrentUpdateSolrServer class is defined as:

ConcurrentUpdateSolrServer(String solrServerUrl, int queueSize, int
threadCount)

Here, queueSize is the buffer and threadCount is the number of background
threads used to flush the buffers to the index on disk.

Note that using too many threads can increase the context switching between
threads and reduce performance. In order to optimize the number of threads, we
should monitor performance (docs indexed per minute) after each increase and
ensure that there is no decrease in performance.

Solr configuration changes that can improve
indexing performance
We can change the following directives in solrconfig.xml file to improve indexing
performance of Solr:

•	 ramBufferSizeMB: This property specifies the amount of data that can be
buffered in RAM before flushing to disk. It can be increased to accommodate
more documents in RAM before flushing to disk. Increasing the size beyond
a particular point can cause swapping and result in reduced performance.

•	 maxBufferedDocs: This property specifies the number of documents that can
be buffered in RAM before flushing to disk. Make this a large number so that
commit always happens on the basis of the RAM buffer size instead of the
number of documents.

•	 useCompoundFile: This property specifies whether to use a compound file or
not. Using a compound file reduces indexing performance as extra overhead
is required to create the compound file. Disabling a compound file can create
a large number of file descriptors during indexing.

www.it-ebooks.info

http://lucene.apache.org/solr/4_6_0/solr-solrj/org/apache/solr/client/solrj/impl/ConcurrentUpdateSolrServer.html
http://lucene.apache.org/solr/4_6_0/solr-solrj/org/apache/solr/client/solrj/impl/ConcurrentUpdateSolrServer.html
http://lucene.apache.org/solr/4_6_0/solr-solrj/org/apache/solr/client/solrj/impl/ConcurrentUpdateSolrServer.html
http://www.it-ebooks.info/

Chapter 1

[25]

The default number of file descriptors available in Linux is 1024.
Check the number of open file descriptors using the following
command:
cat /proc/sys/fs/file-max

Check the hard and soft limits of file descriptors using the ulimit
command:
ulimit -Hn

ulimit -Sn

To increase the number of file descriptors system wide, edit the file /
etc/sysctl.conf and add the following line:
fs.file-max = 100000

The system needs to be rebooted for the changes to take effect.
To temporarily change the number of file descriptors, run the
following command as root:
Sysctl –w fs.file-max = 100000

•	 mergeFactor: Increasing the mergeFactor can cause a large number of
segments to be merged in one go. This will speed up indexing but slow
down searching. If the merge factor is too large, we may run out of file
descriptors, and this may even slow down indexing as there would be
lots of disk I/O during merging. It is generally recommended to keep the
merge factor constant or lower it to improve searching.

Planning your commit strategy
Disable the autocommit property during indexing so that commit can be done
manually. Autocommit can be a pain as it can cause too frequent commits. Instead,
committing manually can reduce the overhead during commits by decreasing the
number of commits. Autocommit can be disabled in the solrconfig.xml file by
setting the <autocommit><maxtime> properties to a very large value.

Another strategy would be to configure the <autocommit><maxtime> properties to
a large value and use the autoSoftCommit property for short-time commits to disk.
Soft commits are faster as the commit is not synced to disk. Soft commits are used
to enable near real time search.

We can also use the commitWithin tag instead of the autoSoftCommit tag. The
former forces documents to be added to Solr via soft commit at certain intervals
of time. The commitWithin tag can also be used with hard commits via the
following configuration:

<commitWithin><softCommit>false</softCommit></commitWithin>

www.it-ebooks.info

http://www.it-ebooks.info/

Solr Indexing Internals

[26]

Avoid using the autoSoftCommit / autoCommit / commitWithin tags while adding
bulk documents as it has a major performance impact.

Using better hardware
Indexing involves lots of disk I/O. Therefore, it can be improved by using a local file
system instead of a remote file system. Also, using better hardware with higher IO
capability, such as Solid State Drive (SSD), can improve writes and speed up the
indexing process.

Distributed indexing
When dealing with large amounts of data to be indexed, in addition to speeding up
the indexing process, we can work on distributed indexing. Distributed indexing
can be done by creating multiple indexes on different machines and finally merging
them into a single, large index. Even better would be to create the separate indexes
on different Solr machines and use Solr sharding to query the indexes across
multiple shards.

For example, an index of 10 million products can be broken into smaller chunks
based on the product ID and can be indexed over 10 machines, with each indexing
a million products. While searching, we can add these 10 Solr servers as shards and
distribute our search queries over these machines.

The SolrCloud solution
SolrCloud provides the high availability and failover solution for an index spanning
over multiple Solr servers. If we go ahead with the traditional master-slave model
and try implementing a sharded Solr cluster, we will need to create multiple master
Solr servers, one for each shard and then slaves for these master servers. We need to
take care of the sharding algorithm so that data is distributed across multiple shards.
A search has to happen across these shards. Also, we need to take care of any shard
that goes down and create a failover setup for the same. Load balancing of search
queries is manual. We need to figure out how to distribute the search queries across
multiple shards.

SolrCloud handles the scalability challenge for large indexes. It is a cluster of Solr
servers or cores that can be bound together as a single Solr (cloud) server. SolrCloud
is used when there is a need for highly scalable, fault-tolerant, distributed indexing
and search capabilities. With SolrCloud, a single index can span across multiple Solr
cores that can be on different Solr servers. Let us go through some of the concepts
of SolrCloud:

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 1

[27]

•	 Collection: A logical index that spans across multiple Solr cores is called a
collection. Thus, if we have a two-core Solr index on a single Solr server, it
will create two collections with multiple cores in each collection. The cores
can reside on multiple Solr servers.

•	 Shard: In SolrCloud, a collection can be sliced into multiple shards. A shard
in SolrCloud will consist of multiple copies of the slice residing on different
Solr cores. Therefore, in SolrCloud, a collection can have multiple shards.
Each shard will have multiple Solr cores that are copies of each other.

•	 Leader: One of the cores within a shard will act as a leader. The leader is
responsible for making sure that all the replicas within a shard are up to date.

SolrCloud concepts – collection, shard, leader, replicas, core

SolrCloud has a central configuration that can be replicated automatically across all
the nodes that are part of the SolrCloud cluster. The central configuration is maintained
using a configuration management and coordination system known as Zookeeper.
Zookeeper provides reliable coordination across a huge cluster of distributed systems.
Solr does not have a master node. It uses Zookeeper to maintain node, shard, and
replica information based on configuration files and schemas. Documents can be
sent to any server, and Zookeeper will be able to figure out where to index them. If
a leader for a shard goes down, another replica is automatically elected as the new
leader using Zookeeper.

If a document is sent to a replica during indexing, it is forwarded to the leader.
On receiving the document at a leader node, the SolrCloud determines whether the
document should go to another shard and forwards it to the leader of that shard.
The leader indexes the document and forwards the index notification to its replicas.

www.it-ebooks.info

http://www.it-ebooks.info/

Solr Indexing Internals

[28]

SolrCloud provides automatic failover. If a node goes down, indexing and search can
happen over another node. Also, search queries are load balanced across multiple
shards in the Solr cluster. Near Real Time Indexing is a feature where, as soon as
a document is added to the index, the same is available for search. The latest Solr
server contains commands for soft commit, which makes documents added to the
index available for search immediately without going through the traditional commit
process. We would still need to make a hard commit to make changes onto a stable
data store. A soft commit can be carried out within a few seconds, while a hard
commit takes a few minutes. SolrCloud exploits this feature to provide near real time
search across the complete cluster of Solr servers.

It can be difficult to determine the number of shards in a Solr collection in the first
go. Moreover, creating more shards or splitting a shard into two can be tedious task
if done manually. Solr provides inbuilt commands for splitting a shard. The previous
shard is maintained and can be deleted at a later date.

SolrCloud also provides the ability to search the complete collection of one or more
particular shards if needed.

SolrCloud removes all the hassles of maintaining a cluster of Solr servers manually
and provides an easy interface to handle distributed search and indexing over a
cluster of Solr servers with automatic failover. We will be discussing SolrCloud in
Chapter 9, SolrCloud.

Summary
In this chapter, we went through the basics of indexing in Solr. We saw the structure
of the Solr index and how analyzers, tokenizers, and filters work in the conversion
of text into searchable tokens. We went through the complexities involved in
multilingual search and also discussed the strategies that can be used to handle the
complexities. We discussed the formula for measuring the quality of search results
and understood the meaning of precision and recall. We saw in brief the problems
faced by e-commerce and job websites during indexing and search. We discussed
the challenges faced while indexing a large number of documents. We saw some tips
on improving the speed of indexing. Finally, we discussed distributed indexing and
search and how SolrCloud provides a solution for implementing the same.

www.it-ebooks.info

http://www.it-ebooks.info/

[29]

Customizing the Solr Scoring
Algorithm

In this chapter, we will go through the relevance calculation algorithm used by Solr
for ranking results and understand how relevance calculation works with reference
to the parameters in the algorithm. In addition to this, we will look at tweaking the
algorithm and create our own algorithm for scoring results. Then, we will add it
as a plugin to Solr and see how the search results are ranked. We will discuss the
problems with the default algorithm used in Solr and define a new algorithm known
called the information gain model. This chapter will incorporate the following topics:

•	 The relevance calculation algorithm
•	 Building a custom scorer
•	 Drawback of the TF-IDF model
•	 The information gain model
•	 Implementing the information gain model
•	 Options to TF-IDF similarity
•	 BM25 similarity
•	 DFR similarity

www.it-ebooks.info

http://www.it-ebooks.info/

Customizing the Solr Scoring Algorithm

[30]

Relevance calculation
Now that we are aware of how Solr works in the creation of an inverted index and
how a search returns results for a query from an index, the question that comes to
our mind is how Solr or Lucene (the underlying API) decides which documents
should be at the top and how the results are sorted. Of course, we can have custom
sorting, where we can sort results based on a particular field. However, how does
sorting occur in the absence of any custom sorting query?

The default sorting mechanism in Solr is known as relevance ranking. During a
search, Solr calculates the relevance score of each document in the result set and
ranks the documents so that the highest scoring documents move to the top. Scoring
is the process of determining how relevant a given document is with respect to the
input query. The default scoring mechanism is a mix of the Boolean model and the
Vector Space Model (VSM) of information retrieval. The binary model is used to
figure out documents that match the query set, and then the VSM is used to calculate
the score of each and every document in the result set.

In addition to the VSM, the Lucene scoring mechanism supports a number of
pluggable models, such as probabilistic models and language models. However, we
will focus on the VSM as it is a default scoring algorithm, and it works pretty well for
most of the cases. The VSM requires that the document and queries are represented
as weighted vectors in a multidimensional space where each distinct index item is
a dimension and weights are TF-IDFvalues. The TF-IDF formula is the core of the
relevance calculation in Lucene. The practical scoring formula used in Lucene is
shown in the following image:

()2

t in q
score(q,d) = coord(q,d) queryNorm(q) tf(t in d) idf(t) t.getBoost() norm t,d⋅ ⋅ ⋅ ⋅ ⋅∑

The default implementation of the tf-idf equation for Lucene is known as default
similarity (the class is DefaultSimilarity inside Lucene). Let us look at the terms in
the equation before understanding how the formula works:

•	 tf(t in d): This is the term frequency, or the number of times term t
(in the query) appears in document d. Documents that have more
occurrences for a given term will have a higher score. The default
implementation for this part of the equation in the DefaultSimilarity
class is the square root of frequency.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 2

[31]

•	 idf(t): This is the inverse document frequency, or the inverse of the number
of documents in which term t appears, also known as the inverse of DocFreq.
This means that a term that occurs in fewer documents is a rare term and
results in a higher score. The implementation in the DefaultSimilarity
class is as follows:
idf(t) = 1+log(numDocs / (docFreq+1))

•	 t.getBoost(): This is the search time boost of term t in query q as specified
in the query syntax.

•	 norms(t,d): This function is a product of index time boosts and the length
normalization factor. During indexing, a field can be boosted by calling the
field.setBoost() function before adding the field to the document. This is
known as index time boost. Length normalization (lengthNorm) is computed
on the basis of the number of tokens in a field for a document. The purpose
of lengthNorm factor is to provide a higher score for shorter fields. Once
calculated, this cannot be modified during a search.

•	 coord(q,d): This function is a score factor that specifies the number of query
terms that are found in a document. A document that has more of the query’s
terms will have a higher score than that of another document that has fewer
query terms.

•	 queryNorm(q): This function is used to make the scores between queries
comparable. As this is the same factor for all documents, it does not affect
the document ranking but just makes the scores from different queries or
indexes comparable.

Boosting is used to change the score of documents retrieved from a search. There
is index time boosting and search time or query time boosting of documents. Index
time boosting is used to boost fields in documents permanently. Once a document
is boosted during index time, the boost is stored with the document. Therefore, after
the search completes and during relevancy calculation, the stored boost is taken
into consideration. Search time or query time boosting is dynamic. Certain fields
can be boosted in the query that can result in certain documents getting a higher
relevancy score than others. For example, we can boost the score of books by adding
the parameter cat:book^4 in the query. This boosting will make the score of books
relatively higher than the score of other items in the index.

For details on the scoring algorithm, please go through the following documentation:
https://lucene.apache.org/core/4_6_0/core/org/apache/lucene/search/
similarities/TFIDFSimilarity.html.

www.it-ebooks.info

https://lucene.apache.org/core/4_6_0/core/org/apache/lucene/search/similarities/TFIDFSimilarity.html
https://lucene.apache.org/core/4_6_0/core/org/apache/lucene/search/similarities/TFIDFSimilarity.html
http://www.it-ebooks.info/

Customizing the Solr Scoring Algorithm

[32]

Building a custom scorer
Now that we know how the default relevance calculation works, let us look at how
to create a custom scorer. The default scorer used for relevance calculation is known
as DefaultSimilarity. In order to create a custom scorer, we will need to extend
DefaultSimilarity and create our own similarity class and eventually use it in our
Solr schema. Solr also provides the option of specifying different similarity classes
for different fieldTypes configuration directive in the schema. Thus, we can create
different similarity classes and then specify different scoring algorithms for different
fieldTypes as also a different global Similarity class.

Let us create a custom scorer that disables the IDF factor of the scoring algorithm.
Why would we want to disable the IDF? The IDF boosts documents that have query
terms that are rare in the index. Therefore, if a query contains a term that occurs in
fewer documents, the documents containing the term will be ranked higher. This
does not make sense for certain fields, such as name, designation, or age.

The default implementation for idf function can be found in the Lucene source code
inside the org.apache.lucene.search.similarities.DefaultSimilarity class:

public float idf(long docFreq, long numDocs) {
 return (float)(Math.log(numDocs/(double)(docFreq+1)) + 1.0);
}

In this code snippet, numDocs is the total number of documents in the collection and
docFreq is the number of documents that have the specific term from the query.
To customize the IDF, we would extend the DefaultSimilarity class and create a
NoIDFSimilarity class that returns 1 for idf as indicated by the following code:

public class NoIDFSimilarity extends DefaultSimilarity {
 @Override
 public float idf(long docFreq, long numDocs) {
 return 1.0f;
 }
}

The NoIDFSimilarity class can be used where we would like to ignore the
commonality of a term across the entire collection. If we do not consider the
rareness of a term in the algorithm, both common and rare terms in the entire index
will have the same ranking. This makes sense when a search is on a targeted field,
such as a name, a category, or an e-mail address, where the rareness of the term does
not make much sense.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 2

[33]

Let us compile our customized similarity classes and implement them in our schema.
For this, we need the lucene-core-4.6.0.jar file, which can be found in the <solr
folder>/example/solr-webapp/webapp/WEB-INF/lib/ folder. Run the following
command to compile the NoIDFSimilarity.java file:

javac -cp /opt/solr-4.6.0/example/solr-webapp/webapp/WEB-INF/lib/lucene-
core-4.6.0.jar:. -d . NoIDFSimilarity.java

The commands here are for Linux systems. For Windows systems,
use Windows path format while executing the commands.

This will compile the Java file into the com.myscorer folder. Now create a
myscorer.jar file for the package com.myscorer by running the jar command
on the created folder com:

jar -cvf myscorer.jar com

The JAR file needs to be placed with the Lucene JAR file in our Solr library:

cp myscorer.jar /opt/solr-4.6.0/example/solr-webapp/webapp/WEB-INF/lib/

In order to check the scorer, let us index all files in the Solr default installation under
the exampledocs folder. In Solr 4.6, execution of the following commands inside the
exampledocs folder will result in indexing of all files:

java -jar post.jar *.xml

java -Dtype=text/csv -jar post.jar *.csv

java -Dtype=application/json -jar post.jar *.json

This step will index all the XML files along with the books.csv and books.json
files into the index. The index should contain approximately 46 documents. This
can be verified by running the following query on the Solr query interface: http://
localhost:8983/solr/collection1/select?q=*:*

Search for ipod in the field text with the DefaultSimilarity class and note the
score and order of a few documents that appear on the top.

www.it-ebooks.info

http://www.it-ebooks.info/

Customizing the Solr Scoring Algorithm

[34]

Also, note that the debugQuery=true parameter in the query gives the name of the
similarity class used. [DefaultSimilarity] in this case.

http://localhost:8983/Solr/collection1/select/q=text:ipod&fl=*&debugQ
uery=true

Search for ipod using DefaultSimilarity

Now let’s modify our schema.xml file and put NoIDFSimilarity as the default
similarity class to be used and observe how our search behaves. Add the following
line to the end of schema.xml file and restart Solr:

<similarity class=”com.myscorer.NoIDFSimilarity”/>

This will change the similarity for all fields in our schema to the NoIDFSimilarity
class. On running the same query again, we can see that scores of the documents
have changed. Also, the similarity class is now [NoIDFSimilarity].

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 2

[35]

Solr will need to be restarted whenever schema.xml
or solrconfig.xml file is changed. Only then will the
changes be visible in Solr.

Search for ipod using NoIDFSimilarity

Let us create another custom scorer where length normalization is disabled.
The default implementation for the lengthNorm function can be found in the
Lucene source code inside the org.apache.lucene.search.similarities.
DefaultSimilarity class:

public float lengthNorm(FieldInvertState state) {
 final int numTerms;
 if (discountOverlaps)
 numTerms = state.getLength() - state.getNumOverlap();
 else
 numTerms = state.getLength();
 return state.getBoost() * ((float) (1.0 / Math.sqrt(numTerms)));
}

www.it-ebooks.info

http://www.it-ebooks.info/

Customizing the Solr Scoring Algorithm

[36]

In a broad sense, this extracts the number of terms in a field and returns Boost *
(1/sqrt(number of terms)) so that shorter fields have a higher boost. In order to
disable boosting due to shorter field length, either consider the number of terms as
1 for this algorithm or return 1 irrespective of the number of terms and the boost on
the field. Let us create our own implementation of DefaultSimilarity known as
NoLengthNormSimilarity where we will simply return the boost for the field and
discard any calculations with respect to the number of terms in the field. The code
will override the lengthNorm function as follows:

public class NoLengthNormSimilarity extends DefaultSimilarity {
 // return field’s boost irrespective of the length of the field.
 @Override
 public float lengthNorm(FieldInvertState state) {
 return state.getBoost();
 }
}

The purpose of creating a similarity class without length
normalization is to treat documents with different number of
terms in their field similarly.

Thus, a document with say 5 tokens will be treated as equal to another document
with say 50, 500, or 5000 tokens. Now, in a search for WiFi router, two products,
say Netgear R6300 WiFi router and D-Link DSL-2750U Wireless N ADSL2 4-Port
WiFi router, will have the same boost. Earlier with the default similarity, the Netgear
R6300 WiFi router would have had a higher boost as it had a smaller number of
terms than that in D-Link DSL-2750U Wireless N ADSL2 4-Port WiFi router. On
the negative side, a document with a field having the Netgear R6300 WiFi router will
have the same boost as another document with the field having the following text:

Experience blazing speeds upto 300Mbps of wireless speed while you
upload and download data within a matter of seconds when you use this
WiFi router.

A user searching for a Wi-Fi router is specifically searching for a product rather
than a description of the product. Hence, it would make more sense if we use the
NoLengthNormSimilarity class in our product names in an e-commerce website.

It is possible to use two different similarity classes for two different fieldTypes
in Solr. To implement this, we need a global similarity class that can support the
specification of the fieldType level similarity class implementation. This is provided
by solr.SchemaSimilarityFactory.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 2

[37]

Simply add this similarity class at the global level at the end of schema.xml file as
follows, which will replace the earlier similarities we had introduced:

<similarity class=”solr.SchemaSimilarityFactory”/>

Specify the fieldType level similarity classes in the section where fieldType is
defined. For example, we can add NoLengthNormSimilarity to fieldType text_
general and NoIDFSimilarity to text_ws, as follows:

<fieldType name=”text_ws” class=”solr.TextField”
positionIncrementGap=”100”>
 <analyzer>
 <tokenizer class=”solr.WhitespaceTokenizerFactory”/>
 <filter class=”solr.EnglishMinimalStemFilterFactory”/>
 </analyzer>
 <similarity class=”com.myscorer.NoIDFSimilarity”/>
</fieldType>

<fieldType name=”text_general” class=”solr.TextField”
positionIncrementGap=”100”>
 <analyzer type=”index”>
 <tokenizer class=”solr.StandardTokenizerFactory”/>
 <filter class=”solr.StopFilterFactory” ignoreCase=”true”
words=”stopwords.txt” />
 <filter class=”solr.LowerCaseFilterFactory”/>
 </analyzer>
 <analyzer type=”query”>
 <tokenizer class=”solr.StandardTokenizerFactory”/>
 <filter class=”solr.StopFilterFactory” ignoreCase=”true”
words=”stopwords.txt” />
 <filter class=”solr.SynonymFilterFactory” synonyms=”synonyms.
txt” ignoreCase=”true” expand=”true”/>
 <filter class=”solr.LowerCaseFilterFactory”/>
 </analyzer>
 <similarity class=”com.myscorer.NoLengthNormSimilarity”/>
</fieldType>

This can be tested by restarting Solr and running the Solr query again
with debugQuery=true, which is similar to what we did before for testing
NoIDFSimilarity.

There are a few other similarity algorithms that are available in Solr. The details
are available in the following API documents: http://lucene.apache.org/
solr/4_6_0/solr-core/org/apache/solr/search/similarities/package-
summary.html.

www.it-ebooks.info

http://lucene.apache.org/solr/4_6_0/solr-core/org/apache/solr/search/similarities/package-summary.html
http://lucene.apache.org/solr/4_6_0/solr-core/org/apache/solr/search/similarities/package-summary.html
http://lucene.apache.org/solr/4_6_0/solr-core/org/apache/solr/search/similarities/package-summary.html
http://www.it-ebooks.info/

Customizing the Solr Scoring Algorithm

[38]

Some of these similarities, such as SweetSpotSimilarity, have an option of
specifying additional parameters for different fieldTypes. This can be specified in
schema.xml file while defining the similarity class implementation for fieldType
by adding additional parameters during definition. A sample implementation is as
shown in the following code snippet:

<fieldType name=”text_baseline” class=”solr.TextField” indexed=”true”
stored=”false”>
 <analyzer
class=”org.apache.lucene.analysis.standard.StandardAnalyzer”/>
 <similarity class=”solr.SweetSpotSimilarityFactory”>
 <!-- TF -->
 <float name=”baselineTfMin”>6.0</float>
 <float name=”baselineTfBase”>1.5</float>
 <!-- plateau norm -->
 <int name=”lengthNormMin”>3</int>
 <int name=”lengthNormMax”>5</int>
 <float name=”lengthNormSteepness”>0.5</float>
 </similarity>
</fieldType>

We will discuss some of these similarity algorithms later in this chapter.

Drawbacks of the TF-IDF model
Suppose, on an e-commerce website, a customer is searching for a jacket and intends
to purchase a jacket with a unique design. The keyword entered is unique jacket.
What happens at the Solr end?

http://solr.server/solr/clothes/?q=unique+jacket

Now, unique is a comparatively rare keyword. There would be fewer items or
documents that mention unique in their description. Let us see how this affects the
ranking of our results via the TF-IDF scoring algorithm. A relook at the scoring
algorithm with respect to this query is shown in the following diagram:

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 2

[39]

Depends on the number of
query terms found in the document

Constant for a MUST query

Constant for all documents
in a query

Depends on the number
of terms in the document

Depends on how rare the term
Is across the complete index

Boost for terms in a query
Constant for a query

A relook at the TF-IDF scoring algorithm

The following parameters in the scoring formula do not affect the ranking of the
documents in the query result:

•	 coord(q,d): This would be constant for a MUST query. Herein we are
searching for both unique and jacket, so all documents will have both the
keywords and the coord(q,d) value will be the same for all documents.

•	 queryNorm(q): This is used to make the scores from different queries
comparable, as it is a constant value and does not affect the ranking
of documents.

•	 t.getBoost(): This is the search time boost for term t specified in query q.
Again this is constant for all documents, as it depends on the query terms
and not on the document content.

The following parameters depend on the term in a document and affect the ranking
of the documents in the result set:

•	 tf(t in d): This is the term frequency and depends directly on the terms
in the document. As the content within the documents varies so does the
frequency and the score.

•	 norm(t,d): This contains the index time boost and length normalization
information. Index time boosts are constant for boosted fields. If a document
contains a boosted field that has the searched term, it will contribute more
to the final score. Length normalization moves documents with shorter
field lengths to the top. Therefore, a term occurring in a shorter field in the
document will contribute more to the score.

•	 idf(t): This is a measure of the rarity of the term across the index.
If a searched term occurs in fewer documents, it will contribute more to
the score than a searched term occurring in more number of documents.

www.it-ebooks.info

http://www.it-ebooks.info/

Customizing the Solr Scoring Algorithm

[40]

Coming back to our earlier example, a search for a unique jacket, the term unique
will have fewer occurrences than the term jacket, so the IDF of unique will be more
than that of jacket:

idf(unique) > idf(jacket)

Thus, the scores of documents with unique in them will be more and they will be
ranked higher. What if a document has multiple occurrences of the term unique?

score(“A unique book on selecting unique jackets”) > score(“This is
an unique jacket. Better than other jackets”)

However, unique is an attribute. It actually does not tell us anything useful about the
product being searched. We can make the same argument for other keywords such
as nice, handmade, or comfortable. These are low-information words that can be
used for matching but can lead to unusual ranking of the search results. The problem
we saw was due to the IDF factor of the TF-IDF algorithm. The IDF gives importance
to the rareness of a term but ignores the usefulness of the term.

Another problem that is likely to arise because of the IDF is while dealing with a
large and sharded index. The IDF of a term in each shard can be different. Let us see
how. Suppose an index has 2 shards, sh1 and sh2. The total number of documents in
the index including both shards is say n out of which sh1 contains k documents and
sh2 contains n-k documents.

The formula for the IDF of term t, which we saw earlier was:

idf(t) = 1+log(numDocs / (docFreq+1))

Suppose we search for the term jacket across both the shards. Let us see what
happens to the IDF of jacket on shards sh1 and sh2 and the entire index.

Shard sh1 has k documents each having different frequencies for the term jacket.
The IDF of the term jacket on sh1 would be calculated separately as follows:

IDF for jacket on shard sh1

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 2

[41]

Shard sh2 had the remaining (n-k) documents. Again the frequency of the term
jacket will be different across each document in shard sh2 as compared to that in
shard sh1. The IDF of the term jacket for sh2 will be different from that for sh1.

IDF for jacket on shard sh2

What about the actual IDF for the term jacket across the entire index? If the index
had not been sharded, the calculation of IDF for the term jacket would have
depended on its frequency across n documents in the entire index.

() ()()()IDF jacket 1 log / sumof freq "jacket" for documents +1= + n n

IDF of jacket on the entire index

Therefore, the IDF of the term jacket is different across sh1, sh2, and the entire index:

() () ()sh1 sh2IDF jacket ! IDF jacket ! IDF jacket= =

Unequal IDF across sh1, sh2, and the entire index

This means that a search for a term across different shards can result in different
scores for the same term. Moreover, the score would not match with what it should
have been across the entire index. This can lead to unexpected scoring and ranking
of results.

One way to handle this scenario is to implement a strategy such that all the shards
share the index statistics with each other during scoring. However, this can be
very messy and can lead to performance issues if the number of shards is large.
Another way is to index the documents in a fashion such that the terms are equally
distributed across all shards. This solution, too, is messy and mostly not feasible.
As the number of documents is large, it may not be feasible to pre-process them and
push them into certain shards. SolrCloud provides a better approach to handling this
distribution of documents. We will have a look at it in Chapter 9, SolrCloud.

www.it-ebooks.info

http://www.it-ebooks.info/

Customizing the Solr Scoring Algorithm

[42]

The information gain model
The information gain model is a type of machine learning concept that can be used
in place of the inverse document frequency approach. The concept being used here is
the probability of observing two terms together on the basis of their occurrence in an
index. We use an index to evaluate the occurrence of two terms x and y and calculate
the information gain for each term in the index:

•	 P(x): Probability of a term x appearing in a listing
•	 P(x|y): Probability of the term x appearing given a term y also appears

The information gain value of the term y can be computed as follows:

() ()
() ()|

log |
x X

P x y
in o y P x y

P x
f

∈

 
= ∗  

 
∑
Information gain equation

This equation says that the more number of times term y appears with term x with
respect to the total occurrence of term x, the higher is the information gain for that y.

Let us take a few examples to understand the concept.

In the earlier example, if the term unique appears with jacket a large number of
times as compared to the total occurrence of the term jacket, then unique will have
a higher score. However, unique can appear with other words as well, and jacket
can appear without the word unique. On the basis of the number of times they
conditionally appear together, the value of info(“unique”) will be calculated.

Another example is the term jacket that appears with almost all words and quite
a large number of times. Almost all the jackets in the store will be labeled jacket
along with certain terms that describe the jacket. Hence, jacket will have a higher
information gain value.

Now, if we replace the IDF with the information gain model, the problem that
we were facing earlier because of the rareness of the term unique will not occur.
The information gain for the term unique will be much lower than the IDF of the
term. The difference between the information gain values for the two terms,
unique and jacket, will be higher than the difference between the terms’
inverse document frequencies:

info(“jacket”)/info(“unique”) > idf(“jacket”)/idf(“unique”)

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 2

[43]

Therefore, after using information gain, instead of IDF, in our scoring formula,
we obtain the following:

score(“A unique book on selecting unique jackets”) < score(“This is
an unique jacket. Better than other jackets”)

Information gain can also be used as an automatic stop word filter as terms that
conditionally occur with many different terms in the index are bound to get a
very low information gain value.

Implementing the information gain model
The problem with the information gain model is that, for each term in the index,
we will have to evaluate the occurrence of every other term. The complexity of
the algorithm will be of the order of square of the two terms, square(xy). It is not
possible to compute this using a simple machine. What is recommended is that
we create a map-reduce job and use a distributed Hadoop cluster to compute the
information gain for each term in the index.

Our distributed Hadoop cluster would do the following:

•	 Count all occurrences of each term in the index
•	 Count all occurrences of each co-occurring term in the index
•	 Construct a hash table or a map of co-occurring terms
•	 Calculate the information gain for each term and store it in a file in the

Hadoop cluster

In order to implement this in our scoring algorithm, we will need to build a custom
scorer where the IDF calculation is overwritten by the algorithm for deriving the
information gain for the term from the Hadoop cluster. If we have a huge index,
we will have information gain for most of the terms in the index. However, there
can still be cases where the term is not available in the information gain files in
the Hadoop cluster. In such cases, we would like to fall back on our original IDF
algorithm or return a default value. This may result in some skewed value for the
score, as the IDF values may not be comparable with information gain for any term.

Once we have the custom similarity ready, we will have to create a copyField
parameter that implements the custom similarity we have built. And copy the earlier
fields for which we want the similarity to be altered to this copyField we have
created. The schema would then have multiple copies of the same field, each with
different implementations of the similarity class.

www.it-ebooks.info

http://www.it-ebooks.info/

Customizing the Solr Scoring Algorithm

[44]

In order to determine whether our implementation of the similarity class has been
more beneficial to the users, we can perform A/B testing. We already have multiple
copy fields, each with its own similarity class implementation. We can divide our
app servers into two parts, one serving queries out of the field that implements the
information gain model and another serving queries out of the field that implements
the default IDF model. We can measure the response or conversion ratio (for an
e-commerce site) from both the implementations and decide which implementation
has been beneficial for us.

The A/B testing methodology is very useful in taking decisions based on data
for which implementation has been successful for the business. We can test with
live users where some users are exposed to a particular algorithm or flow, while
others are exposed to a different algorithm or site flow. It is very important to
put evaluation metrics in place so that the output of each test can be measured
separately. A/B testing is the perfect way for implementing new concepts side by
side and determining which concept is more successful.

Options to TF-IDF similarity
In addition to the default TF-IDF similarity implementation, other similarity
implementations are available by default with Lucene and Solr. These models
also work around the frequency of the searched term and the documents containing
the searched term. However, the concept and the algorithm used to calculate the
score differ.

Let us go through some of the most used ranking algorithms.

BM25 similarity
The Best Matching (BM25) algorithm is a probabilistic Information Retrieval
(IR) model, while TF-IDF is a vector space model for information retrieval. The
probabilistic IR model operates such that, given some relevant and non-relevant
documents, we can calculate the probability of a term appearing in a relevant
document, and this could be the basis of a classifier that decides whether the
documents are relevant or not.

On a practical front, the BM25 model also defines the weight of each term as a
product of some term frequency function and some inverse document frequency
function and then uses the weight to calculate the score for the whole document
with respect to the given query, as follows:

Score = function1(tf) * function2(idf)

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 2

[45]

The purpose of function1(tf) is to specify a limit on the factor contributing to
the score for high-frequency terms. As the term frequency increases, the output of
the function in BM25 approaches a limit. Therefore, for high-frequency terms, any
further increase in the term frequency does not have much effect on the relevance.
The output of the function is such that, for BM25, the increase in tf contribution
to the score will be less than that in the TF-IDF model. This means given that the
documents and queries are the same across the TF-IDF model and the BM25 model,
the factor contributing to the score for term frequency in a document will be higher
in the TF-IDF model than that in the BM25 model.

The BM25 model takes an initialization parameter k1 that is used to control
or normalize the term frequency. The default value for k1 is 1.2, and it can be
changed by passing a separate value.

This is how k1 theoretically affects the term frequency for the ith term in the
BM25 algorithm:

tfi = tfi/(k1+tfi)

Another major factor that is used in BM25 is the average document length. BM25
uses document length to compensate for the fact that a longer document in general
has more words and is thus more likely to have a higher term frequency, without
necessarily being more pertinent to the term and thus no more relevant to the query.
However, there may be other documents that have a wider scope and where the high
term frequencies are justified. The BM25 similarity accepts another parameter b that
is used to control to what degree the document length normalizes term frequency
values. Parameter b is used in conjunction with document length dl and average
document length avdl to calculate the actual term frequency.

To evaluate the full weight of the term, we need to multiply the term frequency with
the IDF. BM25 does IDF differently than the default TF-IDF implementation. If D is
the total number of documents in the collection and di is the number of documents
containing the ith term in the query, IDFi (for the ith term) is calculated as follows:

IDFi = log(1 + ((D-di+0.5) / (di+0.5)))

The full weight of the term is calculated as follows:

Wi = IDFi * boost * TFi

In this case:

TFi = ((k1+1)*tfi) / (tfi + k1(1-b+(b*dl/avdl)))

www.it-ebooks.info

http://www.it-ebooks.info/

Customizing the Solr Scoring Algorithm

[46]

The default TF-IDF similarity implementation in Lucene does not provide the custom
term frequency normalization or document length normalization parameters. This is
available in BM25. Tuning the normalization parameters k1 and b can result in better
scoring and ranking of documents than that offered by the default TF-IDF similarity
formula. It is generally recommended to keep the value of b between 0.5 and 0.8
and that of k1 between 1.2 and 2.

Again it depends on the document collection as to which similarity algorithm would
produce better results. The BM25 algorithm is useful for short documents or fields.
The best way to determine whether it is good for our collection is to use it in A/B
testing with a copy of the same field.

We have already seen the scores for DefaultSimilarity and NoIDFSimilarity
earlier in this chapter. Let us implement the BM25 similarity algorithm in our earlier
index and see the results. Make the following changes to the schema.xml file.
We have modified the values of k1 and b as 1.3 and 0.76, respectively, as follows:

<similarity class=”solr.BM25SimilarityFactory”>
 <float name=”k1”>1.3</float>
 <float name=”b”>0.76</float>
</similarity>

We will need to delete and re-index all the documents. To delete the documents, pass
the delete command in the browser URL:

http://localhost:8983/solr/update?stream.body=<delete><query>*:*</
query></delete>

http://localhost:8983/solr/update?stream.body=<commit/>

To index the documents again from the exampledocs folder, run the following
commands on the console:

java -jar post.jar *.xml

java -Dtype=text/csv -jar post.jar *.csv

java -Dtype=application/json -jar post.jar *.json

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 2

[47]

On running a search for ipod using BM25 similarity, we get the following output:

Scores for BM25Similarity

Note that the maximum and minimum scores for BM25similarity are 4.19 and
0.73, respectively. On the other hand, the maximum and minimum scores for
DefaultSimilarity are 1.49 and 0.32, respectively. Changing the values of k1
and b will change the scores.

BM25 scoring can be used for short documents. In an e-commerce environment, it
can be applied to product names, while the default TF-IDF scoring can be used in
product descriptions. Again, the scoring mechanism has to be tweaked by changing
k1 and b to obtain the expected search results.

www.it-ebooks.info

http://www.it-ebooks.info/

Customizing the Solr Scoring Algorithm

[48]

BM25 similarity method reference:
http://lucene.apache.org/core/4_6_0/core/
org/apache/lucene/search/similarities/
BM25Similarity.html

DFR similarity
DFR stands for Divergence From Randomness. The DFR concept can be
explained as follows. The more the divergence of the within-document term
frequency from its frequency within the collection, the more the information
carried by word t in document d. The DFR scoring formula contains three separate
components—the basic model, the after effect, and an additional normalization
component. To construct a DFR formula, we need to specify a value for all the three
components mentioned previously.

Possible values for the basic model are:

•	 Be: Limiting form of the Bose-Einstein model
•	 G: Geometric approximation of the Bose-Einstein model
•	 P: Poisson approximation of the binomial model
•	 D: Divergence approximation of the binomial model
•	 I(n): Inverse document frequency
•	 I(ne): Inverse expected document frequency (combination of Poisson

and IDF)
•	 I(F): Inverse term frequency (approximation of I(ne))

The possible values for the after effect are:

•	 L: Laplace’s law of succession
•	 B: Ratio of two Bernoulli processes
•	 none: No first normalization

Additional normalization is also known as length normalization. It has the
following options:

•	 H1: Uniform distribution of term frequency
°° parameter c (float): A hyper-parameter that controls the term

frequency normalization with respect to the document length.
The default is 1.

www.it-ebooks.info

http://lucene.apache.org/core/4_6_0/core/org/apache/lucene/search/similarities/BM25Similarity.html
http://lucene.apache.org/core/4_6_0/core/org/apache/lucene/search/similarities/BM25Similarity.html
http://lucene.apache.org/core/4_6_0/core/org/apache/lucene/search/similarities/BM25Similarity.html
http://www.it-ebooks.info/

Chapter 2

[49]

•	 H2: Term frequency density inversely related to length
°° parameter c (float): A hyper-parameter that controls the term

frequency normalization with respect to the document length.
The default is 1.

•	 H3: Term frequency normalization provided by a Dirichlet prior
°° parameter mu (float): Smoothing parameter μ. The default is 800

•	 Z: Term frequency normalization provided by a Zipfian relation
°° parameter z (float): Represents A/(A+1) where A measures the

specificity of the language. The default is 0.3.

•	 none: No second normalization

In order to use the DFR similarity in Solr, we will need to add the solr.
DFRSimilarityFactory class in our schema.xml file. A sample implementation of
the DFR similarity is as follows:

<similarity class=”solr.DFRSimilarityFactory”>
 <str name=”basicModel”>G</str>
 <str name=”afterEffect”>B</str>
 <str name=”normalization”>H2</str>
 <float name=”c”>7</float>
</similarity>

We will need to restart Solr and then delete and index all the documents from the
index. On running a search, we should be getting DFRSimilarity in our debug
query output.

The DFR scoring algorithm provides a wide variety of tweaking options to choose
from while defining the actual algorithm. It is important to choose the appropriate
option or options and perform A/B testing to determine which one suits the data
and the end user.

In addition to the above discussed similarity classes, we also have other lesser
used similarity classes such as IBSimilarity, LMDirichletSimilarity, or
LMJelinekMercerSimilarity. We also saw SweetSpotSimilarity earlier
in this chapter.

Reference to DFR similarity can be found at: http://lucene.
apache.org/core/4_6_0/core/org/apache/lucene/
search/similarities/DFRSimilarity.html.

www.it-ebooks.info

http://lucene.apache.org/core/4_6_0/core/org/apache/lucene/search/similarities/DFRSimilarity.html
http://lucene.apache.org/core/4_6_0/core/org/apache/lucene/search/similarities/DFRSimilarity.html
http://lucene.apache.org/core/4_6_0/core/org/apache/lucene/search/similarities/DFRSimilarity.html
http://www.it-ebooks.info/

Customizing the Solr Scoring Algorithm

[50]

Summary
In this chapter, we saw the default relevance algorithm used by Solr and/or Lucene.
We saw how the algorithm can be tweaked or overwritten to change the parameters
that control the score of a document for a given query. We saw how to use multiple
similarity classes for different fields within the same Solr schema. We explored the
information gain model and saw the complexities involved in implementing the
same. Furthermore, we saw additional alternatives to the default TF-IDF similarity
available with Solr and Lucene. We went through the BM25 and DFR similarity
models. We also understood that, in addition to selecting a similarity algorithm,
we should perform A/B testing to determine which scoring algorithm the end
users prefer and can be beneficial to the business.

In the next chapter, we will explore Solr internals and build some custom queries.
In addition, we will understand how different parsers work in the creation of a
Solr query and how the query actually gets executed. We will also write our own
Solr plugin.

www.it-ebooks.info

http://www.it-ebooks.info/

[51]

Solr Internals and
Custom Queries

In this chapter, we will see how the relevance scorer works on the inverted index.
We will understand how AND and OR clauses work in a query and look at how query
filters and the minimum match parameter work internally. We will understand how
the eDisMax query parser works. We will implement our own query language as a
Solr plugin using which we will perform a proximity search. This chapter will give
us an insight into the customization of the query logic and creation of custom query
parsers as plugins in Solr. This chapter will cover the following topics:

•	 How a scorer works on an inverted index
•	 How OR and AND clauses work
•	 How the eDisMax query parser works
•	 The minimum should match parameter
•	 How filters work
•	 Using Bibliographic Retrieval Services (BRS) queries instead of DisMax
•	 Proximity search using SWAN (Same, With, Adj, Near) queries
•	 Creating a parboiled parser
•	 Building a Solr plugin for SWAN queries
•	 Integrating the SWAN plugin in Solr

www.it-ebooks.info

http://www.it-ebooks.info/

Solr Internals and Custom Queries

[52]

Working of a scorer on an inverted index
We have, so far, understood what an inverted index is and how relevance calculation
works. Let us now understand how a scorer works on an inverted index. Suppose we
have an index with the following three documents:

3 Documents

To index the document, we have applied WhitespaceTokenizer along with the
EnglishMinimalStemFilterFactory class. This breaks the sentence into tokens
by splitting whitespace, and EnglishMinimalStemFilterFactory converts plural
English words to their singular forms. The index thus created would be similar to
that shown as follows:

An inverted index

A search for the term orange will give documents 2 and 3 in its result. On running a
debug on the query, we can see that the scores for both the documents are different
and document 2 is ranked higher than document 3. The term frequency of orange in
document 2 is higher than that in document 3.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 3

[53]

However, this does not affect the score much as the number of terms in the
document is small. What affects the score here is the fieldNorm value, which ranks
shorter documents higher than longer documents.

A debug can be run on a query by appending debugQuery=true
to the Solr query.

Relevance score

Inside the Lucene API, when a query is presented to the IndexSearcher class for
search, IndexReader is opened and the query is passed to it and the result is collected
in the Collector object — instance of Collector class. The IndexSearcher class also
initializes the scorer and calculates the score for each document in the binary result set.
This calculation is fast and it happens within a loop.

www.it-ebooks.info

http://www.it-ebooks.info/

Solr Internals and Custom Queries

[54]

Working of OR and AND clauses
Let us see how the collector and scorer work together to calculate the results for both
OR and AND clauses. Let us first focus on the OR clause. Considering the earlier index,
suppose we perform the following search:

orange OR strawberry OR not

A search for orange OR strawberry OR not

On the basis of the terms in the query, Doc Id 1 was rejected during the Boolean
filtering logic. We will need to introduce the concept of accumulator here. The
purpose of the accumulator is to loop through each term in the query and pass the
documents that contain the term to the collector.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 3

[55]

In the present case, when the accumulator looks for documents containing orange, it
gets documents 2 and 3. The output of the accumulator in this case is 2x1, 3x1, where
2 and 3 are the document IDs and 1 is the number of times the term orange occurs
in both the documents.Next, it will process the term strawberry where it will get
document ID 3. Now, the accumulator outputs 3x1 that adds to our previous output
3x1 and forms 3x2, meaning that document ID 3 contains two of our input terms. The
term not is processed in a similar fashion.

An accumulator at work

Here Sequence denotes the sequence in which the terms are processed.

The Collector will get Doc Id 2 with a score of 1, as it occurs only in one
document and Doc Id 3 with a score of 3. Therefore, the output from the collector
will be as follows:

Document scores

In this case, since the score for Doc Id 3 is higher, it will be ranked higher than
document 2. This type of search is known as a "term at a time" search, since we are
processing documents for a term and we go through the terms in the query one by
one to process the result.

www.it-ebooks.info

http://www.it-ebooks.info/

Solr Internals and Custom Queries

[56]

The score here is a relative representation of frequency. It is not the actual score as
per the equation shown in the following image that can be also found in Chapter 2,
Customizing the Solr Scoring Algorithm:

Let us see how the AND clause works in filtering and ranking results. Let us perform
an AND search with the following clause:

color AND red AND orange

While searching with the AND clause, first all terms matching the query are selected
from the index. The collector then selects the document id corresponding to the first
term and matches it against the document ids corresponding to the remaining terms.

Query: color AND red AND orange

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 3

[57]

In this case, Doc Id 1 will be selected and matched against IDs corresponding to
terms red and orange. Since no match is found with the term orange, the next
document (Doc Id 2) corresponding to the term color will be selected, which is again
not found in term red. Finally, Doc Id 3 will be selected and it finds a match with
the terms red and orange. The accumulator will output only document ID 3 in this
case. This concept is known as "doc at a time" search, as we are processing documents
instead of terms.

Document scores

In most cases, the query would be a mix of AND and OR clauses. Therefore, the
algorithm for finding and ranking the results depends on the query parameters.

The minimum should match parameter, which is a part of the eDisMax query parser
and discussed later in this book, is also an important factor in deciding the algorithm
to be used for a search. In the case of an OR query, the minimum should match
parameter is taken as 1, as only one term out of all the terms in our query should
match. As seen in this case, the term at a time algorithm was used for search. The AND
query results in a minimum should match parameter that is more than 1, and in this
case, the doc at a time search was used.

The complexity of both the algorithms is shown in the following image:

Algorithm complexity

In this case, the following needs to be noted:

•	 q: Number of terms in a query
°° Example: orange OR strawberry OR not

www.it-ebooks.info

http://www.it-ebooks.info/

Solr Internals and Custom Queries

[58]

•	 p: Number of documents in terms matching the query

•	 k: Number of documents the accumulator collects for showing the first page
•	 n: Total number of documents that match the query

The eDisMax query parser
Let us understand the working of the eDisMax query parser. We will also look
at the minimum should match parameter and filters in this section.

Working of the eDisMax query parser
Let us first refresh our memory about the different query modes in Solr. Query
modes are ways to call different query parsers to process a query. Solr has different
query modes that are specified by the defType parameter in the Solr URL. The
defType parameter can also be changed by specifying a different defType parameter
for the requestHandler property in the solrconfig.xml file. The popularly
used query modes available in Solr are DisMax (disjunction Max) and eDisMax
(extended disjunction max) in addition to the default (no defType) query mode.
There are many other queryModes available, such as lucene, maxscore, and
surround, but these are less used.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 3

[59]

The query parser used by DisMax can process simple phrases entered by the user
and search for individual terms across different fields using different boosts for
different fields on the basis of their significance. The DisMax parser supports an
extremely simplified subset of the Lucene query parser syntax. The eDisMax query
parser, on the other hand, supports the full Lucene query syntax. It supports queries
with AND, OR, NOT, +, and - clauses. It also supports pure negative nested queries such
as +foo (-foo) that will match all documents. It lets the end user specify the fields
allowed in the input query. We can also use the word shingles in a phrase boost
(pf2 and pf3 parameters in Solr query) on the basis of the proximity of words.

Let us create a sample index and understand the working of a sample query in the
eDisMax mode.

Index all files in the Solr default installation into the exampledocs folder. In Solr 4.6,
execution of the following commands inside the exampledocs folder will result in
the indexing of all files:

java -jar post.jar *.xml

java -Dtype=text/csv -jar post.jar *.csv

java -Dtype=application/json -jar post.jar *.json

This will index all the XML files along with the books.csv and books.json files into
the index. The index should contain approximately 46 documents. It can be verified
by running the following query on the Solr query interface:

http://localhost:8983/solr/collection1/select?q=*:*

A search for ipod usb charger with a boost of 2 on the name and a default boost on
the text, along with a proximity boost on both the fields and a minimum match of 2,
will form the following query:

http://localhost:8983/solr/collection1/select?q=ipod usb
charger&qf=text name^2&pf=text
name&mm=2&defType=dismax&debugQuery=true

www.it-ebooks.info

http://www.it-ebooks.info/

Solr Internals and Custom Queries

[60]

The debug output shows how the eDisMax parser parses the query:

At the outermost level, the query (also known as the Boolean query) has 2 clauses:

•	 Clause 1:
+(
(
DisjunctionMaxQuery((text:ipod | name:ipod^2.0))
DisjunctionMaxQuery((text:usb | name:usb^2.0))
DisjunctionMaxQuery((text:charger | name:charger^2.0))
)~2
)

•	 Clause 2:

DisjunctionMaxQuery((text:"ipod usb charger" | name:"ipod usb
charger"))

The first clause has a + sign preceding it, which means that the first clause must
match in every document returned in the result set. The second clause is an OR query
that should match within the documents returned. Even if the clause does not find a
match in the document, the document will be returned but with a lower score.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 3

[61]

The first clause also has 3 sub-clauses. Each one should match with the documents
in the result set. Also out of the 3 clauses, at least 2 must match, which we have
specified by the mm=2 (minimum should match = 2) parameter in our Solr query. The
mm=2 parameter in the Solr query is converted to the clause ~2 in our parsed query.

What does the clause DisjunctionMaxQuery((text:ipod | name:ipod^2.0)) do?
Here we search for ipod in the fields text and name and find the score in both the
cases, that is the scores for ipod in text and ipod in name, and return the maximum
of these two scores as the output of the DisjunctionMaxQuery clause. Why do we
return the maximum score? Why not take the sum and return that as the score?
Suppose, we are searching for usb charger in two fields, name and description.
If we take the sum, then a document that has usb charger in the name and not in
the description will have the same score as another document that has usb in both
name and description but charger nowhere in these fields.

If still returning the maximum score is not something that makes sense in a particular
scenario, we can use the tie parameter to decide how the final score of the query
will be influenced by the scores of lower scoring compared to the higher scoring
fields. A value of 0.0 means that only the maximum scoring subquery contributes to
the final score. On the other hand, a value of 1.0 means that the final score will be a
sum of individual subquery scores. In this case, the maximum scoring subquery loses
its significance. Ideally, a value of 0.1 is preferred to have a mix of both scenarios.

The clause text:ipod is the smallest piece of the query, which is also known as a
term query. This is where the tf-idf scoring we discussed above happens. This is
encapsulated by the DisjunctionMaxQuery clause we just saw.

The second clause of the query, DisjunctionMaxQuery((text:"ipod usb
charger" | name:"ipod usb charger")), is again composed of two subqueries
inside the DisjunctionMaxQuery clause. The query here is text:"ipod usb
charger", which has multiple terms against a single field, and is known as a phrase
query. It seeks all the documents that contain all the specified terms in the specified
field and discards those documents where the terms are adjacent to each other in
the specified order. In our case, the subquery will seek documents where the terms
ipod, usb, and charger appear and in the field text and then check the order of
the terms in the document. If the terms are adjacent to each other, the document is
selected and ranked high.

www.it-ebooks.info

http://www.it-ebooks.info/

Solr Internals and Custom Queries

[62]

Therefore, the interpretation of the query we saw earlier is as follows:

•	 Look for the documents that have two of the three terms ipod, usb,
and charger. Search only the name and text fields. A document does
not get a high score for matching any one of these terms in both fields.

•	 The name field is important, so it is boosted by 2.
•	 If the documents from the previous section have the phrase "ipod usb

charger" in the text or the name field, they are given higher scores.

The minimum should match parameter
We saw a brief preview of how the minimum should match parameter works in the
earlier section. The default value of mm is 1 and it can be overwritten in solrconfig.
xml. It can also be passed as a query parameter as we did in our example in the
previous section.

When dealing with optional clauses, the mm parameter is used to decide how many of
the optional clauses must match in a document for that document to be selected as a
part of the result set. Note that the mm parameter can be a positive integer, a negative
integer, or a percentage. Let us see all the options for specifying the mm parameter:

•	 Positive integer: A positive number 3 specifies that at least three clauses
mush match irrespective of the total number of clauses in the query.

•	 Negative integer: A negative number 2 specifies that, out of the total number
of clauses (n) in the query, the minimum number of matching clauses is n-2.
Therefore, if the query has five clauses, 3 is the must match number.

•	 Percentage: A value of 75% specifies that the matching clauses should
constitute at least 75 percent of the total number of clauses in the query.
A query with four clauses will have a minimum match number of 3 if mm is
specified as 75%.

•	 Negative percentage: A negative value of -25% indicates that the optional
clauses constitute 25 percent of the total number of clauses. Therefore, if
mm=-25% for four clauses, there should be at least three matching clauses.

•	 Positive integer (> or <) percentage: Let's take an example, say,4<75%. This
means that, if the number of optional clauses in the query is less than or
equal to 4, then all of them must match. However, if the number of optional
clauses is greater than 4, say 8, only 75 percent of the clauses or 6 clauses
should match.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 3

[63]

•	 Multiple conditions: These are used to define multiple conditions, each
being valid for the number before it. For example, 2<-25% 9<-3 indicates
that, if there are less than or equal to two clauses, all the clauses should
match. If there are three to nine clauses, all but 25 percent are required.
If there are more than nine clauses, all but three are required.

No matter what condition is specified and what number is derived during
calculation, Solr will never use a value greater than the number of optional clauses
or a value less than 1. That is, no matter what the calculated value for mm is, the
minimum number of required matches would never be less than 1 or greater than
the number of optional clauses.

The minimum should match parameter should be properly thought through for
each use case. It is also important to have some sample user queries to figure out a
particular formula for mm. The value of mm should be such that both precision and
recall requirements for most queries are satisfied.

Minimum should match is an expensive algorithm during a search. There was a
major bug fix in Lucene version 4.3 that improved the performance of the minimum
should match in DisMax queries. The bug fix is shown in the following figure:

The improvement fix can be referred to in the following link: https://issues.
apache.org/jira/browse/LUCENE-4571.

www.it-ebooks.info

https://issues.apache.org/jira/browse/LUCENE-4571
https://issues.apache.org/jira/browse/LUCENE-4571
http://www.it-ebooks.info/

Solr Internals and Custom Queries

[64]

Working of filters
Filter queries do not affect the score of the documents in the result set. Filter queries
cache the document IDs for inclusion or exclusion in a result set. This makes filter
queries in Solr very fast. Since results obtained by using filter queries are not ranked,
it is recommended to use filter queries to narrow down the result set rather than for
the initial search itself.

Suppose that, in the index we created earlier, we are looking for a hard drive.
The query for the same would be as follows:

http://localhost:8983/solr/collection1/select?q=hard drive&qf=name^2
text&pf=name&fl=id,name,score&defType=dismax&debugQuery=true

The result has the following three documents. Note that the scores are also printed.

Scores for documents in a query result

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 3

[65]

I am a brand conscious shopper and prefer the brand Samsung to other brands.
Therefore, in this case, I would filter the search results on the basis of the brand field,
which in our case is the field manu. The query would be as follows:

http://localhost:8983/solr/collection1/select?q=hard drive&qf=name^2
text&pf=name&fq=manu:samsung&fl=id,name,score&defType=dismax&debugQue
ry=true

The output clearly shows that the score of the document remained the same after
applying the filter query:

Same score after applying the filter

As discussed earlier, the purpose of a filter query is to narrow down the result set. On
an e-commerce site, the filter query should be used to narrow the result set on the basis
of the facets. The first query should be an eDisMax query that gives results on the basis
of the score of the documents. Once the results are in place, we would like to narrow
them down but keep the results in the order that they were ranked. This is where filter
queries make sense, as applying filter queries to the existing result set will narrow
down the result and also keep the products in their previous order of ranking.

Suppose I am a customer and I am looking for a Levi's jeans in blue color. The query
that I will enter would most probably be levis jeans blue. Here the search has
to happen across multiple attributes of each product. The attributes that I have
mentioned during my search are brand, category, and color. How should the search
query be formed in this case? If we use the eDisMax query parser, all the terms will
be searched in all the fields in my documents.

www.it-ebooks.info

http://www.it-ebooks.info/

Solr Internals and Custom Queries

[66]

If I specify the query fields as brand category color, all the terms levis, jeans,
and blue would be searched for all the three fields:

q = levis jeans blue
qf = brand category color

The matching documents would be found mostly when the following terms match:
brand:"levis", category:"jeans", and color:"blue". We would display the
listing with the facets, say, price and size. A selection on the facet size would be
treated as a filter query adding the fq parameter to our existing query:

fq = size:32

This will narrow down the result to a list of products that match my preferences.
If the result is not too large to confuse me or too small with limited choices, I will
most probably select a product and make a purchase. If the result is large enough, I
can select more parameters from the facet price to narrow down the results further.

Using BRS queries instead of DisMax
Now that we know the internals of how DisMax queries work and how scoring
happens in Solr, let's look at creating our own query syntax and parser for
customizing our search. The question here is what is missing in eDisMax. Note
that eDisMax provides a simple search syntax where we do not have to worry
about the fields and the results are sorted by relevance. However, suppose the
requirement is exactly opposite. The end user is an advanced user who knows the
fields and what he or she is searching for. One such example is a search involving
patents. The syntax for such a search is specified by BRS. In addition to Fielded
and Boolean search, BRS also provides a proximity search with clauses such as SAME
(in the same paragraph), WITH (in the same sentence), ADJ (adjacent with order), and
NEAR (adjacent without order), along with parenthetical grouping. An example of a
BRS query is as follows:

((galaxy ADJ samsung) SAME note) AND (mobile OR tablet)

BRS provides a rich search syntax generally devoid of facets, synonyms, stemming,
and even relevancy sorting. Solr's eDisMax query syntax does not provide us with a
very rich position-aware query syntax. BRS, on the other hand, is all about positions
of words. We will creating our own Solr plugin for handling position-aware queries.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 3

[67]

Building a custom query parser
Let us look at how we can build our own query parser. We will build a proximity
query parser known as SWAN query where SWAN stands for Same, With, Adjacent,
and Near. This query parser would use the SWAN relationships between terms to
process the query and fetch the results.

Proximity search using SWAN queries
Solr provides position-aware queries via phrase slop queries. An example of a phrase
slop is "samsung galaxy"~4 that suggests samsung and galaxy must occur within 4
word positions of each other. However, this does not take care of the SWAN queries
that we are looking for. Lucene has support for providing position-aware queries
using SpanQueries. The classes that implement span queries in Lucene are:

•	 SpanTermQuery(Term term): Represents the building blocks of SpanQuery.
The SpanTermQuery class is used for creating SpanOrQuery, SpanNotQuery,
or SpanNearQuery.

•	 SpanOrQuery(SpanQuery clauses): Can contain multiple SpanQuery
clauses. We can use the addClause(SpanQuery clause) function to add
more clauses to the OR span query.

•	 SpanNotQuery(SpanQuery include, SpanQuery exclude): Constructs
a SpanNotQuery matching spans from include that have no overlap with
spans from exclude. The constructor also provides variations to include the
distance between tokens or pre and post numbers of tokens.

•	 SpanNearQuery(SpanQuery[] clauses, int slop, boolean inOrder):
Constructs a SpanNearQuery class. Matches spans matching a span from
each clause, with up to slop total unmatched positions between them. When
inOrder is true, the spans from each clause must be ordered as in clauses.

Let us try and implement SWAN queries using Lucene SpanQueries. For this, we
will have to index our documents in a fashion such that there is enough position
gap between multiple sentences and paragraphs. Suppose we identify that in our
complete document set, the maximum number of tokens that a sentence can have is
50 and that the maximum number of sentences that a paragraph can have is also 50.
Therefore, during indexing of documents in the analysis phase, we will have to put a
position gap of 50 tokens between sentences and 5000 between paragraphs. Refer to
Chapter 1, Solr Indexing Internals for information on PositionIncrementGap and how
to set it up.

www.it-ebooks.info

http://www.it-ebooks.info/

Solr Internals and Custom Queries

[68]

For creating the SwanQueries class, we need to first define the lengths of the
sentence and the paragraph with respect to the token positions in them:

static int MAX_PARAGRAPH_LENGTH = 5000;
static int MAX_SENTENCE_LENGTH = 500;

Next, we need to define the implementation for SAME, WITH, ADJ, and NEAR queries.
For SAME, we define that the left and right clauses should be within the same
paragraph irrespective of the order:

public static SpanQuery SAME(SpanQuery left,SpanQuery right) {
 return new SpanNearQuery(
 new SpanQuery[] { left, right }, MAX_PARAGRAPH_LENGTH, false);
 }

For WITH, we need to define that the left and right clauses should be within the same
sentence irrespective of the order in which they were mentioned:

public static SpanQuery WITH(SpanQuery left,SpanQuery right) {
 return new SpanNearQuery(
 new SpanQuery[] { left, right }, MAX_SENTENCE_LENGTH, false);
 }

For ADJ, the left and right clauses should be next to each other and there should be
a position difference of only 1 between them. Also, as order matters, the left clause
should occur before the right clause:

public static SpanQuery ADJ(SpanQuery left,SpanQuery right) {
 return new SpanNearQuery(
 new SpanQuery[] { left, right }, 1, true);
 }

For NEAR, the left and right clauses should be next to each other with a slop of 1,
irrespective of the order. This means that the left clause can appear before the right
clause and vice versa:

public static SpanQuery NEAR(SpanQuery left,SpanQuery right) {
 return new SpanNearQuery(
 new SpanQuery[] { left, right }, 1, false);
 }

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 3

[69]

Creating a parboiled parser
Now that we have the implementation of SWAN queries, we need a parser to parse
our syntax with respect to SWAN queries. We would need a parser generator such
as javacc - the Java compiler compiler. A parser generator is a tool that reads a grammar
specification and converts it into a Java program that can recognize matches for the
specification. We will be creating a grammar specification that can be parsed by
using JavaCC and be converted into a Java program. More information regarding the
javacc class can be obtained from its official page: https://javacc.java.net/.

When dealing with a parser generator such as javacc, we have to create an
external syntax definition file and then compile the grammar definitions to a sort of
runnable Java code that can recognize matches for the definitions. This is somewhat
complicated for a normal Java programmer. An easier way of implementing the
parser would be to define the parsers directly inside the Java code. This is supported
by the parboiled Java library and is commonly used as an alternative to javacc. A
parboiled parser supports definition of Parsing Expression Grammar (PEG) parsers
directly inside the Java source code. Since the parboiled parser does not require a
separate syntax definition file, it is comparatively easy to build custom parsers using
the parboiled one.

The PEG specification can include parser actions that perform arbitrary logic
at any given point during the parsing process. A parboiled parser works in two
phases. The first phase is rule construction where the parser builds a tree (or rather
a directed graph) of parsing rules as specified in our code. The second phase is rule
execution where the rules are run against a specific input text. The end result is the
following information:

•	 A Boolean flag determining whether the input matched the root rule or not
•	 A list of potentially encountered parse errors
•	 One or more value object(s) constructed by your parser actions

We derive our custom parser class from BaseParser, the required base class of all
parboiled for Java parsers, and define methods for returning Rule instances. These
methods construct a rule instance from other rules, terminals, predefined primitives,
and action expressions. A PEG parser is basically a set of rules that are composed of
other rules and terminals, which are essentially characters or strings.

www.it-ebooks.info

https://javacc.java.net/
http://www.it-ebooks.info/

Solr Internals and Custom Queries

[70]

The primitive rules are defined as follows (where a and b denote other
parsing rules):

•	 Sequence(a,b): Creates a new rule that succeeds if the sub-rules
a and b also succeed one after the other.

•	 FirstOf(a,b): Creates a new rule that successively tries both the
sub-rules a and b and succeeds when the first one of its sub-rules matches.
If all sub-rules fail, this rule fails as well.

•	 ZeroOrMore(a): Creates a new rule that tries repeated matches of its sub-rule
a and always succeeds, even if the sub-rule doesn't match even once.

•	 OneOrMore(a): Creates a new rule that tries repeated matches of its sub-rule
a and succeeds if the sub-rule matches at least once. If the sub-rule does not
match at least once, this rule fails.

•	 Optional(a): Creates a new rule that tries a match on its sub-rule a and
always succeeds, independently of the matching success of its sub-rule.

•	 Test(a): Creates a new rule that tests the given sub-rule a against the
current input position without actually matching any characters. It succeeds
if the sub-rule succeeds, and fails if the sub-rule rails.

•	 TestNot(a): Is the inverse of the Test rule. It creates a new rule that tests
the given sub-rule a against the current input position without actually
matching any characters. It succeeds if the sub-rule fails, and fails if the
sub-rule succeeds.

In addition to the above primitives, the PEG parser also consists of the
following elements:

•	 Parser actions: These are snippets of custom code that are executed at
specific points during rule execution. Apart from inspecting the parser state,
parser actions typically construct parser values and can actively influence
the parsing process as semantic predicates.

•	 The value stack: During the rule execution phase, parser actions can make
use of the value stack for organizing the construction of custom objects. The
value stack is a simple stack construct that serves as temporary storage for
custom objects.

•	 The parse tree: During the rule execution phase, parboiled parsers can
optionally construct a parse tree, whose nodes correspond to the recognized
rules. Each parse tree node contains a reference to the matcher of the rule
it was constructed from, the matched input text (position), and the current
element at the top of the value stack. The parse tree can be viewed as the
record of what rules have matched a given input and is particularly useful
during debugging.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 3

[71]

•	 The ParseRunner: The ParseRunner class is responsible for supervising a
parsing run and optionally applying additional logic, most importantly the
handling of illegal input characters or parse errors.

More details about the Java parboiled library can be obtained from its wiki pages at:

http://en.wikipedia.org/wiki/Parboiled_(Java).

http://www.parboiled.org.

You can also refer to its official GitHub page at: https://github.com/sirthias/
parboiled/wiki.

Let us use the parboiled library to create our SWAN parser. The parboiled library
consists of the parboiled-core and parboiled-java JAR files that can be
downloaded from the following URL: https://github.com/sirthias/parboiled/
downloads.

Our class SwanParser extends BaseParser from parboiled that generates queries of
type SpanQuery (from the Lucene API):

public class SwanParser extends BaseParser<SpanQuery>

We start by defining rules for input strings, OR, SAME, WITH, NEAR, and ADJ. These
rules are defined as case-insensitive input strings followed by whitespace:

public Rule OR() {
 return Sequence(IgnoreCase("OR"), WhiteSpace());
 }
public Rule SAME() {
 return Sequence(IgnoreCase("SAME"), WhiteSpace());
 }
public Rule WITH() {
 return Sequence(IgnoreCase("WITH"), WhiteSpace());
 }
public Rule NEAR() {
 return Sequence(IgnoreCase("NEAR"), WhiteSpace());
 }
public Rule ADJ() {
 return Sequence(IgnoreCase("ADJ"), WhiteSpace());
 }

www.it-ebooks.info

http://en.wikipedia.org/wiki/Parboiled_(Java)
http://www.parboiled.org
 https://github.com/sirthias/parboiled/wiki
 https://github.com/sirthias/parboiled/wiki
https://github.com/sirthias/parboiled/downloads
https://github.com/sirthias/parboiled/downloads
http://www.it-ebooks.info/

Solr Internals and Custom Queries

[72]

We need to define rules for matching Term, Char, and WhiteSpace in the input
string. A character is defined as any one of numbers, small or capital letters, and a
dash (-) or an underscore (_):

public Rule Char() {
 return AnyOf("0123456789" +
 "abcdefghijklmnopqrstuvwxyz" +
 "ABCDEFGHIJKLMNOPQRSTUVWXYZ" +
 "-_"
);
 }

Whitespace is defined as any space (" "), tab ("\t"), or form feed character ("\f"):

public Rule WhiteSpace() {
 return OneOrMore(AnyOf(" \t\f"));
 }

A term is defined as a sequence of one or more characters. We create a Lucene term
query using the Term class and push it into the value stack:

public Rule Term() {
 return Sequence(
 OneOrMore(Char()),
 push(new SpanTermQuery(new Term(match())))
);
 }

We need to define the SAME expression as a sequence of WITH expression and
ZeroOrMore of SAME rule, WITH expression. We also construct the SAME query by
popping two elements from the value stack and push the SAME query into the value
stack:

public Rule SameExpression() {
 return Sequence(
 WithExpression(),
 ZeroOrMore(
 Sequence(
 SAME(),
 WithExpression(),
 push(SwanQueries.SAME(pop(1), pop()))
)
)
);
 }

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 3

[73]

Similarly, the WITH expression is defined as a sequence of an AdjNear expression and
ZeroOrMore of a sequence of the WITH rule along with the AdjNear expression. As
before, we create a WITH query by popping two elements from the value stack and
push the WITH query into the value stack:

public Rule WithExpression() {
 return Sequence(
 AdjNearExpression(),
 ZeroOrMore(
 Sequence(
 WITH(),
 AdjNearExpression(),
 push(SwanQueries.WITH(pop(1), pop()))
)
)
);
 }

Finally, we create the AdjNear expression to handle both ADJ and NEAR clauses.
This would contain a sequence of Term followed by ZeroOrMore of whichever
sequence occurs first from the following two sequences. The first sequence here
is a NEAR rule followed by a term and a NEAR query constructed by popping two
elements from the value stack. The second sequence is an ADJ rule followed by a
term and an ADJ query constructed by popping two elements from the value stack.
The expression will return a Term if none of the following sequences exist. Else, it
will return whichever of the NEAR and ADJ sequences it finds first:

 public Rule AdjNearExpression() {
 return Sequence(
 Term(),
 ZeroOrMore(FirstOf(
 Sequence(
 NEAR(),
 Term(),
 push(SwanQueries.NEAR(pop(1), pop()))
),
 Sequence(
 ADJ(),
 Term(),
 push(SwanQueries.ADJ(pop(1), pop()))
)
))
);
 }

www.it-ebooks.info

http://www.it-ebooks.info/

Solr Internals and Custom Queries

[74]

Next, we define the OR expression as a sequence of the SAME expression and
ZeroOrMore of a sequence of expressions including OR, SAME, and SpanOrQuery,
which is pushed into the stack. Here we pop the last two elements from the value
stack, create a SpanOrQuery class, and push it into the value stack:

public Rule OrExpression() {
 return Sequence(
 SameExpression(),
 ZeroOrMore(
 Sequence(
 OR(),
 SameExpression(),
 push(new SpanOrQuery(pop(1), pop()))
)
)
);
 }

Finally, we create a rule for the Query() function that is a sequence of OR expressions
followed by the End Of Expression (EOI):

public Rule Query() {
 return Sequence(OrExpression(),EOI);
 }

In order to compile SwanParser.java, we would need the lucene-core,
parboiled-core, and parboiled-java JAR files in our Java classpath.

Building a Solr plugin for SWAN queries
We will need to create a Solr plugin to incorporate the SWAN query parser that
we created earlier. In order to create a Solr plugin for processing our custom
query parser, we will need to extend the QParserPlugin class and override the
createParser method to return an instance of type QParser. In order to plug in our
Swan parser, we will have to create a SwanQParser class that extends the QParser
class and override the parse method to return an object of type Query:

public class SwanQParser extends QParser {
 // Define the constructor
 public SwanQParser(String qstr, SolrParams localParams, SolrParams
 params, SolrQueryRequest req) {
 super(qstr, localParams, params, req);
 }
 // Override the parse method from QParser

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 3

[75]

 @Override
 public Query parse() throws SyntaxError {
 SwanParser parser = Parboiled.createParser(SwanParser.class);
 ParsingResult<?> result = new
 RecoveringParseRunner<SpanQuery>(parser.Query()).run(this.qstr);
 if (!result.parseErrors.isEmpty()){
 throw new SyntaxError(ErrorUtils.printParseError
 (result.parseErrors.get(0)));
 }
 SpanQuery query = (SpanQuery) result.parseTreeRoot.getValue();
 return query;
 }
}

Once we have the SwanQParser class of type QParser, we will have to create the
SwanQParserPlugin class, which extends the QParserPlugin class from Solr, and
override the createParser method to return an object of type SwanQParser:

public class SwanQParserPlugin extends QParserPlugin {
 // Override the createParser method from QParserPlugin
 @Override
 public QParser createParser(String qstr, SolrParams localParams,
 SolrParams params, SolrQueryRequest req) {
 return new SwanQParser(qstr, localParams, params, req);
 }
}

In addition to the parboiled and lucene libraries (JAR files), we will need the
solr-core and solr-solrj libraries in our Java classpath to compile the previously
mentioned classes.

Integrating the SWAN plugin in Solr
Now that we have all the classes ready for creating our plugin, lets create a JAR file
and include it in the solrconfig.xml file in order to integrate the SWAN plugin
in Solr. Create the JAR file (swan.jar) and place it inside the library (<solr_
directory>/example/solr-webapp/webapp/WEB-INF/lib/) folder. Also make the
following change in the solrconfig.xml file:

<queryParser name="swan" class="com.plugin.swan.SwanQParserPlugin"/>

www.it-ebooks.info

http://www.it-ebooks.info/

Solr Internals and Custom Queries

[76]

Note that all our classes were put inside the com.plugin.swan package. Restart Solr
and try accessing the SWAN parser by specifying the defType=swan parameter in a
Solr query. As shown in the following Solr query URL:

http://localhost:8983/solr/collection1/select?q=((galaxy ADJ samsung)
SAME note) AND (mobile OR tablet)&defType=swan

We can also define a new handler /swan instead of /select for
processing SWAN queries.

On accessing the above Solr query URL,we get a syntax error. To fix the dependency
issues, include the parboiled and the ASM libraries into the Solr library path. Copy
the parboiled* JAR files to the library folder. Also, download and copy the asm-
all-4.x.jar file to the library folder.

We are using ASM 4.2 and it can be downloaded from:
http://asm.ow2.org/download/index.html.
Code references: https://gist.github.com/JnBrymn/.

If you are still getting a syntax exception, remember that we
need to incorporate a position increment gap between multiple
sentences and paragraphs within our index. We will need to
define our analyzer to tokenize our input text in the required
fashion for the SWAN queries to work.

www.it-ebooks.info

http://asm.ow2.org/download/index.html
https://gist.github.com/JnBrymn/
http://www.it-ebooks.info/

Chapter 3

[77]

Summary
We went through the internals of Solr and Lucene. We saw how a scorer works on an
inverted index and how the DisMax parser works in finding and ranking a result set.
We understood the algorithms that work within Lucene when we use the OR or AND
clause in Solr. We saw how filters work during the scoring of documents within a
result set and the importance and usage of the minimum match parameter.

In the second half of the chapter, we built our own query parser. We went through
the concepts of the parboiled parser API and built a SWAN query parser using the
API. We also understood what is required during indexing and search to integrate
and use the SWAN query parser as a plugin in Solr. This also cleared our concepts of
building a custom query parser plugin for Solr.

In the next chapter, we will be looking at the use of Solr in processing and handling
big data problems.

www.it-ebooks.info

http://www.it-ebooks.info/

www.it-ebooks.info

http://www.it-ebooks.info/

[79]

Solr for Big Data
In the previous chapter, we learned about Solr internals and the creation of custom
queries. We understood the algorithms behind the working of AND and OR clauses
in Solr and the internals of the eDisMax parser. We implemented our own plugin
in Solr for running a proximity search by using SWAN queries. We understood the
internals of how filters work.

In this chapter, we will discuss how and why Solr is an appropriate choice for
churning out analytical reports. We will understand the concept of big data and
how Solr can be used to solve the problems that come along with running queries on
big data. We will discuss different faceting concepts and see how distributed pivot
faceting works.

The topics that we will cover in this chapter are:

•	 Introduction to big data
•	 Getting data points using facets
•	 Radius faceting for location-based data
•	 Data analysis using pivot faceting
•	 Introduction to graphical representation of analytical reports

www.it-ebooks.info

http://www.it-ebooks.info/

Solr for Big Data

[80]

Introduction to big data
Big data can simply be defined as data too large to be processed by a single machine.
Let us say that we have 1 TB of data and the reports that need to be generated from it
cannot be processed on a single machine in a time span acceptable to us. Let us take
the example of click stream analysis. Internet companies such as Yahoo or Google
keep an eye on the activity of the user by capturing each click that the user does on
their website. Sometimes the complete page by page flow is also captured. Google,
for example, captures the position from the top of a search result page for a search on
a particular keyword or phrase. The amount of data generated and captured is huge
and may be running into exabytes every day. This data needs to be processed on a
day-to-day basis for analytical purposes. The analytical reports that are generated
from this data are used to improve the experience of the user visiting the website.

Is it possible to process an exabyte of data? Of course it is, but the main concern is to
process an exabyte of data every day to avoid creating a backlog. This would require
huge processing power, generally distributed over a number of machines. A few
factors that contribute to data being termed as big data are:

•	 Volume: Huge amounts of data, similar to the one we discussed earlier,
are to be processed every day. This data is mostly unstructured making it
difficult to process. Also, since the amount of data is huge, it needs to be
collected using multiple machines.

•	 Velocity: Velocity can be defined as the amount of data being generated in
a particular time span. In the example we saw earlier, we had a velocity of
around one exabyte per day. If we are unable to process the data with the
velocity it comes into the system, we will have a backlog that will keep on
increasing and the analytical system will lose its purpose.

•	 Variety: Variety defines the format of data. Data can be an unstructured text
document, financial transactions, e-mails, audio, video, and so on. The more
variety the data has, the more difficult it is to process the data.

•	 Veracity: Complexity arises from the fact that the data is so huge and needs
to be collected with such speed that a single machine cannot handle the task.
We may need to deploy a number of machines and then collate the data and
process it in a distributed fashion to generate the analytical reports required.
The accuracy of analytical output depends on the veracity of the source data.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 4

[81]

Now, how does Solr handle big data? Let us say that we are doing a click stream
analysis of data, and since the amount of data is huge, we are gathering it from
different machines and collating and processing it. We have the complete system
setup so that we can handle the volume and velocity, and we are generating daily
analytical reports that consist of certain data points. On a particular day, the analytics
team wants to add a new data point and view analytical reports of all the past data
with the added data point. What do we do? It is impossible to process past data to
generate the new data point. If we go by the previous architecture, we will be setting
up a huge number of machines to generate the new data point for all past data.

Would it make sense to parse the incoming data and store it so that reports can
be generated on the fly? A new data point or a mix of multiple data points can be
processed dynamically whenever needed. Instead of generating static reports, it
would make sense to store the data and run queries to generate a report as and
when required. A single Solr machine cannot handle such an amount of volume
and velocity.

SolrCloud, which will be discussed in Chapter 9, SolrCloud, comes to our rescue here.
It is the perfect tool for distributed data collection and processing. Using SolrCloud,
we can have multiple Solr nodes where data can be fed into the system and
processed by running queries. SolrCloud is horizontally scalable, which means
that as data increases, all we need to do is add more machines to the cloud.

Let us look at some advanced faceting functionalities of Solr for generating the
required reports.

Getting data points using facets
Let us refresh our memory about facets. Simply put, faceting refers to the method of
categorizing data. A facet on a search result will contain categories and the number
of documents in each category. The purpose of facets is to help the user narrow
down his or her search result on the basis of some categories. Let us take an example
to understand this better.

www.it-ebooks.info

http://www.it-ebooks.info/

Solr for Big Data

[82]

A search on mobile a phone would bring up a few of the following facets on the
Amazon website:

•	 Facet for Brand: We can see a facet for Brand in the following screenshot:

The brand facet is purely intended to help the user shortlist his or her preferences.
The count of cell phones for each brand is not displayed, although this information
is readily available and can be used for display.

•	 Facet for display size: We can see the facet for display size in the
following image:

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 4

[83]

The display size category shows facets based on the range of display sizes. Phones
having sizes of less than 3.9 inches are grouped together. Similarly, we can see the
count of phones having display sizes in the range 4 to 4.4 inches, and so on.

•	 Facet for internal memory: We can see the facet for internal memory of
mobile phones in the following image:

The facet for internal memory displays the number of cell phones having a particular
size of internal memory. This categorization is based on the value of internal
memory for each phone:

•	 Facet for price and discount: We can see the facet for Price and Discount in
the following image:

www.it-ebooks.info

http://www.it-ebooks.info/

Solr for Big Data

[84]

The facet for price is another example of range faceting where phones having prices
less than $10 are grouped together. Similarly, phones costing between $10 and $25
are counted as a single category, and so on. Discount is another example of range
faceting but in increasing order of discounts. Here phones having discounts of more
than 10 percent are grouped together. However, this category also contains phones
that have discounts of more than 25 percent.

All of the above facets can be built using three types of facet queries in Solr, field
faceting, query faceting, and range faceting. Let us understand how they work.

Let us add some data into an empty Solr core. Upload the data from the ch04data.
csv file provided as code with this chapter by running the following command
inside the <solr_folder>/example/exampledocs folder:

java -Durl=http://localhost:8983/solr/collection1/update -Dtype=text/csv
-jar post.jar /path/to/ch04/Code/ch04data.csv

You can run a simple query to check whether the data has been loaded into the Solr
core:

http://localhost:8983/solr/collection1/select/?q=*:*

Field faceting
Field faceting retrieves the count of all terms in a specific indexed field. Field faceting
is done to categorize the data on the basis of values in a specific field. We have
uploaded some data related to mobiles onto our Solr core. Let us categorize the data
on the basis of the different brands of phones that we have in our index and see what
we get.

Field faceting is simple; just add the following parameters to the select query:

&facet=true
&facet.field=brand_s

In order to facet on more than one field, add another field to the Solr query. Let us
also categorize the indexes of mobile phones on the basis of their internal memory.
Now the parameters in our query would be:

&facet=true
&facet.field=brand_s
&facet.field=memory_i

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 4

[85]

The complete Solr query is as follows:

http://localhost:8983/solr/collection1/
select/?q=*:*&facet=true&facet
.field=brand_s&facet.field=memory_i

The response can be seen in the following image:

How does this help in handling big data? When we have huge amounts of data,
field faceting can be used to retrieve information regarding different fields in the
index. For example, if we are dealing with the population in a country, we can have
indexes on states and cities and facets on those states and cities. This will give us an
analytical output on the population in those states and cities.

www.it-ebooks.info

http://www.it-ebooks.info/

Solr for Big Data

[86]

Query and range faceting
Query faceting or range faceting can be used to categorize data on the basis of a
particular query or a set of queries. We can create a facet similar to the discount facet
that we saw on the Amazon website using query faceting. The facet would categorize
the data of mobile phones with discounts of greater than 5 percent, 10 percent, 15
percent, and 20 percent. The facet containing the count of mobile phones having
discounts of greater than 10 percent will include phones with 15 and 20-percent
discounts. To create this facet, we will be adding the following parameters in our
Solr query:

&facet=true
&facet.query=discount_i:[5 TO *]
&facet.query=discount_i:[10 TO *]
&facet.query=discount_i:[15 TO *]
&facet.query=discount_i:[20 TO *]

The complete Solr query will be as follows:

http://localhost:8983/solr/collection1/
select/?q=*:*&facet=true&facet
.query=discount_i:[5 TO *]&facet.query=discount_i:[10 TO
*]&facet.query=discount_i:[15 TO *]&facet.query=discount_i:[20 TO *]

The output of the query will create the following facets:

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 4

[87]

When dealing with analytical data, we would need to create complex facets, which
would be a combination of a query facet and a field facet. This would help us in
getting different categories out of a single query and save us the overhead of running
multiple queries. When dealing with big data, it is more important to create an
efficient query, as owing to the size of the data, the time required for running a single
query may be huge. Therefore, it is imperative to spend more time on creation of an
efficient query to get as many facets as required from a single query.

Let us create a mixed facet of price and brand and memory, somewhat similar to
the one we saw on the Amazon website. The price facet will contain the count of
mobiles having prices in the ranges 0 to 100, 100 to 200, 200 to 300, and more than
300. We will also be getting facet counts for the brand and the internal memory of
mobile phones.

The parameters that we will be adding to the Solr query would be:

&facet=true
&facet.query=price_i:[* TO 100]
&facet.query=price_i:[101 TO 200]
&facet.query=price_i:[201 TO 300]
&facet.query=price_i:[301 TO *]
&facet.field=brand_s
&facet.field=memory_i

The complete query that we would run on Solr to create this complex facet will be:

http://localhost:8983/solr/collection1/select/?q=*:*&facet=true&facet
.query=price_i:[* TO 100]&facet.query=price_i:[101 TO
200]&facet.query=price_i:[201 TO 300]&facet.query=price_i:[301 TO
*]&facet.field=brand_s&facet.field=memory_i

www.it-ebooks.info

http://www.it-ebooks.info/

Solr for Big Data

[88]

The output will contain the three facets that we wanted:

In the earlier example of population of a country, we can now create multiple facets
such as average income, age, and gender in addition to the simple facets of city
and state. We can create a complex Solr query that contains the query for faceting
on a certain income range, or another query for faceting on age range, say 0 to 3
years, 3 to 12 years, 12 to 18 years, and so on. Once we obtain this data for the entire
country, we can narrow down to state and city facets by adding filter queries to
our query.

A filter query, if we remember, simply adds a restriction on the actual query to
provide more targeted data. Filter queries are generally added by using the fq
parameter in our Solr query. Therefore, to obtain the facet counts for a city, we will
be adding a filter query fq=city_name in our Solr query, and this will generate
statistical counts for a particular city.

The same fundamentals can be extended to click stream analysis, which we
discussed earlier. We can create facets for urls, referrers, and even different
features being accessed on each URL, provided we have captured the required data
in our SolrCloud.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 4

[89]

Radius faceting for location-based data
Location-based data can be represented in Solr using latitudes and longitudes.
Applications can combine other data with location information to provide more
insight into the data pertaining to a certain location. In analytics, location-based
data is very important. Whether we are dealing with sales information, statistical
information of any kind, or information pertaining to visits to a website, having a
location in addition to the numbers that we already have provides an additional
insight with a regional perspective.

We will delve into how geospatial searches happen in Solr in Chapter 6, Solr for Spatial
Search. For the current chapter, let us understand the different types of location filters
available with Solr.

For spatial filters, the following parameters are used in Solr:

•	 d: Radial distance in kilometers
•	 pt: Center point in the format of latitude and longitude
•	 sfield: Refers to a spatial indexed field

In order to run queries, we would need the default documents pushed
into our running Solr instance. Simply run the following command in
the exampledocs folder in your Solr installation to get these documents
indexed in Solr:
java -jar post.jar *.xml

A query on the complete index will tell us that we now have around 52
records in our index:

http://localhost:8983/solr/collection1/select/?q=*:*

Different types of spatial filter queries can be defined as follows.

The geofilt filter
The geofilt filter allows us to retrieve results based on the geospatial distance from
a given center point. That is, it creates a filter of a particular shape. For example, to
find all documents within 5 km from a given lat / lon point, we could enter the
value &q=*:*&fq={!geofilt sfield=store}&pt=45.15,-93.85&d=5.

www.it-ebooks.info

http://www.it-ebooks.info/

Solr for Big Data

[90]

This is shown in the following image:

Let us execute the query we have formed on our Solr index. The complete query
will be:

http://localhost:8983/solr/collection1/select/?q=*:*&fq={!geofilt%20s
field=store}&pt=45.15,-93.85&d=5

This gives us three records that are within 5 km from the specified lat / lon position
(45.15, -93.85).

The bounding box filter
The bounding box, or bbox filter is very similar to geofilt, except that the former uses
the bounding box of the calculated circle, similar to the box shown in the following
diagram. It takes the same parameters as geofilt, but the rectangular shape is faster
to compute. Therefore, it's sometimes used as an alternative to geofilt when it's
acceptable to return points outside of the radius.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 4

[91]

We can use the same query we ran earlier and ask for a bbox filter instead of a
geofilt filter:

http://localhost:8983/solr/collection1/select/?q=*:*&fq={!bbox}&sfiel
d=store&pt=45.15,-93.85&d=5

We need to run the following query to apply a bbox filter:

www.it-ebooks.info

http://www.it-ebooks.info/

Solr for Big Data

[92]

The same query now returns five results instead of three. The last two results are
outside the geofilt but inside the bbox filter.

The rectangle filter
Instead of using the bbox filter, we can also run the rectangle filter, which will
fetch the same result if run for a square instead of a rectangle (since the bbox filter
can be run for a square only and not for a rectangle). The query for executing the
rectangular filter will be as follows:

http://localhost:8983/solr/collection1/select/?q=*:*&fq=store:[45,-94
TO 46,-93]

The following image shows the area that will be used for the rectangle filter:

Distance function queries
Solr provides a set of function queries to calculate distance during querying:

•	 geodist: This takes three optional parameters (sfield, lat, lan) and can be
used to sort results on the basis of distance. For example, to sort results by
ascending distance, we would append the sort=geodist asc parameter to
our previous geofilt query.

•	 dist: This is used to calculate the normal distance between two points on a
plane surface.

•	 hsin: This is used to calculate the distance between two points on a sphere.
•	 sqedist: This is used to calculate the euclidean distance between two points.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 4

[93]

Euclidean distance is used to measure the distance between two lat / lon
coordinates more accurately. For more information, refer to the following wiki
page: http://en.wikipedia.org/wiki/Euclidean_distance.

Radius faceting
Now that we have understood in brief the different distance filter queries and
function queries that can be used with location information, we can use this
information to filter our search results on the basis of the radial distance from
a given location.

Let us say that we need to figure out how many people visit our website via mobile
phones from different regions. For this, we capture the GPS coordinates of the mobile
phone, and log and index the information into our SolrCloud.

Now in order to obtain the number of mobiles accessing our website at a particular
time and from a particular region, we need to create range facets, mostly using the
rectangular filter, and divide our target region into different sections. A sample facet
query would be as follows:

facet=true&
facet.query=store:[45,-94 TO 46,-93]&
facet.query=store:[45,-93 TO 46,-92]&
facet.query=store:[46,-94 TO 47,-93]

If we have city names, we can facet by city and also add multiple geofilt filters to
create multiple facets of regions inside the city that are of interest to us.

Another way to facet is by using the frange filter. With frange, we can create facets
of concentric circular regions from a center point. The following query will create
two facets from the center point (45.15,-93.85). The first facet will start from the
center point and go up to a radius of 5 km. The second facet will start from 5.001 km
from the center point and go up to 10 km:

http://localhost:8983/solr/select?q=*:*&sfield=store&pt=45.15,-
93.85&facet.query={!frange l=0 u=5}geodist()&facet.query={!frange
l=5.001 u=10}geodist()&facet=true

www.it-ebooks.info

http://en.wikipedia.org/wiki/Euclidean_distance
http://www.it-ebooks.info/

Solr for Big Data

[94]

Analytics using location data is a very powerful tool in understanding and resolving
issues that arise from location difference. Why sales do not happen well in a certain
part of a city? Why is there a huge number of visits from a certain region spanning
multiple cities to our website? The identification of such questions and their answers
can be achieved only by indexing these data into SolrCloud and writing complex
Solr queries with filters and facets. We can create facets by distance from certain
store locations. We can use radius or range faceting from a store and figure out the
number of sales from the different facets we have created. This can give us a deep
insight into what can be done to improve the numbers that we are trying to achieve.

Data analysis using pivot faceting
As per the definition of pivoting in the Solr wiki, it is a summarization tool that
lets you automatically sort, count, total, or average data stored in a table. Pivot
faceting lets you create a summary table of the results from a query across
numerous documents.

The output of pivot faceting can be referred to as decision trees. This means the
output of pivot faceting is represented by a hierarchy of all sub-facets under a facet
with counts both for individual facets and sub-facets. We can constrain the previous
facet with a new sub-facet and get counts of the sub-sub-facets inside it. Let us see an
example to understand pivot faceting.

Facet A has constraints as X,Y with counts M for X and N for Y. We could go ahead
and constrain facet A by X and get a new sub-facet B with constraints W,Z and
counts O for W and P for Z.

To understand better how pivot faceting works and hence how it could be helpful in
analytics, let us see an example. Our index contains some mobile phones. Let us see
the count of brands and the number of options having different memory capacities.
The query will contain the following parameters for this faceting:

facet.pivot=brand_s,memory_i&
facet.pivot.mincount=1&
facet=true

In this snippet, note the following:

•	 The facet.pivot parameter defines the fields to use for the pivot. Multiple
facet.pivot values will create multiple facet_pivot sections in the
response.

•	 The facet.pivot.mincount parameter defines the minimum number of
documents that need to match in order for the facet to be included in results.
The default value is 1.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 4

[95]

The complete query would be as follows:

http://localhost:8983/solr/collection1/select?q=*:*&facet.pivot=brand
_s,memory_i&facet=true&facet.pivot.mincount=1

We can see that the output contains counts for all brands. Inside each brand, there
are different memory options and their respective counts. A portion of the pivot
faceting output is as follows. It shows two brands, Apple and Nokia, where Nokia
has both 8 and 16 GB memory options but Apple has only a 16 GB memory option.

An interesting facet to watch over here is that of the price inside the discount
percentage and brand inside memory options. The parameters to be added in our
query would be the following:

facet.pivot=memory_i,brand_s&
facet.pivot=discount_i,price_i

www.it-ebooks.info

http://www.it-ebooks.info/

Solr for Big Data

[96]

The complete query would be as follows:

http://localhost:8983/solr/collection1/select?q=*:*&facet.pivot=memor
y_i,brand_s&facet.pivot=discount_i,price_i&facet=true&facet.pivot.min
count=1

We have created multiple pivot facets here. The first is of brand inside memory:

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 4

[97]

Another pivot facet is that of price inside discount as shown in the
following image:

www.it-ebooks.info

http://www.it-ebooks.info/

Solr for Big Data

[98]

Pivot faceting can be used to generate summarization and decision tree–type
analytical information out of big data, provided that we have the required data
properly indexed into our SolrCloud. If we take the example of population analysis,
we can create pivot facets on fields such as age, gender, and income and get a
detailed location-wise summary.

Graphs for analytics
Once we know which queries to execute for getting the facets and hierarchical
information, we need a graphical representation of the same. There are a few open
source graph engines, mostly JavaScript based, that can be used for this. Most of
these engines take JSON data and use it to display the graphs. Let us see some of
the engines:

•	 chart.js: This is an HTML5 based graph engine. It can be downloaded from
http://www.chartjs.org.

•	 D3.js: This is another JavaScript library that brings data to life using HTML
and CSS. D3 can be used to generate an HTML table from an array of
numbers or the same numbers can be used to draw an interactive bar chart. It
is available for download at http://d3js.org.

•	 Google charts: This is another library provided by Google. It can be used to
draw graphs based on data from Solr. Google charts provide a large range
of graphs from simple line charts to complex hierarchical tree maps. Most of
the charts are ready to use. Google charts can be downloaded from https://
developers.google.com/chart/.

•	 Highcharts: This is the library that we will use here. It is one of the most used
JavaScript graph libraries. Highcharts can be downloaded from http://www.
highcharts.com/.

Getting started with Highcharts
In this section, we will download and run some samples from Highcharts. We will
get familiar with how to give it data for creating graphs.

www.it-ebooks.info

http://www.chartjs.org
http://d3js.org
https://developers.google.com/chart/
https://developers.google.com/chart/
http://www.highcharts.com/
http://www.highcharts.com/
http://www.it-ebooks.info/

Chapter 4

[99]

Let us download Highcharts from http://www.highcharts.com/download. We are
using Highchart 4.0.4. Any version of Highcharts above this should work. Simply
unzip the downloaded Highcharts-4.*.*.zip file and open the folder in your
browser. When we open up the index.htm file in the browser, we will be able to
see the samples of different types of charts:

www.it-ebooks.info

http://www.highcharts.com/download
http://www.it-ebooks.info/

Solr for Big Data

[100]

Go down to the column and bar charts section and click on basic bar. We will be
able to see the bar chart as shown in the following image:

To check the code, open up the file examples/bar-basic/index.htm inside the
folder where you had unzipped the highchart.zip file.

We can see that there is a div tag defined as follows called container:

<div id="container" style="min-width: 310px; max-width: 800px;
height: 400px; margin: 0 auto"></div>

Two JavaScripts have been included in the page:

<script src="../../js/highcharts.js"></script>
<script src="../../js/modules/exporting.js"></script>

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 4

[101]

The code for creating the graph is written in inline JavaScript. We have defined the
container div tag for the chart. The chart type is bar, and title and subtitle
for the chart have been provided. Next, we define the labels for the X-Axis and
Y-Axis classes:

<script type="text/javascript">
$(function () {
 $('#container').highcharts({
 chart: {
 type: 'bar'
 },
 title: {
 text: 'Historic World Population by Region'
 },
 subtitle: {
 text: 'Source: Wikipedia.org'
 },
 xAxis: {
 categories: ['Africa', 'America', 'Asia', 'Europe',
'Oceania'],
 title: {
 text: null
 }
 },
 yAxis: {
 min: 0,
 title: {
 text: 'Population (millions)',
 align: 'high'
 },
 labels: {
 overflow: 'justify'
 }
 },
 tooltip: {
 valueSuffix: ' millions'
 },
 plotOptions: {
 bar: {
 dataLabels: {
 enabled: true
 }
 }
 },

www.it-ebooks.info

http://www.it-ebooks.info/

Solr for Big Data

[102]

 legend: {
 layout: 'vertical',
 align: 'right',
 verticalAlign: 'top',
 x: -40,
 y: 100,
 floating: true,
 borderWidth: 1,
 backgroundColor: ((Highcharts.theme && Highcharts.theme.
legendBackgroundColor) || '#FFFFFF'),
 shadow: true
 },
 credits: {
 enabled: false
 },
 series: [{
 name: 'Year 1800',
 data: [107, 31, 635, 203, 2]
 }, {
 name: 'Year 1900',
 data: [133, 156, 947, 408, 6]
 }, {
 name: 'Year 2008',
 data: [973, 914, 4054, 732, 34]
 }]
 });
});
</script>

The X-Axis class contains the name of regions and the Y-Axis class represents
the population count per year. The series section provides data for X-Axis. Since
there are five regions, each year in the series array contains five elements in the
data sub-array.

Displaying Solr data using Highcharts
Now let us modify this Highchart to display data from Solr. Start a fresh instance of
Solr and index all the xml and csv files from the exampledocs folder. You can use
the following commands to index all the files in the exampledocs folder:

java -jar post.jar *.xml

java -Dtype=text/csv -jar post.jar *.csv

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 4

[103]

Now let us run a query that gives facets based on the cat field:

http://localhost:8983/solr/collection1/select/?q=*:*&facet=true&facet
.field=cat

The following are the facets obtained from the execution of the snippet:

Now let us write a simple PHP script to read facets from the preceding query and
create the JSON required for the Highchart. The script created uses a PHP library
for Solr known as Solarium. For advanced features of Apache Solr PHP integration,
please refer to an earlier book on this topic, Apache Solr PHP Integration, Packt
Publishing. Thus, we will not study the installation and integration details of Solr and
PHP in depth.

To run the example code, we will need a web server, Apache, with PHP installed in
it. We will have to install the Solarium library using composer and then open up the
script on the browser to get the graph.

www.it-ebooks.info

http://www.it-ebooks.info/

Solr for Big Data

[104]

On a Linux or Ubuntu machine, use the following commands to get
started with PHP and Solarium:
sudo apt-get install php5 apache2 libapache2-mod-php5

The web folder of Apache2 is located at the /var/www/html path.
Unzip the highcharts.zip file inside the html folder and put the code
there.
To install Solarium using a composer, create the following composer.
json file:

{

 "require": {

 "solarium/solarium": "3.2.0"

 }

}

Then run the following command:
composer install

This will download the composer library and install it in a folder vendor
inside the /var/www/html folder. Now place facetGraph.php in the
same folder.

On running the PHP code, we will get the following graph:

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 4

[105]

Now let us go through and understand the code.

We have defined our Solr connection parameters using the configuration variable
and created a Solarium client:

$config = array(
 "endpoint" => array(
 "localhost" => array(
 "host"=>"127.0.0.1",
 "port"=>"8983",
 "path"=>"/solr",
 "core"=>"collection1",
),
)
);
$client = new Solarium\Client($config);

We are creating our select query using the following code:

$query = $client->createSelect();
$query->setQuery('*:*');

We have created a facet for the cat field and named the facet as category for
reference in our PHP code:

$facetset = $query->getFacetSet();
$facetset->createFacetField('category')->setField('cat');

Next, we execute the query and get the facets from the result set:

$resultSet = $client->select($query);
$facet_cat = $resultSet->getFacetSet()->getFacet('category');

In our JavaScript code required for generating the graph, we have defined the
category names in the x-Axis class:

xAxis: {
 categories: [<?php foreach($facet_cat as $item => $count)
{ echo "'".$item."',"; } ?>],
 title: {
 text: null
 }
 },

www.it-ebooks.info

http://www.it-ebooks.info/

Solr for Big Data

[106]

The category numbers in the series variable are defined as follows:

series: [{
 name: 'current',
 data: [<?php foreach($facet_cat as $item => $count) {
echo $count.","; } ?>]
 }]

The highchart.js files are referred to via the following lines in our code:

<script src="js/highcharts.js"></script>
<script src="js/modules/exporting.js"></script>

This shows that, using simple queries and JavaScript graph libraries, we can generate
graphs required for analytics.

With SolrCloud, we can target terabytes of data—as it can be linearly scaled across
multiple nodes or machines running Solr. We can create a data warehouse and use
it to store massive amounts of data. We can feed the data to the system in real time
and build graphs for analytics purposes. The graphs would then reflect the changes
happening in real time and provide an insight into historical data.

Summary
In this chapter, we learnt how Solr can be used to churn out data for analytics
purposes. We also understood big data and learnt how to use different faceting
concepts, such as radius faceting and pivot faceting, for data analytics purposes. We
saw some codes that can be used for generating graphs and discussed the different
libraries available for this. We discussed that, with SolrCloud, we can build our own
data warehouse and get graphs of not only historical data but also real-time data.

In the next chapter, we will learn about the problems that we normally face during
the implementation of Solr on an e-commerce platform. We will also discuss how
to debug such problems along with tweaks to further optimize the instance(s).
Additionally, we will learn about semantic search and its implementation in
e-commerce scenarios.

www.it-ebooks.info

http://www.it-ebooks.info/

[107]

Solr in E-commerce
In this chapter, we will discuss in depth the problems faced during the
implementation of Solr for search on an e-commerce website. We will look at the
related problems and solutions and areas where optimizations may be necessary. We
will also look at semantic search and how it can be implemented in an e-commerce
scenario. The topics that will be covered in this chapter are listed as follows:

•	 Designing an e-commerce search
•	 Handling unclean data
•	 Handling variations (such as size and color) in the product
•	 Sorting
•	 Problems and solutions of flash sale searches
•	 Faceting with the option of multi-select
•	 Faceting with hierarchical taxonomy
•	 Faceting with size
•	 Implementing semantic search
•	 Optimizations that we can look into

Designing an e-commerce search
E-commerce search is special. For us, a Lucene search is a Boolean information
retrieval model based on the vector space model. However, for an end user, or
a customer, any search on an e-commerce website is supposed to be simple. A
customer would not make a field-specific search but will focus on what he or she
wants from the search.

www.it-ebooks.info

http://www.it-ebooks.info/

Solr in E-commerce

[108]

Suppose a customer is looking out for a pink sweater. The search that will be
conducted on the e-commerce website will be pink sweater instead of +color:pink
+type:sweater—using the Solr query syntax. It is our search that will have to figure
out how to provide results to the customer so that whatever is being searched for
is available to the customer. The problem with e-commerce website searches is that
most of the searches happen with the idea that the results are to be retrieved from
bag of words or plain text documents. However, it is important for us to categorize
and rank the results so that whatever is being searched for is present in the result set.

On a broad note, the following fields can be observed on an e-commerce website
catering for clothes:

Category: Clothes
Brand: levis
Gender: Mens
Type: Jeans
Size: 34
Fitting: Regular
Occasion: Casual
Color: Blue

The following fields could be observed if the e-commerce website caters for
electronics, especially mobiles:

Category: Mobile
Brand: Motorola
OS: Android
Screen size: 4
Camera: 5MP
Color: Black

What about the fields for electronics such as laptops?

Category: Laptop
Brand: Lenovo
Processor: intel i5
Screen size: 14 inch
Memory: 4GB
OS: Windows 8
Hard disk: 500 GB
Graphics Card: Nvidia
Graphics card memory: 2 GB DDR5

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 5

[109]

The point we are arriving at is that the scope of fields on any e-commerce website is
huge. On the basis of the categories that we intend to serve through our website, we
need to list down the fields for each category and then apply our mind to what needs
to be tokenized. Suppose that the website we intend to create caters only for mobiles
and laptops. Then, the number of fields are limited to the union of both of them. As
we add more and more categories, we will need to add more and more fields specific
to those categories. Dynamic fields come to our rescue as the number of fields on an
e-commerce website increases.

Another important point is to decide which fields would be serving as facets, as
we will have to keep a separate field for creating facets. Let us take an example of a
website catering to the three categories we discussed earlier and design the schema
for it.

Each product will have its unique ID, which is known as sku for the product. A
Stock Keeping Unit (SKU) is a unique identifier for each product in e-commerce.
It is recommended to use an SKU as the unique key in Solr as it is the unique key
referencing each product in an e-commerce catalog. This would be an indexed, but
not tokenized, field:

<field name="sku" type="lowercase" indexed="true" stored="true"
omitNorms="true"/>

In this case, the lowercase field type is defined as follows:

<fieldType name="lowercase" class="solr.TextField"
positionIncrementGap="100">
<analyzer>
<tokenizer class="solr.KeywordTokenizerFactory"/>
<filter class="solr.LowerCaseFilterFactory" />
</analyzer>
</fieldType>

Next, we define the category that is a string—again non-tokenized. Note that we
have set multiValued as true, which is a provision for allowing a single product to
belong to multiple categories:

<field name="cat" type="string" indexed="true" stored="true"
multiValued="true"/>

www.it-ebooks.info

http://www.it-ebooks.info/

Solr in E-commerce

[110]

The brand and product name fields are whitespace tokenized and converted
to lowercase:

<field name="name" type="wslc" indexed="true" stored="true"/>
<field name="brand" type="wslc" indexed="true" stored="true"/>

<fieldType name="wslc" class="solr.TextField"
positionIncrementGap="100">
<analyzer type="index">
<tokenizer class="solr.WhitespaceTokenizerFactory"/>
<filter class="solr.LowerCaseFilterFactory" />
</analyzer>
<analyzer type="query">
<tokenizer class="solr.WhitespaceTokenizerFactory"/>
<filter class="solr.SynonymFilterFactory" synonyms="synonyms.txt"
ignoreCase="true" expand="true"/>
<filter class="solr.StopFilterFactory" ignoreCase="true"
words="stopwords.txt" />
<filter class="solr.LowerCaseFilterFactory"/>
</analyzer>
</fieldType>

Notice that we have applied separate logic for indexing and search or querying on
these fields and have also included synonyms and stopwords in our query logic.
During indexing, the text is simply tokenized on whitespace and lowercased.
However, during search, we are using stop words to remove unwanted tokens from
the search query and synonyms to map certain words with similar meaning words,
thus catering to more relevant results. If the user mistypes certain words, synonyms
can be used to map common mistakes with relevant words in the index. They can
also be used to map short names with full words. For example, shirt could be
mapped to t-shirt, polo, and so on, and the search result for shirt will contain
t-shirts, polos, and other variations of t-shirts. This would be a one-way
mapping, which means that t-shirts and polos cannot be mapped back to shirts.
Performing a reverse mapping will give irrelevant results.

Another common field across all these categories is price. This can be defined
as follows:

<field name="price" type="float" indexed="true" stored="true"/>

Now that we have all the common fields defined, let's go ahead and define the
category-specific fields.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 5

[111]

For the clothes category, we would define the following fields:

<field name="clothes_gender" type="string" indexed="true"
stored="true"/>
<field name="clothes_type" type="string" indexed="true"
stored="true"/>
<field name="clothes_size" type="string" indexed="true"
stored="true"/>
<field name="clothes_fitting" type="string" indexed="true"
stored="true"/>
<field name="clothes_occassion" type="string" indexed="true"
stored="true"/>
<field name="clothes_color" type="string" indexed="true"
stored="true"/>

Similarly, we have to define fields for the categories mobile and laptop. We can also
define these fields via a dynamicField tag. It is important to note that most of these
fields would be used for faceting and in filter queries for narrowing down the results:

<dynamicField name="mobile_*" type="string" indexed="true"
stored="true" />
<dynamicField name="laptop_*" type="string" indexed="true"
stored="true" />

Using dynamic fields gives flexibility to the indexing script to add fields during the
indexing process. In addition to all these fields, we will also have a text field that
will be used to collect all data from different fields and provide that for search. We
will also need a separate field to store the product description:

<field name="text" type="text_general" indexed="true" stored="false"
multiValued="true"/>
<field name="desc" type="text_general" indexed="true" stored="false"
/>

We will have to copy the required fields into the text field for generic search:

<copyField source="cat" dest="text"/>
<copyField source="name" dest="text"/>
<copyField source="brand" dest="text"/>
<copyField source="sku" dest="text"/>
<copyField source="clothes_color" dest="text"/>
<copyField source="clothes_type" dest="text"/>

This schema should be sufficient for our use case.

We are copying only the clothes_color and clothes_type values in
our text field for generic search, since we want to provide only color and
type as a part of the generic search.

www.it-ebooks.info

http://www.it-ebooks.info/

Solr in E-commerce

[112]

Let us see how we would perform a search for any particular query coming on our
e-commerce website. Suppose a person searches for iphone. Now, the search engine
is not aware that the person is searching for a mobile phone. The search will have
to happen across multiple categories. Also, the search engine is not aware whether
the search happened over a category or a brand or a product name. We will look at
a solution for identifying and providing relevant results later in this chapter. Let us
look at a generic solution for the query:

q=text:iphone cat:iphone^2 name:iphone^2
brand:iphone^2&facet=true&facet.mincount=1&facet.field=clothes_
gender&facet.field=clothes_type&facet.field=clothes_size&facet.
field=clothes_color&facet.field=brand&facet.field=mobile_os&facet.
field=mobile_screen_size&facet.field=laptop_processor&facet.
field=laptop_memory&facet.field=laptop_hard_disk&defType=edismax

The output from this query would contain results for iphone. As iphone is the name
of a product, it will be boosted and results where the name field contains iphone
will appear on top. In addition to this, we will be getting a lot of facets. As we have
provided the parameter facet.mincount=1, only facets that contain at least one
count will display in the result. All we need to do is loop through the facets that we
got in the result and display them along with a checkbox.

Once the user clicks on the checkbox, we will have to rewrite our query with the
filter query parameter. Suppose, in the preceding query, the user selects the screen
size as 4. Then, the following filter query will be appended to our original Solr query:

fq=mobile_screen_size:4

This will narrow down the results and help the customer in getting closer to the
product he or she is willing to search. As the customer selects more and more facets,
we will keep on adding filter queries and the search will narrow down to what the
customer wants.

Handling unclean data
What do we mean by unclean data? In the last section, we discussed a customer
searching for pink sweater, where pink is the color and sweater is the type of
clothing. However, the system or the search engine cannot interpret the input in this
fashion. Therefore, in our e-commerce schema design earlier, we created a query
that searched across all fields available in the index. We then created a separate
copyField class to handle search across fields, such as clothes_color, that are not
being searched in the default query.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 5

[113]

Now, will our query give good results? What if there is a brand named pink? Then
what would the results be like? First of all, we would not be sure whether pink is
intended to be the color or the brand. Suppose we say that pink is intended to be the
color, but we are also searching across brands and it will contain pink as the brand
name. The results will be a mix of both clothes_color and brand. In our query, we
are boosting brand, so what happens is we get sweaters from the pink brand in our
output. However, the customer was looking for a sweater in pink color.

Now let's think from the user's point of view. It is not necessary that the user has the
luxury of going through all the results and figuring out which pink sweater looks
interesting. Moreover, the user may be browsing on a mobile, in which case, looping
through the results page by page would become very tedious. Thus, we need high
precision in our results. Our top results should match with what the user expects.

A way to handle this scenario is to not tokenize during the index time, but only
during the search time. Therefore, exact fields such as brand and product name
can be kept as it is. However, while searching across these fields, we would need to
tokenize our query. Let us alter our schema to handle this scenario.

We had created a fieldType class named wslc to handle the fields brand and name.
We will change the tokenizer during index time to keywordTokenizer and leave the
tokenizer during query time as it is:

<fieldType name="wslc" class="solr.TextField"
positionIncrementGap="100">
 <analyzer type="index">
 <tokenizer class="solr.KeywordTokenizerFactory"/>
 <filter class="solr.LowerCaseFilterFactory" />
 </analyzer>
 <analyzer type="query">
 <tokenizer class="solr.WhitespaceTokenizerFactory"/>
 <filter class="solr.SynonymFilterFactory" synonyms="synonyms.txt"
 ignoreCase="true" expand="true"/>
 <filter class="solr.StopFilterFactory" ignoreCase="true"
 words="stopwords.txt" />
 <filter class="solr.LowerCaseFilterFactory"/>
 </analyzer>
</fieldType>

www.it-ebooks.info

http://www.it-ebooks.info/

Solr in E-commerce

[114]

Also, let's change fieldType for clothes_type and clothes_occassion to "wslc"
and include these fields in our Solr search query:

<field name="clothes_type" type="wslc" indexed="true" stored="true"/>
<field name="clothes_occassion" type="wslc" indexed="true"
stored="true"/>

We will also use the eDisMax parser, which we have seen in the earlier chapters. Our
query for pink sweater will now be:

q=pink sweater&qf=text cat^2 name^2 brand^2 clothes_type^2 clothes_
color^2 clothes_occassion^2&pf=text cat^3 name^3 brand^3 clothes_
type^3 clothes_color^3 clothes_occassion^3&fl=*,score&defType=edi
smax&facet=true&facet.mincount=1&facet.field=clothes_gender&facet.
field=clothes_type&facet.field=clothes_size&facet.field=clothes_
color&facet.field=brand&facet.field=mobile_os&facet.field=mobile_
screen_size&facet.field=laptop_processor&facet.field=laptop_
memory&facet.field=laptop_hard_disk

We have given a higher boost to exact phrase matches in our query. Therefore, if a
term is found as a phrase in any of the specified fields, the results will be a lot better.
Also, now since we are tokenizing only during search and not during indexing,
our results would be much better. Suppose we have a brand named pink sweater
and it is picked up as a phrase and the document where the brand=pink sweater
parameter is boosted higher. Next, documents where clothes_color is pink and
clothes_type is sweater are boosted. Let us run a debug query and verify what we
just said.

Query: pink sweater

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 5

[115]

Now even if we give multiple words in our search query, the results should be a
lot better. A search for tommy hilfiger green sweater should give very precise
results. Cases where results are not available are handled by the default search text
field. In case there are no results that match our search query, there would be some
results due to the copying of fields into text and the index time tokenization that
happens over there.

As we go further in depth in this chapter, we will see more and more ways of
indexing and searching data in an e-commerce website.

Handling variations in the product
Now that we have somewhat better search results for our e-commerce site, let us
look at handling variations. What do we mean by variations? Let us take our earlier
example of tommy hilfiger green sweater. For the sake of simplicity, let's say
that it comes in three sizes—small, medium, and large. Do we intend to show all
three sizes in our search results as individual products? That would be a waste of
the display area. If we take the example of a mobile screen, even if our top result
is exactly the green sweater we are looking at, in this scenario, it will have three
products on the first screen. Instead, we could have shown some other results that
may have been of interest to our customer.

Let us push in the sample data for clothes with the schema given in this chapter.
Replace the schema.xml file in the default Solr installation with that shared in this
chapter and run the following command to push the data_clothes.csv file into the
Solr index:

java -Dtype=text/csv -jar solr/example/exampledocs/post.jar data_clothes.
csv

The query we created earlier can be modified for tommy hilfiger green sweater
as follows:

http://localhost:8983/solr/collection1/select?q=tommy%20hilfiger%20
green%20sweater&qf=text%20cat^2%20name^2%20brand^2%20clothes_type^2%20
clothes_color^2%20clothes_occassion^2&pf=text%20cat^3%20name^3%20
brand^3%20clothes_type^3%20clothes_color^3%20clothes_occassion^3&fl=na
me,brand,price,clothes_color,clothes_size,score&defType=edismax&facet=
true&facet.mincount=1&facet.field=clothes_gender&facet.field=clothes_
type&facet.field=clothes_size&facet.field=clothes_color&facet.
field=brand&facet.field=mobile_os&facet.field=mobile_screen_
size&facet.field=laptop_processor&facet.field=laptop_memory&facet.
field=laptop_hard_disk

www.it-ebooks.info

http://www.it-ebooks.info/

Solr in E-commerce

[116]

On running this query, we are getting the following output:

Running query : "tommy hilfiger green sweater"

We can see that the first three results are exactly the same—they even have the same
score. They only differ in size. Therefore, what is required is that the results that have
variations in clothes_color and clothes_size be grouped together. However,
which grouping field do we select out of the two? Should we group by color so that
all greens are shown together, or should we group by size so that all medium sizes
are shown together? It depends on the input the user has already selected. If the user
has not selected any of color or size, it would make sense to group by color, so that
different sizes of the same color come together. On the other hand, if the user has
already selected a size, we would need to add a filter query on clothes_size to get
the desired output.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 5

[117]

In our previous query, grouping by clothes_color will give the following output:

Results grouped by color

The Solr query will contain the following extra parameters to group by the field
clothes_color:

group=true&group.field=clothes_color

www.it-ebooks.info

http://www.it-ebooks.info/

Solr in E-commerce

[118]

Once the user selects the size he or she is interested in, say medium, grouping
by clothes_color after applying the clothes_size filter query will give the
following output:

We will add the following filter query to our earlier Solr query:

fq=clothes_size:medium

The same fundamentals can be used to handle variations across multiple products
and categories. This feature in e-commerce is known as field collapsing. As in
the previous scenario, we have given priority to color over size for any product
variation. We will have to give priority to a certain aspect of the product variation.
Grouping would happen on the basis of that aspect. Remaining aspects would
appear as facets and will be used to filter out the results.

Sorting
In addition to search, we also need to provide sorting options on an e-commerce
website. By default, the search results are ordered by the relevancy score that has
been computed on the basis of the boosting we have provided. However, there
would still be requirements to sort the search results by other factors such as price,
discount, or latest products. Sorting by already known fields is simple. All we
need to do is add the sorting criteria behind our Solr search query:

sort=price asc

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 5

[119]

Alternatively, add the following sorting code:

sort=price desc

The intelligence that needs to be built into the system here is sorting by relevance
after price. This is to take care of scenarios where the ordered results may contain
irrelevant results in the top when, say, sorted by price in the ascending order.
Therefore, we would be modifying our query to include the score while sorting:

sort=price asc,score desc

Now, the top results would be better. Another intelligence that needs to be taken
care of is to exclude or de-boost results that are "out of stock". For this, we will have
to include inventory information in our index. We can say that we include the
inventory information as the availability of a particular product, so a new Boolean
field named 'instock' can be added to the index, which contains the availability of
the product:

<field name="instock" type="boolean" indexed="true" stored="true"/>

To exclude the products that are out of stock, we will need to simply add a
filter query:

fq=instock:true

This filter query will ensure that the results that we get from our Solr index will
contain only those products that are in stock. However, what if the search result
contains only "out of stock" products? In that case, the search will return zero
results. To fix this, we need to display out of stock products after the products that
are in stock. For this, we can run multiple queries. The first query runs with the
above filter query such that the results contain only instock products. Then, we run
the same query again after replacing the filter query parameter to get products that
are "out of stock":

fq=instock:false

www.it-ebooks.info

http://www.it-ebooks.info/

Solr in E-commerce

[120]

De-boosting of "out of stock" products is another way of achieving the same result,
but with a single query. Let us understand this with the help of an example. Run the
following query on the Solr index. Notice the sort and boost parameters passed in
the query:

q=iphone&qf=text%20cat^2%20name^2%20brand^2%20clothes_type^2%20
clothes_color^2%20clothes_occassion^2&pf=text%20cat^3%20name^3%20
brand^3%20clothes_type^3%20clothes_color^3%20clothes_occassion^3&f
l=name,brand,price,instock,score&defType=edismax&facet=true&facet.
mincount=1&facet.field=clothes_gender&facet.field=clothes_type&facet.
field=clothes_size&facet.field=clothes_color&facet.field=brand&facet.
field=mobile_os&facet.field=mobile_screen_size&facet.field=laptop_
processor&facet.field=laptop_memory&facet.field=laptop_hard_
disk&sort=score%20desc,price%20asc&boost=if(instock,10,0.1)

We want the cheapest iphone on top, but also want to de-boost all "out of stock"
iPhones. The boost parameter over here provides a multiplicative factor to the
relevance score. It states that if instock is true, multiply the relevance score by 10.
Else, multiply the relevance score by 0.1. Therefore, products that are in stock are
boosted, while products that are "not in stock" are de-boosted. Also, here instead of
sorting by price directly, we have first sorted by score, and then by price. The
results are very impressive:

Relevance scoring – results sorted by availability

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 5

[121]

We can see that the cheapest of all iphones comes at last because it is out of stock.
Remaining iphones are sorted by price in the ascending order.

Problems and solutions of flash sale
searches
The major problem that flash sale sites face is the sudden and large amount of traffic.
Generally, people are notified in advance about the time of the sale, so at that exact
moment, a large number of customers hit the site to purchase the objects on sale.
Therefore, we see a sudden spike in traffic and low traffic when there is no flash sale
happening.

Another problem is that, as soon as a product is sold out, it should be moved to the
bottom of the search result. We have already seen how this situation can be handled
in the previous section. However, this requires very frequent updates to the Solr
index. Ideally, as soon as a sale happens, the inventory status should be updated in
the index. This is a general problem, but with flash sale sites, the problem becomes
more acute. This is because at the time when the sale opens, there is a rush for a
certain product. Moreover, the site can lose customers if inventory is not properly
tracked and reported during flash sale time.

Thus, when we combine both the scenarios, we have a site that has a sudden spike in
traffic, and we also need to keep the inventory status updated in the index to prevent
over-selling of the product. Solr NRT indexing would help a lot in this scenario. A
soft commit at certain durations could be used to reflect the changes in the index. To
implement NRT in our index, we need to take care of two things in our solrconfig.
xml file.

A soft commit is much faster since it only makes index changes visible
and does not fsync index files or write a new index descriptor to disk.

We need to ensure that the DirectoryFactory directive used for creating the Solr
index is NRTCachingDirectoryFactory class:

<directoryFactory name="DirectoryFactory"
class="${solr.directoryFactory:solr.NRTCachingDirectoryFactory}">

www.it-ebooks.info

http://www.it-ebooks.info/

Solr in E-commerce

[122]

We need to ensure the time duration for soft commits. This is handled via the
autoSoftCommit directive:

<autoSoftCommit>
<maxTime>30000</maxTime>
</autoSoftCommit>

This indicates that, every 30 seconds (30,000 milliseconds), changes in the Solr index
will become available irrespective of whether they have been written to disk or not.
An autoCommit directive specifies the duration when the index will be written to
disk. It is important to note that, in the case of a system failure, if the changes that are
available via soft commit are not written to disk, the transaction log will be lost. If the
soft commit has been written to the transaction log, it will be replayed when the Solr
server restarts. If no hard commit has been made, the transaction log can contain a
lot of documents that can result in a considerable Solr server startup time.

The third problem is that a product on sale should be searchable only after the exact
sale time of the product. For example, if a product is supposed to go on sale at 2 pm
in the afternoon, it should be in the index before 2 pm but should be searchable only
after 2 pm.

In order to handle this scenario, we need to include time-sensitive data in our search
index. To do this, we need to add two additional fields in the Solr index that define
the start and end time of the sale for that particular product:

<field name="sale_start" type="date" indexed="true" stored="true"/>
<field name="sale_end" type="date" indexed="true" stored="true"/>

Once this information is stored in the index, all we need to do is add another filter
query to get the time sensitive products as a part of our search result. The filter query
will be:

fq=+sale_start:[* TO NOW]+sale_end:[NOW+1HOUR TO *]

However, this filter query is very inefficient because NOW calculates the time every
time the query is run. Therefore, filter query caching does not happen. A better way
to do this would be to round off the time to the nearest hour or minute to cache the
filter query for that duration. Thus, our filter query would become:

fq=+sale_start:[* TO NOW/HOUR]+sale_end:[NOW/HOUR+1HOUR TO *]

Now, as soon as the end time for the sale goes by, the product automatically
goes offline.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 5

[123]

Faceting with the option of multi-select
Facets are extracted from the search result. Once a customer selects an option from
the facet, we create a filter query that is typically an AND logic. For example, on
searching for a particular item, say tommy hilfiger, we would be getting results
that will have facets for size and color. It was previously assumed that the customer
would select a single option from both the facets. Say the selections are medium for
size and green for color. The filter query would be:

fq=clothes_size:medium&fq=clothes_color:green

This will be appended to our search query:

q=tommy%20hilfiger&qf=text%20cat^2%20name^2%20brand^2%20clothes_
type^2%20clothes_color^2%20clothes_occassion^2&pf=text%20cat^3%20
name^3%20brand^3%20clothes_type^3%20clothes_color^3%20clothes_
occassion^3&fl=name,clothes_size,clothes_color,score&defType=edis
max&facet=true&facet.mincount=1&facet.field=clothes_gender&facet.
field=clothes_type&facet.field=clothes_size&facet.field=clothes_
color&facet.field=brand&facet.field=mobile_os&facet.field=mobile_
screen_size&facet.field=laptop_processor&facet.field=laptop_
memory&facet.field=laptop_hard_disk&fq=clothes_size:medium&fq=clothes_
color:green

What happens if the customer intends to select multiple options in facets? In this
case, suppose the customer is interested in both medium and large sizes and also
in green and red colors. To handle this, we will have to use OR between multiple
options in our filter query for a particular field. The filter query in this case will be:

fq=clothes_size:medium clothes_size:large&fq=clothes_color:red
clothes_color:green

The complete query will be:

q=tommy%20hilfiger&qf=text%20cat^2%20name^2%20brand^2%20clothes_
type^2%20clothes_color^2%20clothes_occassion^2&pf=text%20cat^3%20
name^3%20brand^3%20clothes_type^3%20clothes_color^3%20clothes_
occassion^3&fl=name,clothes_size,clothes_color,score&defType=edis
max&facet=true&facet.mincount=1&facet.field=clothes_gender&facet.
field=clothes_type&facet.field=clothes_size&facet.field=clothes_
color&facet.field=brand&facet.field=mobile_os&facet.field=mobile_
screen_size&facet.field=laptop_processor&facet.field=laptop_
memory&facet.field=laptop_hard_disk&fq=clothes_size:mediumclothes_
size:large&fq=clothes_color:redclothes_color:green

www.it-ebooks.info

http://www.it-ebooks.info/

Solr in E-commerce

[124]

The filter query is interpreted as follows:

Filter query for the multi-select option

The results would be as follows:

Multi-select search result

Another problem that plagues faceting on an e-commerce site is known as
disappearing facets. To show only facets that are relevant to the search result, we set
the facet.mincount parameter to 1. This ensures that only facets that contain certain
values are shown. What if further filter queries reduce the facet count to 0 and make
it disappear from the facets?

Let us take an example to understand the problem.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 5

[125]

A search for tommy hilfiger gives us facets in size and color:

Facets for "tommy hilfiger" search

When we apply a filter query for size=small, we intend to have an output
specifying that there are no sweaters in red matching the size we have selected:

size: small -> 1, medium -> 0, large -> 0
color: red -> 0, green -> 1

However, since the facet.mincount=1 parameter, the output is:

size: small -> 1
color: green -> 1

Disappearing facets

The way to handle this is to tag filter queries and exclude them from facets. The filter
query can be tagged as follows:

fq={!tag=size_fq}clothes_size:small

The tagged filter query can be excluded from the facet using the following syntax:

facet.field={!ex=size_fq}clothes_size

In order to handle the disappearing facet scenario, we have created multiple facets
on the same field—one facet bearing the exact count from the result set taking into
consideration the filter queries and another facet that excludes all filter queries.

www.it-ebooks.info

http://www.it-ebooks.info/

Solr in E-commerce

[126]

We have modified the preceding query to handle this scenario, and simplified the
query to focus exactly on the modifications that we have implemented:

q=tommy%20hilfiger&qf=text%20cat^2%20name^2%20brand^2%20clothes_
type^2%20clothes_color^2%20clothes_occassion^2&pf=text%20cat^3%20
name^3%20brand^3%20clothes_type^3%20clothes_color^3%20clothes_
occassion^3&fl=name,clothes_size,clothes_color,score&defType=edi
smax&facet=true&facet.mincount=1&facet.field=clothes_size&facet.
field=clothes_color&facet.field={!ex=size_fq,color_fq key=all_size_
facets}clothes_size&facet.field={!ex=size_fq,color_fq key=all_color_
facets}clothes_color&fq={!tag=size_fq}clothes_size:small

Here, we have created multiple facets on both clothes_size and clothes_color
fields, one in which filter queries are excluded and another in which they are not.
Also, the filter queries are tagged as size_fq. The facets in which filter queries are
excluded are tagged as all_size_facets and all_color_facets. The following is
the output from the query:

Both missing facets and all results facets seen here

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 5

[127]

Our program has to take care of merging both the facets for size and color and create
the appropriate output. For example, the output can contain the facet counts from
the all_clothes_color tag. Except for green, all others could be disabled (instead
of displaying 0).

Faceting with hierarchical taxonomy
You will have come across e-commerce sites that show facets in a hierarchy. Let's
take a look at www.amazon.com and check how hierarchy is handled there. A search
for "shoes" provides the following hierarchy:

Department Shoes -> Men -> Outdoor -> Hiking & Trekking -> Hiking
Boots

Hierarchical facets on www.amazon.com

How is this hierarchy built into Solr and how do searches happen on it?

In earlier versions of Solr, this used to be handled by a tokenizer known as solr.
PathHierarchyTokenizerFactory. Each document would contain the complete
path or hierarchy leading to the document, and searches would show multiple facets
for a single document.

www.it-ebooks.info

www.amazon.com
http://www.it-ebooks.info/

Solr in E-commerce

[128]

For example, the shoes hierarchy we saw earlier can be indexed as:

doc #1 : /dept_shoes/men/outdoor/hiking_trekking/hiking_boots
doc #2 : /dept_shoes/men/work/formals/

The PathHierarchyTokenizerFactory class will break this field, say, into the
following tokens:

doc #1 : /dept_shoes, /dept_shoes/men, /dept_shoes/men/outdoor,
/dept_shoes/men/outdoor/hiking_trekking,
/dept_shoes/men/outdoor/hiking_trekking/hiking_boots
doc #2 : /dept_shoes, /dept_shoes/men, /dept_shoes/men/work,
/dept_shoes/men/work/formals

The initial query would contain the facet.field value as hierarchy:

facet.field="hierarchy"&facet.mincount=1

The facet.prefix parameter can be used to drill down into the query:

facet.prefix="/dept_shoes/men/outdoor"

This will list down sub-facets of outdoor-mens-shoes:

Here we have to take care of creating the hierarchy during indexing, which can be a
tedious task.

A better way to handle this in the new Solr 4.x version is by using pivot facets. Pivot
facets are implemented by splitting the hierarchical information or bread crumbs
across multiple fields, with one field for each level of the hierarchy. For the earlier
example, the fields for pivot faceting would be:

doc #1 => hr_l0:dept_shoes, hr_l1:men, hr_l2:outdoor,
hr_l3:hiking_trekking, hr_l4:hiking_boots
doc #2 => hr_l0:dept_shoes, hr_l1:men, hr_l2:work, hr_l3:formals

The initial query for creating the facet pivots would be:

facet.pivot=hr_l0,hr_l1,hr_l2,hr_l3,hr_l4

To implement this in our index, we will need to add a dynamic field of type string
to our schema.xml file:

<dynamicField name="hr_*" type="string" indexed="true"
stored="true" />

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 5

[129]

Let us index the data_shoes.csv file and then run pivot faceting and see the results:

java -Dtype=text/csv -jar solr/example/exampledocs/post.jar data_shoes.
csv

q=shoes&qf=text%20cat^2%20name^2%20brand^2%20clothes_type^2%20clothes_
color^2%20clothes_occassion^2&pf=text%20cat^3%20name^3%20brand^3%20
clothes_type^3%20clothes_color^3%20clothes_occassion^3&fl=*,score&face
t=true&facet.pivot=hr_l0,hr_l1,hr_l2,hr_l3,hr_l4

On implementing pivot faceting using this query, we should be getting the
following output:

Pivot faceting output

www.it-ebooks.info

http://www.it-ebooks.info/

Solr in E-commerce

[130]

To drill down, all we need to do is add the respective field and value as a filter query
in our Solr search query.

Faceting with size
The problem with faceting with size is that the ordering by size is not directly visible.
Let us take the following sizes:

XS, S, M, L, XL, XXL

These sizes would be listed in the alphabetical order as follows:

M, L, S, XL, XS, XXL

To handle such ordering scenarios in size for different apparel, we could encode a
size tag into the size facet label. Therefore, the size ordering would be somewhat
as follows:

[00002]XS
[00003]S
[00004]M
[00005]L
[00006]XL
[00007]XXL

This will ensure that the facets we get from Solr are ordered in the way we want
them to be ordered.

Implementing semantic search
Semantic search is when the search engine understands what the customer is
searching for and provides results that are based on this understanding. Therefore, a
search for the term shoes should display only items that are of type shoes instead of
items with a description goes well with black shoes. We could argue that since we are
boosting on the fields category, type, brand, color, and size, our results should
match with what the customer is looking or searching for. However, this might not
be the case. Let us take a more appropriate example to understand this situation.

Suppose a customer is searching for blue jeans where blue is intended to be the
color and jeans is the type of apparel. What if there is a brand of products called
blue jeans? The results coming from the search would not be as expected by the
customer. As all the fields are being boosted by the same boost factor, the results will
be a mix of the intended blue colored jeans and the products from the brand called
blue jeans.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 5

[131]

Now, how do we handle such a scenario? How would the search engine decide what
products to show? We saw the same problem earlier with pink sweater and tried
to solve it by proper boosting of fields. In this scenario, brand, type, and color are
boosted by the same boost factor. The result is bound to be a mix of what is intended
and what is not intended.

Semantic search could come to our rescue. We need the search engine to understand
the meaning of blue jeans. Once the search engine understands that blue is the
color and jeans is the type of clothing, it can boost the color and type fields only
giving us exactly what we want.

The downside over here is that we have to take a call. We need to understand that
blue jeans is a mix of color and type instead of brand or the other way around.
The results that are returned will be heavily dependent on our call. The ideal way
would be to give importance to different fields on the basis of the searches our site
receives. Suppose that our site receives a lot of brand searches. We would then
intend to make the search engine understand that blue jeans is a brand instead of
type and color. On the other hand, if we analyze the searches happening on the site
and find that the searches are mostly happening on type and color, we would have
to make the search engine interpret blue jeans as type and color.

Let us try to implement the same.

To make the search engine understand the meaning of the terms, we need a
dictionary that maps the terms to their meanings. This dictionary can be a separate
index having just two fields, words and meanings. Let us create a separate core in
our Solr installation that stores our dictionary:

cd<solr_installation>/example/solr
mkdir -p dictionary/data
mkdir -p dictionary/conf
cp -r collection1/conf/* dictionary/conf

Define the Solr core in solr.xml file in the <solr_installation>/example/solr
directory by adding the following snippet to the solr.xml file:

<solr sharedLib="lib">
<cores adminPath="/admin/cores">
<core name="collection1" instanceDir="/collection1">
<property name="dataDir" value="/collection1/data" />
</core>
<core name="dictionary" instanceDir="/dictionary">
<property name="dataDir" value="/dictionary/data" />
</core>
</cores>
</solr>

www.it-ebooks.info

http://www.it-ebooks.info/

Solr in E-commerce

[132]

The format of the solr.xml file will be changed in Solr 5.0. An optional parameter
coreRootDirectory will be used to specify the directory from where the cores for
the current Solr will be auto-discovered. The new format will be as follows:

<solr>
 <str name="adminHandler"
>${adminHandler:org.apache.solr.handler.admin.CoreAdminHandler}<
/str>
 <int name="coreLoadThreads">${coreLoadThreads:3}</int>
 <str name="coreRootDirectory">${coreRootDirectory:}</str>
 <str name="managementPath">${managementPath:}</str>
 <str name="sharedLib">${sharedLib:}</str>
 <str name="shareSchema">${shareSchema:false}</str>
</solr>

Also, as of Solr 5.0, the core discovery process will involve keeping a core.
properties file in each Solr core folder. The format of the core.properties file will
be as follows:

name=core1
shard=${shard:}
collection=${collection:core1}
config=${solrconfig:solrconfig.xml}
schema=${schema:schema.xml}
coreNodeName=${coreNodeName:}

Solr parses all the directories inside the directory defined in coreRootDirectory
parameter (which defaults to the Solr home), and if a core.properties file is found
in any directory, the directory is considered to be a Solr core. Also, instanceDir is
the directory in which the core.properties file was found. We can also have an
empty core.properties file. In this case, the data directory will be in a directory
called data directly below. The name of the core is assumed to be the name of the
folder in which the core.properties file was discovered.

The Solr schema would contain only two fields, key and value. In this case, key
would contain the field names and value would contain the bag of words that
identify the field name in key:

<field name="key" type="lowercase" indexed="true" stored="true"
required="true" />
<field name="value" type="wslc" indexed="true" stored="true"
multiValued="true" />

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 5

[133]

Also, the key field needs to be marked as unique, as the key contains fields that
are unique:

<uniqueKey>key</uniqueKey>

Also, we will need to change the default search field to value in the solrconfig.
xml file for the dictionary core. For the request handler named /select, make the
following change:

<str name="df">value</str>

Once the schema is defined, we need to restart Solr to see the new core on our
Solr interface.

New core in Solr

In order to populate the dictionary index, we will need to upload the data_
dictionary.csv file onto our index. The following command performs this
function. Windows users can use the Solr admin interface to upload the CSV file:

curl "http://localhost:8983/solr/dictionary/update/csv?commit=true&f.
value.split=true" --data-binary @data_dictionary.csv -H 'Content-
type:application/csv; charset=utf-8'

www.it-ebooks.info

http://www.it-ebooks.info/

Solr in E-commerce

[134]

In order to check the dictionary index, just run a query q=*:*:

http://localhost:8983/solr/dictionary/select/?q=*:*

Query on the dictionary index

We can see each key has multiple strings as its values. For example, brand is defined
by values tommy hilfiger, levis, lee, and wrangler.

Now that we have the dictionary index, we can query our input string and figure out
what the customer is looking for. Let us input our search query blue jeans against
the index and see the output:

http://localhost:8983/solr/dictionary/select/?q=blue%20jeans

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 5

[135]

Query on the dictionary index

We can see that the output contains keys clothes_type and clothes_color. Now
using this information, we will need to create our actual search query. In this case,
the boost will be higher on these two fields than that on the remaining fields. Our
query would now become:

q=blue%20jeans&qf=text%20cat^2%20name^2%20brand^2%20clothes_type^4%20
clothes_color^4%20clothes_occassion^2&pf=text%20cat^3%20name^3%20
brand^3%20clothes_type^5%20clothes_color^5%20clothes_occassion^3&fl=na
me,brand,clothes_type,clothes_color,score

www.it-ebooks.info

http://www.it-ebooks.info/

Solr in E-commerce

[136]

We have two pairs of jeans in our index, one is blue and the other is black in
color. The black pair is identified by the brand blue jeans. Earlier, if we had not
incorporated dynamic boosting, the brand blue jeans would have been boosted
higher as it is part of pf in the query. Now that we have identified that the customer
is searching for clothes_type and clothes_color fields, we increase the boost for
these fields in both qf and pf. Therefore, even though the keywords blue and jeans
occur separately in fields clothes_type and clothes_color, we get them above the
item where brand is blue jeans.

Search with dynamic boosting

This is one way of implementing semantic search. Note that we are performing two
searches over here, the first identifies the input fields of the customer's interest and
the second is our actual search where the boosting happens dynamically on the basis
of the results of the first search.

Optimizations
Performing two searches in Solr for every search on the website would not be
optimal. However, we need to identify the fields before performing the search.
Another easier way to do this is to incorporate the dictionary in the product catalog
index itself.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 5

[137]

For this, we will have to create fields in our index matching the dictionary key fields.
Then during indexing, we need to populate the key fields with words that match the
product. Let us take an example to understand this. In our case, let us say that we
are dealing with three fields in our dictionary, clothes_type, clothes_color, and
brand. We would create three new fields in our product index, key_clothes_type,
key_clothes_color, and key_brand. These fields would contain product-specific
information that matches with our dictionary.

For the product, wrangler jeans, the information in these fields would be:

key_clothes_type : jeans
key_clothes_color : blue
key_brand : wrangler

For the next product, skinny fit black jeans, the information would be:

key_clothes_type : jeans
key_clothes_color : black
key_brand :

Here key_brand would be empty as we do not identify blue jeans as a brand in
our dictionary.

Now the search would contain higher boosts to these fields to give more importance
to the dictionary. A sample query would be:

q=blue%20jeans&qf=text%20cat^2%20name^2%20brand^2%20clothes_type^2%20
clothes_color^2%20clothes_occassion^2&key_clothes_type^4&key_clothes_
color^4&key_brand^4&pf=text%20cat^3%20name^3%20brand^3%20clothes_
type^3%20clothes_color^3%20clothes_occassion^3&key_clothes_type^5&key_
clothes_color^5&key_brand^5&fl=name,brand,clothes_type,clothes_
color,score

This will give us results that would be comparable to the somewhat clean
implementation we described earlier and would be much faster as we are doing a
single search instead of two searches. The only problem over here is with the creation
of an index where we will have to figure out which words to populate our product
dictionary fields with, as it will be an intersection between the field values of the
product and the dictionary values for that field.

www.it-ebooks.info

http://www.it-ebooks.info/

Solr in E-commerce

[138]

Summary
In this chapter, we studied in depth the implementation of Solr in an e-commerce
scenario. We saw how to design an e-commerce index in Solr. We discussed the
problems faced in e-commerce while implementing a search. We saw different
ways of sorting and faceting the products. We also saw multi-select and hierarchical
faceting. We had a look at the concept of semantic search and some optimizations
that could be used while implementing the same.

In the next chapter, we will look at best practices and ideas for using Solr for a spatial
or geospatial search.

www.it-ebooks.info

http://www.it-ebooks.info/

[139]

Solr for Spatial Search
In the previous chapter, we discussed in depth the problems faced during the
implementation of Solr for search operations on an e-commerce website. We saw
solutions to the problems and areas where optimizations may be necessary.
We also took a look at semantic search and how it can be implemented in
an e-commerce scenario.

In this chapter, we will explore Solr with respect to spatial search. We will look at
different indexing techniques and study query types that are specific to spatial data.
We will also learn different scenario-based filtering and searching techniques for
geospatial data.

The topics that we will cover in this chapter are:

•	 Features of spatial search
•	 Lucene 4 spatial module
•	 Indexing for spatial search
•	 Search and filtering on spatial index
•	 Distance sort and relevance boost
•	 Advanced concepts

°° Quadtrees
°° Geohash

www.it-ebooks.info

http://www.it-ebooks.info/

Solr for Spatial Search

[140]

Features of spatial search
With Solr, we can combine location-based data with normal text data in our index.
This is termed spatial search or geospatial search.

Earlier versions of Solr (Solr 3.x) provided the following features for spatial search:

•	 Representation of spatial data as latitude and longitude in Solr
•	 Filtering by geofilt and bound box filters
•	 Use of the geodist function to calculate distance
•	 Distance-based faceting and boosting of results

With Solr 4, the following new features have been introduced in Solr:

•	 Support for new shapes: Polygon, LineString, and other new shapes are
supported as indexed and query shapes in Solr 4. Shapes other than points,
rectangles, and circles are supported via the Java Topology Suite (JTS), an
optional dependency that we will discuss later.

•	 Indexing multi-valued fields: This is critical for storing the results of
automatic place extraction from text using natural language processing
techniques, since a variable number of locations will be found for a single
record.

•	 Indexing both point and non-point shapes: Non-point shapes are essentially
pixelated to a configured resolution per shape. By default, that resolution
is defined by a percentage of the overall shape size, and it applies to query
shapes as well. If the extremely high precision of shape edges needs to be
retained for accurate indexing, then this solution probably won't scale too
well during indexing because of large indexes and slow indexing. On the
other hand, query shapes generally scale well to the maximum configured
precision regardless of shape size.

•	 Solr 4 now supports rectangles with user-specifiable corners: As discussed
earlier, Solr 3 spatial only supports the bounding box of a circle.

•	 Multi-valued distance sorting and score boosting: It is an unoptimized
implementation as it uses large amounts of RAM.

•	 Configurable precision: This is possible in Solr 4, which can vary as per
shape at query time and during sorting at index time. This is mainly used
for enhancing performance.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 6

[141]

•	 Fast filtering: The code outperforms the LatLonType of Solr 3 at single-
valued indexed points. Also, Solr 3 LatLonType at times requires all the
points to be in memory, while the new spatial module here doesn't.

•	 Support for Well-known Text (WKT) via JTS: WKT: This is arguably the
most widely supported textual format for shapes.

Let us look at an example of storing and searching locations in Solr. We will need
two fields in our Solr schema.xml file. A field of fieldType solr.LatLonType
named location is used along with another dynamic field named dynamicField _
coordinate of type tdouble as a field suffix in the previous field to index the
data points:

<!-- A specialized field for geospatial search. If indexed, this
fieldType must not be multivalued. -->
 <fieldType name="location" class="solr.LatLonType"
subFieldSuffix="_coordinate"/>
<!-- Type used to index the lat and lon components for the "location"
FieldType -->
 <dynamicField name="*_coordinate" type="tdouble" indexed="true"
stored="false" />

We will have to define the field named store of type location, which will
implement the geospatial index for the location:

<field name="store" type="location" indexed="true" stored="true"/>

Let us index a few locations into Solr and see how geospatial search works. Go into
the exampledocs folder inside the Solr installation and run the following command
to index the location.csv file provided with this chapter:

java -Dtype=text/csv -jar post.jar location.csv

Now let us see which stores are near our location. On Google Maps, we can see that
our location is 28.643059, 77.368885. Therefore, the query to figure out stores
within 10 km from our location will be:

http://localhost:8983/solr/collection1/select/?q=*:*&fq={!geofilt
pt=28.643059,77.368885 sfield=store d=10}

We can see that our query consists of a filter query that contains the geofilt filter that
in turn looks for stores within d=10 kilometers from location pt. We can see that
there are three stores nearby in Noida, Ghaziabad, and East Delhi, as per the tags
associated with the latitude / longitude points.

www.it-ebooks.info

http://www.it-ebooks.info/

Solr for Spatial Search

[142]

The output of our query is shown in the following image:

Stores within 10 km from our location point

In order to find more stores, we will have to change distance d from 10 to say 30:

http://localhost:8983/solr/collection1/select/?q=*:*&fq={!geofilt
pt=28.643059,77.368885 sfield=store d=30}

This will give us stores in Rohini and Paschim vihar as well, which are far from the
current location.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 6

[143]

The output of this query is shown in the following image:

Java Topology Suite
The JTS is an API for modeling and manipulating a two-dimensional linear
geometry. It provides numerous geometric predicates and functions. It complies
with the standards and provides a complete, robust, and consistent implementation
of algorithms that are intended to be used to process linear geometry on a two-
dimensional plane. It is fast and meant for production use.

www.it-ebooks.info

http://www.it-ebooks.info/

Solr for Spatial Search

[144]

Well-known Text
WKT is a text mark-up language for representing vector geometry objects on a map,
spatial reference systems of spatial objects, and transformations between spatial
reference systems. The following geometric objects can be represented using WKT:

•	 Points and multi-points
•	 Line Segment (LineString) and multi-line segment
•	 Triangle, polygon, and multi-polygon
•	 Geometry
•	 CircularString
•	 Curve, MultiCurve, and CompoundCurve
•	 CurvePolygon
•	 Surface, multi-surface, and polyhedron
•	 Triangulated irregular network
•	 GeometryCollection

The Spatial4j library
Spatial4j is an open source Java library that is basically intended for general-purpose
spatial or geospatial requirements. Its primary responsibilities are wrapped up at
three levels:

•	 Providing shapes that function well with Euclidean and spherical
surface models

•	 Calculating distance and applying other mathematical operations
•	 Reading shapes from WKT strings

The primary strength of Spatial4j is its collection of shapes that possess the following
set of capabilities:

•	 Calculation of the latitude / longitude bounding box
•	 Computation of the area of different shapes
•	 Figuring out if a shape contains a given point
•	 Computation of relationships such as CONTAINS, WITHIN, DISJOINT,

INTERSECTS, and so on for a rectangle

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 6

[145]

Lucene 4 spatial module
Solr 4 contains three field types for spatial search: LatLonType (or its non-geodetic
twin PointType), SpatialRecursivePrefixTreeFieldType (RPT for short), and
BBoxField (to be introduced in Solr 4.10 onward). LatLonType has been there
since Lucene 3. RPT offers more features than LatLonType and offers fast filter
performance. LatLonType is more appropriate for efficient distance sorting and
boosting. With Solr, we can use both the fields simultaneously—LatLonType for
sorting or boosting and RPT for filtering. BBoxField is used for indexing bounding
boxes, querying by a box, specifying search predicates such as Intersects, Within,
Contains, Disjoint, or Equals, and relevancy sorting or boosting of properties such
as overlapRatio.

We have already seen the LatLonType field, which we used to define the location of
our store in the earlier examples. Let us explore RPT and have a look at BBoxField.

SpatialRecursivePrefixTreeFieldType
RPT available in Solr 4 is used to implement the RecursivePrefixTree search
strategy. RecursivePrefixTreeStrategy is grid- or prefix tree–based class that
implements recursive descent algorithms. It is considered as the most mature
strategy till date that has been tested well.

It has the following advantages over the LatLonType field:

•	 Can be used to query by polygons and other complex shapes, in addition to
circles and rectangles

•	 Has support for multi-valued indexed fields
•	 Ability to index non-point shapes such as polygons as well as point shapes
•	 Has support for rectangles with user-specified corners that can cross the

dateline
•	 Has support for unoptimized multi-valued distance sorting and score

boosting
•	 Supports the WKT shape syntax, which is required for specifying polygons

and other complex shapes
•	 Incorporates the basic features of the LatLonType field and enables the use of

geofilt, bbox, and geodist query filters with RPT

www.it-ebooks.info

http://www.it-ebooks.info/

Solr for Spatial Search

[146]

We can use the RPT field in our Solr by configuring a field in our schema.xml file of
type solr.SpatialRecursivePrefixTreeFieldType. Our schema.xml file contains
the following code for the RPT field:

<fieldType name="location_rpt" class =
"solr.SpatialRecursivePrefixTreeFieldType"
 spatialContextFactory =
"com.spatial4j.core.context.jts.JtsSpatialContextFactory"
 autoIndex="true"
 geo="true"
 distErrPct="0.025"
 maxDistErr="0.000009"
 units="degrees" />

We can change the type of the field named store from location to location_rpt
and make it multi-valued:

<field name="store" type="location_rpt" indexed="true" stored="true"
multiValued="true" />

Now restart Solr.

If you get an error java.lang.ClassNotFoundException: com.
vividsolutions.jts.geom.CoordinateSequenceFactory,
please download the JTS library (jts-1.13.jar) from http://
sourceforge.net/projects/jts-topo-suite/.
Now, put it in the <solr folder>/example/solr-webapp/webapp/
WEB-INF/lib path.

Let us understand the options available for the
SpatialRecursivePrefixTreeFieldType field type in our schema.xml file:

•	 name: This is the name of the field type that we specified as location_rpt.
•	 class: This should be solr.SpatialRecursivePrefixTreeFieldType as

we have declared.
•	 spatialContextFactory: It is specified as com.spatial4j.core.context.

jts.JtsSpatialContextFactory only when there is a requirement to
implement polygons or linestrings. The JAR file jts-1.13.jar that we put in
our lib folder (as mentioned in notes above) is used if this is specified. This
context factory has its own options, which can be found if we go through
the Java docs for the same. One option that we enabled in our declaration is
autoIndex="true", which provides a major performance boost for polygons.

www.it-ebooks.info

http://sourceforge.net/projects/jts-topo-suite/
http://sourceforge.net/projects/jts-topo-suite/
http://www.it-ebooks.info/

Chapter 6

[147]

•	 units: This is a mandatory parameter and currently accepts the only value
as degrees. How the maxDistErr attribute, the radius of a circle, or any
other absolute distances are interpreted depends upon this parameter. One
degree measures to approximately 111.2 km, which is based on the value we
compute as the average radius of Earth.

•	 geo: This parameter specifies whether the mathematical model is based on
a sphere, or on Euclidean or Cartesian geometry. It is set to true for us, so
latitude and longitude coordinates will be used and the mathematical model
will generally be a sphere. If set to false, the coordinates will be generic X
and Y on a two-dimensional plane having Euclidean or Cartesian geometry.

•	 WorldBounds: It sets the valid numerical ranges of x and y coordinates in the
minX minY maxX maxY format. In case geo="true", the value of this parameter
is assumed to be -180 -90 180 90; else, it needs to be specified exclusively.

•	 distCalculator: Defines the distance calculation algorithm. If geo=true,
the haversine value is the default. If geo=false, the cartesian value will
be the default. Other possible values are lawOfCosines, vincentySphere,
and cartesian^2.

The PrefixTree based field visualizes the indexed coordinates as a grid. Each grid
cell is further fragmented as another set of grid cells that falls under the next level,
thus forming a hierarchy with different levels. The largest set of cells fall under level
1, the next set of fragmented cells in level 2, and so on. Here are some configuration
options related to prefixTree:

•	 prefixTree: Defines the spatial grid implementation. Since a PrefixTree
(such as RecursivePrefixTree) maps the world as a grid, each grid cell
is decomposed to another set of grid cells at the next level. If geo=false,
then the default prefix tree is geohash; otherwise, it's quad. Geohash has
32 children at each level, and quad has 4. Geohash cannot be used for
geo=false as it's strictly geospatial.

•	 distErrPct: Defines the default precision of non-point shapes for both
the index and the query as a fraction between 0.0 (fully precise) and 0.5.
The closer this number is to zero, the more accurate is the shape. We have
defined it as 0.025 allowing small amounts of inaccuracy in our shape. More
precise indexed shapes use more disk space and take longer to index. Bigger
distErrPct values will make querying faster but less accurate.

•	 maxDistErr: Defines the highest level of detail required for indexed data.
The default value is 1 m, a little less than 0.000009 degrees. This setting is
used internally to compute an appropriate maxLevels value.

•	 maxLevels: Sets the maximum grid depth for indexed data. It is usually more
intuitive to compute an appropriate maxLevels by specifying maxDistErr.

www.it-ebooks.info

http://www.it-ebooks.info/

Solr for Spatial Search

[148]

We will need to clear our index and re-index the location.csv and *.xml files.

The data inside the Solr index for a collection can be entirely deleted
using the following Solr queries:

http://localhost:8983/solr/collection1/update?stream.
body=<delete/><query>*:*</query></delete>

http://localhost:8983/solr/collection1/update?stream.
body=<commit/>

We will study some queries employing predicates such as Intersects, isWithin,
and others on the store field (of type RPT), which we create later in this chapter.

BBoxField (to be introduced in Solr 4.10)
The BBoxField field type can be used to index a single rectangle or bounding box per
document field. It supports searching via a bounding box and most spatial search
predicates. It has enhanced relevancy modes based on the overlap or area between
the search rectangle and the indexed rectangle.

To define it in our schema, we have to first declare a fieldType of class solr.
BBoxField having numberType as defined by a separate fieldType having the class
solr.TrieDoubleField:

<fieldType name="bbox" class="solr.BBoxField" geo="true"
units="degrees" numberType="_bbox_coord" />
<fieldType name="_bbox_coord" class="solr.TrieDoubleField"
precisionStep="8" docValues="true" stored="false"/>

Now we define a field of type bbox:

<field name="bbox" type="bbox" />

Since this feature is available in Solr 4.10 onward, we will not delve into the
implementation.

Indexing for spatial search
Now that we know the features supported by Solr for spatial search, let us see how
indexing should be done for spatial search. We will need to index the coordinates for
point, circle, rectangle, and other spatial representations in Solr as documents before
we execute a search for them. Every geographical point is represented as latitude and
longitude with the format lat,lon.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 6

[149]

We saw points being indexed in the last section in our location.csv file. They are
indexed in the lat,lon format:

<field name="store">28.570485,77.324713</field>

The points can be indexed in the lat-lon format by omitting the comma:

<field name="store">28.570485 77.324713</field>

We saw that Solr also supports different geometrical shapes such as rectangle, circle,
and polygon. Let us learn how to index these.

In order to index a rectangle, we need the two points that form the starting and the
ending points of the rectangle. Consider a two-dimensional coordinate system with
X and Y axes. The said two points represent the maximum and minimum values of X
and Y coordinates, as shown in the following figure:

<doc>
<field name="id">CXXX1</field>
<field name="name">rectangle</field>
<field name="store">28.57 77.32 29.67 78.41</field>
</doc>

In order to index documents directly from the Solr admin interface, go to the
documents section inside the collection. This will lead you to the following URL:
http://localhost:8983/solr/#/collection1/documents.

www.it-ebooks.info

http://www.it-ebooks.info/

Solr for Spatial Search

[150]

Select the Document Type as XML and write the XML document(s) in the given text
box. Now, click on Submit Document, as shown in the following image:

A circle is also specified in the following format:

<doc>
<field name="id">CXXX2</field>
<field name="name">circle</field>
<field name="store">Circle(28.57,77.32 d=0.051)</field>
</doc>

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 6

[151]

The first point is in the lat,lon format, and the point represents the center of a circle.
Further, d represents the distance radius in degrees. In order to convert the radius
from degree to a desired unit, such as kilometers or miles, we need to use the
following conversion formula:

degreeInDesiredUnit = degrees * radiusOfEarthInDesiredUnit

In the given case, note the following:

•	 degreeInDesiredUnit: This parameter represents the unit we wish to
convert degree to, such as kilometers or miles

•	 degrees: This parameter represents the radius in degrees (that is, the value
we specify for the d parameter)

•	 radiusOfEarthInDesiredUnit: This parameter represents the radius of
Earth in the desired unit

Refer to the following example for better understanding:

Degree (in Kilometers) = d * 111.1951
Degree (in Miles) = d * 69.09341

As per standard WKT specifications, we can index polygons as follows:

<doc>
<field name="id">CXXX3</field>
<field name="name">polygon</field>
<field name="store">POLYGON((20 50, 18 60, 24 68, 26 62, 30 55, 20
50))</field>
</doc>

The double parentheses are a part of the WKT specification.

Execute the following Solr query to index these documents:

http://localhost:8983/solr/collection1/select/?q=*:*&fq=name:circle
polygon rectangle&fl=store

www.it-ebooks.info

http://www.it-ebooks.info/

Solr for Spatial Search

[152]

The shapes that we have indexed are shown in the following image:

Searching and filtering on a spatial index
Spatial fields in a Solr index can be searched and filtered using the {!geofilt} and
{!bbox} query filters. These filters were introduced and are available in Solr 4.2
onward. We saw a working example of geofilt earlier in this chapter. Let us go
through some other queries that can be executed on a spatial index in Solr.

The bbox query
The working of a bbox filter is similar to that of geofilt, except that the former uses
the bounding box of a calculated circle. The query remains the same, except that we
use the {!bbox} filter instead of the {!geofilt} filter. To convert the earlier query to
bbox from geofilt, we run the following query:

http://localhost:8983/solr/collection1/select/?q=*:*&fq={!bbox
pt=28.643059,77.368885 sfield=store d=10}

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 6

[153]

The output in our case would remain the same as that in the figure – Stores within
10 km from our location point – shown earlier in this chapter, but the search now
includes the grayed-out area, as shown in the following image. If there were any
store locations in the grayed-out area, the earlier search using the {!geofilt}
filter would not return them in the result, while the {!bbox} filter would do so.

The following figure shows the area covered by the bbox query:

In order to understand the execution of the query, let us index the default documents
available with Solr into our index. In the exampledocs folder, run the following
command:

java -jar post.jar *.xml

This will index the default documents in Solr that carry the store locations.
Now execute the following query:

http://localhost:8983/solr/collection1/select/?fl=name,store&q=*:*&fq
={!geofilt}&sfield=store&pt=45.15,-93.85&d=5

This will give out 3 stores that are within 5 km of the point 45.15,-93.85.

www.it-ebooks.info

http://www.it-ebooks.info/

Solr for Spatial Search

[154]

The execution of the previous query in Solr yields the following output:

Here we are using the geofilt filter. If we convert this to the bbox filter, we will be
getting five store locations in our output. The Solr query would be:

http://localhost:8983/solr/collection1/select/?fl=store&q=*:*&fq={!bb
ox}&sfield=store&pt=45.15,-93.85&d=5

The output will be as shown in the following figure:

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 6

[155]

Since this search is executed within the bounding box of a circle, the area thus
covered is always a square. Therefore, the bbox filter cannot be used to search a
rectangle. To search a rectangle, we can use the following range query:

http://localhost:8983/solr/collection1/select/?fl=store&q=*:*&fq=stor
e:[45.15,-93.9 TO 45.2,-93.88]

This search ranges from the lower left point at 45.15,-93.9 to the top right point
at 45.2,-93.88 forming a rectangle. The query in the following image shows the
results of this search:

Filters such as geofilt, bbox, and geodist use certain spatial
search–specific parameters.
These parameters are as follows:
d: It denotes the distance and is measured in kilometers.
pt: It represents a specific point in the latitude / longitude
coordinate format.
sfield: It specifies a spatial field and is of location field type
by default.

An unconventional Solr query parser known as the field-query style approach has
been introduced in Solr 4.0. This syntax is used for a spatial predicate that excludes
Intersects, or to use WKT formatted shapes (for example, a polygon), or to add
some precision tuning options. Let us see some examples:

fq=store:"Intersects(28 77 29 78)"

www.it-ebooks.info

http://www.it-ebooks.info/

Solr for Spatial Search

[156]

The complete query will be:

http://localhost:8983/solr/collection1/select/?q=*:*&fq=store:"Inters
ects(28 77 29 78)"

This query looks for any store that intersects the rectangle formed by the specified
coordinates. We can see that the rectangle with the ID CXXX1 is the output of our
query, as shown in the following image:

Suppose that we are located at the location specified by (28.642815,77.368413) and
we want to inspect a circle having a radius of 20 km with reference to our location,
for any store that intersects this circle.

First, we will have to convert 20 km into degrees using the formula introduced in the
previous section:

Degree d = 20 / 111.1951
 = 0.1798

Now our query using the Intersects predicate will be:

http://localhost:8983/solr/collection1/select/?q=*:*&fq=store:"Inters
ects(Circle(28.642815,77.368413 d=0.1798))"&fl=store,name

We can see that the result indicates three stores. Also, the circle that we indexed
earlier intersects the circle specified in the query.

The following image shows the output obtained from the execution of the
previous query:

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 6

[157]

Now let us see an example of the IsWithin predicate:

fq=store:"IsWithin(POLYGON((19 49, 17 61, 25 70, 27 62, 31 55, 19
49))) distErrPct=0"

We are trying to determine whether there is anything in the polygon specified earlier
for which the Solr query will be:

http://localhost:8983/solr/collection1/select/?q=*:*&fq=store:"IsWith
in(POLYGON((19 49, 17 61, 25 70, 27 62, 31 55, 19 49)))
distErrPct=0"&fl=store,name

The result from our query shows the polygon that we had indexed earlier.

www.it-ebooks.info

http://www.it-ebooks.info/

Solr for Spatial Search

[158]

The output from the previous query is shown in the following image:

This example shows the implementation of WKT with a tuning option. The spatial
chunk of the query is placed as a subquery in the full Solr query that resembles a
Lucene phrase query. The query starts with spatial predicates such as Intersects
and IsWithin followed by either WKT or some other shape format that is enclosed
in parentheses.

The distErrPct class defines the precision option for the query shape. Its default
value is 0.025 (2.5%). We have set distErrPct as 0, which makes the query shape
as accurate as that of a grid. We may also specify the distErr option if we want to
explicitly set the precision for the shape for which we know the accuracy in exact
terms instead of the relative terms.

Solr 4.3 introduces additional predicates such as isWithin, Contains, and
isDisjointTo. The predicates Intersects or isDisjointTo work fine for only
indexed points. Also, isWithin and Contains predicates are useful for searching
indexed non-point shapes. In addition, isWithin is used to search for indexed
shapes that are within the query shape, while Contains searches for indexed shapes
that contain the query shape.

Distance sort and relevancy boost
During spatial search, it may be required to sort the search results on the basis of
their distance from a specific geographical location (the lat-lon coordinate). With Solr
4.0, the spatial queries seen earlier are capable of returning a distance-based score for
sorting and boosting.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 6

[159]

Let us see an example wherein spatial filtering and sorting are applied and the
distance is returned as the score simultaneously. Our query will be:

http://localhost:8983/solr/collection1/select/?fl=*,score&sort=score
asc&q={!geofilt score=distance sfield=store pt=28.642815,77.368413
d=20}

The query output from Solr shows four results along with their scores. Our results
are sorted in ascending order on score, which represents the distance as per our
query. Hence, the results that are closest to our location appear on top.

The execution of the previous query yields the following output:

In order to add user keywords to the previous Solr query, we will have to add an
additional fq parameter probably with the {!edismax} filter. Moreover, we have
used score=distance as the local parameter, which sets the distance to degrees
relative to the center of the shape. If we don't use this parameter or set it to none
value, all documents will hold the score 1.0.

www.it-ebooks.info

http://www.it-ebooks.info/

Solr for Spatial Search

[160]

In order to perform relevance boosting, we can use the recipDistance option. This
option applies the reciprocal function in such a way that distance 0 achieves a score
of 1 and gradually decreases as the distance increases till the score reaches 0.1 and
closer to 0 for even higher distances.

Let us modify our preceding query such that it sorts the results in the same way as
done for the previous query, but does not implement the spatial filter. The following
will be the modified query:

fl=*,score&sort=score asc&q={!geofilt score=distance filter=false
sfield=store pt=28.642815,77.368413 d=20}

The only change here is the option filter=false. This will give us all the
documents in our index sorted by distance in an ascending order. If we execute this
query on our index, we will get around 45 results (all documents in the index), even
if they lie outside the query circle. In this case, the d option doesn't make sense as the
sorting is limited to the center of the shape. However, it is still necessary to define the
shape (in our case, circular) for this query. If a document doesn't have any point in
the spatial field, the distance used will be equal to 0.

Let us also look at some functions provided by Solr for calculating the distance
between vectors in an n-dimensional space.

dist is a function provided by Solr and can be used to calculate the distance between
two vectors or points. The function definition is as follows:

dist(power, vector 1 coordinates, vector 2 coordinates)

Note the following:

•	 power: This parameter takes the values 0, 1, 2, and infinite. The values
1 and 2 are important and denote the Manhattan (taxicab) distance and
Euclidean distance, respectively.

•	 vector 1 and vector 2 coordinates: These coordinates depend on the space
in which calculations are to be done. For a two-dimensional space, vectors 1
and 2 can be (x,y) and (z,w), respectively. For a three-dimensional space,
the values of vectors 1 and 2 can be (x,y,z) and (a,b,c), respectively.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 6

[161]

Let us study some examples for calling the dist function in Solr:

•	 dist(1,x,y,a,b): This function calculates the Manhattan distance between
two points (a,b) and (x,y) for each document in the search result

•	 dist(2,x,y,a,b): This function calculates the Euclidean distance between
two points (a,b) and (x,y) for each document in the search result

•	 dist(2,x,y,z,a,b,c): This function calculates the Euclidean distance
between (x,y,z) and (a,b,c) for each document

In the previous examples, each letter (x,y,z,a,b,c) is a field name in the indexed
document.

The dist function can be used for sorting by distance in our query. For example, the
following query is intended for sorting results on the basis of the Euclidean distance
between points (a,b) and (x,y) in the descending order:

http://localhost:8983/solr/collection1/select?q=*:*&sort=dist(2,a,b,x
,y) desc

The dist function is a very expensive operation.

sqedist is another function provided by Solr that calculates the Euclidean distance
but does not evaluate the square root of this value, thus saving additional processing
time required for the dist function. This function is used for applications that
require the Euclidean distance for scoring purposes (for example). Nevertheless,
sqedist does not need the actual distance and can use the squared Euclidean
distance. The sqedist function does not take the power as the first argument. The
power is set at 2 for Euclidean distance calculation. The sqedist function, in fact,
calculates the distance between two vectors. The function is defined as follows:

sqedist(vector 1 coordinates, vector 2 coordinates)

For a two-dimensional space with points (x,y) and (a,b), the function call will be:

sqedist(x,y,a,b)

www.it-ebooks.info

http://www.it-ebooks.info/

Solr for Spatial Search

[162]

Advanced concepts
As discussed earlier, RPT is based on a model where the world is divided into grid
squares or cells. This is done recursively to get almost any amount of accuracy
required. Each cell is indexed in Lucene with a byte string that has the parent cell's
byte string as a prefix. Therefore, it is named PrefixTree. The PrefixTreeStrategy
class for indexing and search uses a SpatialPrefixTree abstraction that decides
how to divide the world into grid squares and what the byte encoding looks like
to represent each grid square. It has two implementations, namely geohash and
quadtrees. Let us look at both implementations in detail.

Quadtree
A quadtree is a simple and effective spatial indexing technique wherein each of
the nodes represents a bounding box covering the parts of the space that has been
indexed. Each node is either a leaf-node that contains one or more indexed points
with no child, or an internal node with four children, one for each quadrant.
The index structure of a quadtree is shown in the following image:

Indexing data
Data can be inserted into a quadtree as follows:

1.	 Start with the root that determines the quadrant the point in
question occupies.

2.	 Go deeper into the tree till you find a leaf node.
3.	 Add the point to the list of points in that node.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 6

[163]

4.	 While performing the preceding steps, if you come across a scenario wherein
this list exceeds a pre-defined maximum allowed element count, proceed to
the next step; else, it can be ignored.

5.	 Split the node further and push the points into the appropriate sub-nodes

Searching data
A search on the indexed quadtree involves the following steps:

1.	 Investigate each child node starting from the root and check whether it
intersects the area it is being queried.

2.	 If the point intersects the area, dig deeper into that child node until a leaf
node is found.

3.	 Once you encounter a leaf node, investigate each entry to see whether it
intersects the query area. If so, return the leaf node.

A quadtree follows a Trie structure (http://en.wikipedia.org/wiki/Trie) as the
values of the nodes are independent of the data that are being inserted. Thus, each of
our nodes can be assigned a unique number. We simply assign a binary code to each
of the quadrants (00 for top left, 10 for top right, and so on), and the node number
of its ancestor gets concatenated in the case of a multi-level tree. For instance, in the
preceding diagram, the bottom right node would be numbered as 00 11.

In geohash, which we will discuss next, each cell is divided into 32 smaller cells.
On the other hand, in a quadtree, each cell is divided into four smaller cells in a 2x2
grid. So, with each additional level, there will be 32/2 = 16 times as many cells as
those in the previous level for geohash. For a quadtree, the factor is 4/2 = 2 times.
Therefore, there are fewer hierarchical levels in geohash than in a quadtree, which
has certain performance gain during search.

Geohash
Geohash is a system for encoding geographical coordinates into a single field as a
string. There is a web service geohash.org that provides a geocode class, which
is based on the latitude and longitude of any location. Geocode is represented as a
hierarchy of spatial data that subdivides the overall space into a grid. Let us first
understand how geohash.org works before looking at the indexing- and search-
related features provided by Solr for geohash.

www.it-ebooks.info

http://en.wikipedia.org/wiki/Trie
geohash.org
geohash.org
http://www.it-ebooks.info/

Solr for Spatial Search

[164]

Let us go to geohash.org and enter our location (28.642815,77.368413), which
points to Swarna Jayanti Park, Indirapuram, Ghaziabad, India, in the search bar.
After executing the search, we zoom in to see the exact location on the map. The
output would be as displayed in the following image:

www.it-ebooks.info

geohash.org
http://www.it-ebooks.info/

Chapter 6

[165]

The hash generated for our latitude and longitude coordinates is ttp4bw3bqxwn. This
hash is unique and can be used with geohash.org to refer to our lat-lon coordinate.

There are some basics required for using a geohash such as:
•	 Naming geohashes
•	 Geohash format
•	 Google map tools to generate geohash using Google Maps
•	 Quering geohash

These details can be obtained from the following URL:
http://geohash.org/site/tips.html.

Let us also get a brief idea on how a point is indexed in geohash's
SpatialPrefixTree grid. The geohash that we generated, ttp4bw3bqxwn, is a 12
character string. This is indexed in Solr and the underlying Lucene as 12 terms, as
follows:

t, tt, ttp, ttp4, ttp4b, ttp4bw, ttp4bw3, ttp4bw3b, ttp4bw3bq,
ttp4bw3bqx, ttp4bw3bqxw, ttp4bw3bqxwn

These 12 characters lead to an accurate point inside Swarn Jayanti Park,
Indirapuram. Now, change the last digit of the longitude coordinate from 3 to 4.
The lat-lon coordinate now becomes 28.642815-77.368414, and in the geohash,
only the last character changed from n to y.

www.it-ebooks.info

geohash.org
http://geohash.org/site/tips.html
http://www.it-ebooks.info/

Solr for Spatial Search

[166]

The new geohash is now ttp4bw3bqxwy, which is inside Swarn Jayanti Park,
Indirapuram, Ghaziabad, as shown in the following image:

This shows us the concept of how the geohash is being indexed as 12 terms. A search
on the first 11 characters would lead to a location that is defined by a 1 m grid. The
accuracy of our search in this case would be 1 m. If we reduce the search characters
further, our accuracy will decrease.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 6

[167]

In order to index the geohash into our index, we need to define a fieldType class,
namely solr.GeoHashField:

<fieldtype name="geohash" class="solr.GeoHashField"/>

Also, we need to define a field for indexing or storage:

<field name="store_hash" type="geohash" indexed="true"
stored="true"/>

Further operations such as indexing and querying are similar to those available with
RPT, which we saw earlier.

Summary
In this chapter, we learnt how Solr can be used for geospatial search. We understood
the features provided by the Solr 4 spatial module and saw how indexing and search
can be executed with Solr. We discussed different types of geofilters available with
Solr and performed sorting and boosting using distance as the relevancy score. We
also saw some advanced concepts of geospatial operations such as quadtrees and
geohash.

In the next chapter, we will learn about the problems that we normally face during
the implementation of Solr in an advertising system. We will also discuss how to
debug such a problem along with tweaks to further optimize the instance(s).

www.it-ebooks.info

http://www.it-ebooks.info/

www.it-ebooks.info

http://www.it-ebooks.info/

[169]

Using Solr in an
Advertising System

In this chapter, we will discuss in depth the problems faced during the
implementation of Solr in an advertising system. An advertising system generates
ads related to the content a user is currently viewing on his or her browser. These
contextual ads need to be displayed quickly and need to be relevant for the user
so that the user is prompted to click on them. We will look at Solr as a platform to
provide solutions to the issues related to this aspect. We will delve into performance
optimizations and then proceed with making Solr work with Redis. The topics that
will be covered in this chapter are:

•	 Ad system functionalities
•	 Ad distribution system architecture
•	 Ad distribution system requirements
•	 Performance improvements
•	 Merging Solr with Redis

Ad system functionalities
An ad system is based on the concept of provision of contextual ads (or documents
in Solr terms) that are related to either the searched keyword or the document being
viewed. Ads can also be generated or searched on the basis of the user's profile
information and browsing history. The positioning and placement of an ad must
match with the space available on the web page. On the basis of these functionalities,
advertisements can be broadly divided into the following categories:

•	 Ads based on keywords searched—referred to as a listing ad

www.it-ebooks.info

http://www.it-ebooks.info/

Using Solr in an Advertising System

[170]

•	 Ads based on the placement and positioning available on the web page
•	 Ads based on the user's browsing history and his or her profile—also known

as user-targeted ads

To understand how an ad system works, we need to understand the functionalities
it provides. On the back end or the admin side, the ad system should provide the
following functionalities:

•	 The definition of ad placement or the position where the ad would be able to
fit on a web page, in terms of not only the size of the ad but also its visibility,
say the top of the page or bottom right corner of the page.

•	 Sales interface: This is an interface where all sales are recorded with respect
to the client and payment or billing information.

•	 Creative management: This is an interface to manage the creatives (images,
flash files, or any content related to the ad) required to create an ad. It should
also contain an approval mechanism for finalized creatives.

•	 Reporting: This is a very broad topic and includes interfaces for reporting
both the performance of the ad and the billing or usage statistics. It should
contain and track statistics for CPM / CPC / CPA of the ads. For people
who are new to the ad system, CPM stands for Cost Per Mile (1 mile =
1000 impressions). CPM is generally used for premium ads by premium
publishers as ad publishers get paid for every impression. CPC stands for
Cost Per Click, where the publisher gets paid only when the user clicks on
the ad. CPA stands for Cost Per Aquision where the publisher gets paid only
if the ad resulted in a sale.

•	 Merchant tool: This is used by merchants to upload their requirements and
track reports related to their ads as well as to check their billing information.

•	 Campaign management: This is required to define a campaign. A campaign
in an ad system generally refers to the ad or ads to be shown for a certain
duration or with a capping of CPM, CPC, or CPA.

•	 Budget: This can be used to place a cap on the bill generated with respect to a
client or an inventory.

•	 Bidding: This is generally used to compete for the visibility and placement of
an ad. There are various algorithms available to calculate the value of an ad.
Merchants can also use the merchant tool to increase the CPM, CPC, or CPA
of an ad to increase its visibility.

•	 Targeting media: This defines the keywords and URLs or category of
websites where the ad would be displayed. For example, we can say that a
particular ad should be displayed only on e-commerce websites.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 7

[171]

In addition to the ad management system, we need an ad distribution system, which
would display the ad based on the placement of ad, keyword matching to define the
context of the ad. In addition, the ad distribution system needs to take care of the
behavioral and demographic information related to the user.

The advertising system should also be capable of identifying the type of device on
which the ad is to be displayed. It could be a laptop, mobile, or tablet. We could also
build big-data analytics into the advertising system in order to identify behavioral
patterns. The system should be able to connect to other affiliate networks.

Architecture of an ad distribution system
Now that we have a brief overview of the functionalities provided by an advertising
system, we can look at the architecture of the advertising system and understand
where Solr fits in the picture.

The system would receive parameters such as placement of the ad, keywords related
to the ad, and the type of ad to be displayed. On the basis of these parameters, the
system will identify the ad to be displayed. Most of the data required for ad display
is stored as a browser cookie on an end user's system. This cookie can contain
tracking and targeting information. This cookie information is sent over to the ad
distribution network and is used for identifying the ad to be displayed and also for
gathering the tracking and behavioral information.

The ad system generally works on JSON, HTML, and JavaScript frameworks on
the frontend. JavaScript is used on the client side and is placed on the web page on
which the ad is to be displayed. JavaScript handles all the communication between
the ad distribution network and the browser on which the ad is to be displayed. Data
is generally shared between the ad distribution network and the JavaScript client on
the browser in the JSON format.

On the backend, the ad distribution system requires searching, filtering, sorting, and
logging of data. This is where Solr comes into the picture. Ad distribution systems
are high-performance and high-availability systems. Each web page can contain
multiple ads, and there are various web pages on multiple sites on which ads are
to be displayed. Hence, the number of requests per second for an ad distribution
network will be much higher than the total number of page views on all the sites
that cater to ads from this ad distribution network. Also, 100 percent availability is
required, as downtime not only leads to loss of revenue but it also brings down the
credibility of the ad distribution system.

www.it-ebooks.info

http://www.it-ebooks.info/

Using Solr in an Advertising System

[172]

Logs are collected and analyzed to improve profitability. There are various
technologies used on the back end, from databases such as MySQL and Mongo
and caching systems such as Redis, to web servers such as Nginx or Apache and of
course Solr for search. A demo system architecture for an ad distribution system is
shown in the following screenshot:

Ad distribution system architecture

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 7

[173]

We can see that there is a load balancer that, on receiving requests, distributes them
to back-end web servers. Here we are using Apache as the web or HTTP server. The
HTTP server forwards requests to the Apache Tomcat application server, which
contains the business logic. The application server interacts with the redis cache to
get cached information. If it does not find the required information in the cache, it
uses the MySQL database to fetch the information and caches this information on
the redis server. If the request is related to targeting or search, the application server
checks redis for the cache and gets information from Solr Slave, if that information is
not found in the redis cache. The indexing happens on the Solr Master, which can be
scheduled at certain intervals, and the updated index is replicated onto Solr Slave.

We have high availability of web, application, caching, and Solr servers. The
database master and the Solr indexing server can be organized in a master-master
arrangement to achieve high availability at that level. The aim here should be to
achieve a no single point of failure scenario.

We have included the Solr slave, Redis cache, and the application
on the web server itself. Therefore, each server acts as an
independent node behind the load balancer. This reduces the
internal network bandwidth and simplifies the number of
moving parts. However, if a single server cannot host all the
parts required for the application, it is recommended to move
or spread them out and balance the load between internal hosts
using a load balancer. In such a scenario, we would have a
cluster of Redis slaves behind a load balancer, a cluster of Solr
slaves, and so on.

We may consider replacing the Apache web server with the event-driven Nginx web
server, which will be able to handle more requests. The Nginx server is a lightweight
event-based server, unlike the Apache web server, and it can handle more
connections. The Solr master-slave architecture can be replaced with SolrCloud,
which provides better indexing performance and higher availability of Solr slaves.
This will be discussed in Chapter 9, SolrCloud. Currently, in order to update the Solr
schema, the following process needs to be followed:

1.	 Stop replication between the master and slave servers.
2.	 Remove one or more web or application servers from the load balancer

disabling all requests on that server.
3.	 Update the Solr schema on the master server.
4.	 Replicate it onto the Solr slaves that have been removed from the load

balancer and that do not serve any requests.

www.it-ebooks.info

http://www.it-ebooks.info/

Using Solr in an Advertising System

[174]

5.	 Update the application on the machines that have been removed from the
load balancer.

6.	 Put the updated machines back into the load balancer and remove all the
other machines from the load balancer.

7.	 Replicate the Solr slave on the remaining machines that are out of the
load balancer.

8.	 Update the application on the remaining machines.
9.	 Put the remaining machines back into the load balancer after Solr replication

is complete.

Use of SolrCloud simplifies the entire process of updating the schema as this
approach does not require such extensive planning and manual intervention.
SolrCloud uses a centralized configuration system known as ZooKeeper, which acts
as a referral point for schema updates. We will be discussing the same in Chapter 9,
SolrCloud.

Requirements of an ad distribution
system
Now that we have studied the system architecture of an ad distribution network
and the various components, let us look at the requirements of an ad distribution
system from the viewpoint of performance. Of course, performance is of primary
importance. We saw that there are multiple ways in which an ad publisher generates
revenue from an ad network. CTR is the most preferred way of measuring the
performance of an ad and hence that of the ad network.

CTR stands for Click Through Rate. It is defined as the division of the
number of clicks made on an advertisement by the total number of times
the advertisement was served (impressions).

In order to deliver a good CTR, the ad being displayed needs to be close to the
context of the page currently being viewed by the user. In order to derive the
context, we need to run a search with the title and metadata on the page and
identify the ads related to that page. Let us create a sample Solr schema for an
ad distribution network.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 7

[175]

Schema for a listing ad
The schema for a listing ad can contain the following fields:

<field name="adid" type="lowercase" indexed="true" stored="true"
required="true" omitNorms="true"/>
<field name="keywords" type="wslc" indexed="true" stored="true"/>
<field name="category" type="wslc" indexed="true" stored="true"/>
<field name="position" type="string" indexed="true" stored="true"
multiValued="true"/>
<field name="size" type="string" indexed="true" stored="true"/>

We have the field name as adid, which is a unique ID associated with an
advertisement. We have the keywords field related to adid. The keywords herein
are whitespace tokenized and appear in lowercase. category is another field that
specifies the category of ads. It can be used to categorize an ad to be displayed on an
e-commerce website, a blog, or some other specific website. position specifies the
position in which the ad is to be displayed, and size specifies the size of the ad
in pixels.

Our query for fetching an ad will be based solely on the keyword. The JavaScript
client will pass the category, position, and size parameters related to an ad on the
website. It will also pass the page title and metadata on the page. Our search for an
ad would be based on the value in the keywords field. We will be performing an OR
match between the content on the page (title and metadata) against the keywords for
that advertisement.

A simple filtering query on the category, position, and size parameters should
return the ads that can be displayed on the page. In addition, there are certain
parameters that we discussed earlier such as the campaign, the start and stop dates,
and the number of impressions or budget related to the ad. All these parameters would
also need to be added into the schema and queried during the fetching of the ad:

<field name="startdt" type="date" indexed="true" stored="false" />
<field name="enddt" type="date" indexed="true" stored="false" />
<field name="campainid" type="int" indexed="true" stored="true"/>
<field name="impressions" type="int" indexed="true" stored="true"/>

Note that if we store the number of impressions to be served in the Solr
index, then we will have to continually update the index as soon as an
impression is served. This increases both reads and writes on the Solr
index and the system is required to be more real time.

www.it-ebooks.info

http://www.it-ebooks.info/

Using Solr in an Advertising System

[176]

Changes in impressions should be immediately reflected in the Solr index. Only
then would the Solr query be able to fetch the ads that need to be displayed. If an ad
has served its budged impressions, it should not be served further. This can happen
only if the impressions served are updated immediately into the ad index. The NRT
indexing feature based on soft commits (discussed in Chapter 5, Solr in E-commerce) in
Solr and SolrCloud can be used to achieve this.

Schema for targeted ads
A targeted ad is based on a user's browsing history and profile information. How
can we get the user's browsing history or profile information? We need to drop
cookies into the user's browser when he or she visits a certain site. The merchant who
provides ads to the ad publisher also drops cookies into the user's browser. Let us
look at an example scenario to understand this system.

Suppose a user is browsing www.amazon.com for certain products, say t-shirts.
Each of the user's actions results in the addition or update of cookies on his or her
browser. Therefore, if the user views some t-shirts, there would be a cookie on his
browser containing information on that product. The advertising system provides
the merchant with a piece of code that is used to drop the cookie. The merchant may
also register with the ad network and ask for certain CTR / CPM plans. Such an ad
distribution system would have tie-ups with ad publishers or websites where the
ads are to be displayed. The ad system would provide a JavaScript code to the ad
publisher system to be added to the page on which the ad is to be displayed.

Suppose the user now goes to some other website, say www.hindustantimes.com,
which is a content and news website. Given that the ad distribution system has
a tie-up with www.hindustantimes.com, there is a JavaScript code on the
www.hindustantimes.com home page that fetches ads from our ad distribution
system. This JavaScript code will read all cookies on the user's browser and pass
them to the ad distribution system. The ad distribution system now knows that the
user was earlier viewing certain t-shirts on www.amazon.com. Using this information,
ads offering t-shirts earlier seen by the user are displayed on the user's browser.

It is also possible to capture the user's profile information, such as age, sex, online
shopping preferences, and location, and use it to display targeted ads to the user.
These types of targeted ads have gained a lot of popularity as they are close to the
user's interest.

www.it-ebooks.info

www.amazon.com
www.hindustantimes.com
www.hindustantimes.com
www.hindustantimes.com
www.amazon.com
http://www.it-ebooks.info/

Chapter 7

[177]

A sample Solr schema for the ad network for targeted ads would contain the
following fields in addition to the fields meant for listing ads:

<field name="merchant" type="string" indexed="true" stored="true" />
<field name="pincode" type="int" indexed="true" stored="true" />

These fields specify the merchant and the user location as part of the user profile.

When searching for an ad to be displayed to a particular user, the search query also
incorporates cookie information regarding the merchant and the user. The products
to be displayed for a particular merchant are picked up from the user's cookie.

Performance improvements
We learnt in the previous section that the ad distribution system needs to be very
fast and capable of handling a large number of requests as compared to a website.
In addition, the system should be always available, with the least possible downtime
(none if possible). The ads have to be relevant so that merchants obtain the desired
response. Let us look at a few parameters that will improve Solr's performance by
optimally using the inbuilt caching mechanism.

An index searcher, which is used to process and serve search queries, is always
associated with a Solr cache. As long as an index searcher is valid, the associated
cache also remains valid. When a new index searcher is opened after a commit, the
old index searcher keeps on serving requests until the new index searcher is warmed
up. Once the new index searcher is ready, it will start serving all the new search
requests. The old index searcher will be closed after it has served all the remaining
search requests. When a new index searcher is opened, its cache is auto-warmed
using the data from the cache of an old index searcher. The caching implementations
in Solr are LRUCache (Least Recently Used), FastLRUCache, and LFUCache
(Least Frequently Used).

fieldCache
Lucene, the search engine inside Solr, has an inbuilt caching mechanism for a
field known as fieldCache. Field cache contains field names as keys and a map of
document ids corresponding to field values as values in the map. Field cache is
primarily used for faceting purposes. This does not have any configuration options
and cannot be managed by Solr. We can use the newSearcher and firstSearch
event listeners in Solr to explicitly warm the field cache. Both the events are defined
in the solrconfig.xml file:

<listener event="newSearcher" class="solr.QuerySenderListener">
 <arr name="queries">

www.it-ebooks.info

http://www.it-ebooks.info/

Using Solr in an Advertising System

[178]

 <lst> <str name="q">anything</str> <str name="sort">impressions
 desc, enddt asc</str> </lst>
 </arr>
</listener>
<listener event="firstSearcher" class="solr.QuerySenderListener">
 <arr name="queries">
 <!-- seed common sort fields -->
 <lst> <str name="q">anything</str> <str name="sort">impressions
 desc, enddt asc</str> </lst> </lst>
 <!-- seed common facets and filter queries -->
 <lst> <str name="q">anything</str>
 <str name="facet.field">merchant</str>
 <str name="fq">size:200px50px</str>
 </lst>
 </arr>
</listener>

We can see the performance of the fieldCache from the statistics page in Solr:

fieldCache Statistics

entries_count defines the total number of items in fieldCache, and insanity_count
defines the number of insane instances. Insane indicates that something is
wrong with the working of fieldCache. It is not critical and may not require
an immediate fix.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 7

[179]

fieldValueCache
It is similar to FieldCache in Lucene, but it is inside Solr and supports multiple
values per item. This cache is mainly used for faceting. The keys are field names
and the values contain large data structures that map docId parameters to
values. The following screenshot shows an output from the Solr statistics page for
fieldValueCache:

fieldValueCache statistics

www.it-ebooks.info

http://www.it-ebooks.info/

Using Solr in an Advertising System

[180]

documentCache
It stores Lucene documents that have been previously fetched from the disk. The
size of the document cache should be greater than the estimated (max no of
results) * (max concurrent queries) value for this cache for it to be used
effectively. If these criteria are met, Solr may not need to fetch documents from disk,
except for the first time (when not in cache). The following code snippet shows how
documentCache is configured in the solrConfig.xml file:

<!-- Document Cache

 Caches Lucene Document objects (the stored fields for each
 document). Since Lucene internal document ids are transient,
 this cache will not be autowarmed.
 -->
<documentCache class="solr.LRUCache"
 size="102400"
 initialSize="1024"
 autowarmCount="0"/>

The document cache should not be auto-warmed, as the document IDs and fields
within a document may change when a document is re-indexed. Memory usage can
be high for this cache, and the usage depends on the number of fields stored in the
documents in the index. The higher the number of stored fields, the more will be the
memory usage.

The statistics for the usage of documentCache is shown on the Solr admin
stats interface:

documentCache statistics

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 7

[181]

Solr has a concept of lazy loading of fields that can be enabled by the
enableLazyFieldLoading parameter.

<enableLazyFieldLoading>true</enableLazyFieldLoading>

When lazy loading is enabled, only fields specified in the fl parameter in the query
are obtained from the index and stored in DocumentCache. Other fields are marked
as LOAD_LAZY. When there is a cache hit on that document at a later date, the fields
that are already present in the document are returned directly, while the fields that
are marked as LOAD_LAZY are loaded from the index. The document object is updated
with data for fields that were earlier marked as LOAD_LAZY. In this case as well,
we notice an increase in memory usage without any increase in the number of
cached documents.

filterCache
A filter cache is mainly used for caching the results of filter queries. It stores a set of
document IDs that match with a filter query. The filter cache can be used for faceting
in some cases. The filterCache class is configured in the solrconfig.xml file with
the following configuration options:

<filterCache class="solr.FastLRUCache"
 size="409600"
 initialSize="40690"
 autowarmCount="4096"/>

The filterCache class can also be used for sorting results by enabling the following
parameter in the solrconfig.xml file:

<useFilterForSortedQuery>true</useFilterForSortedQuery>

www.it-ebooks.info

http://www.it-ebooks.info/

Using Solr in an Advertising System

[182]

The following screenshot shows an output from the Solr admin statistics page that
shows the usage of the filterCache class:

filterCache usage statistics

Passing the parameter {!cache=false} will prevent the filter cache from being used
in that query. The following is a sample filter query that does not use a filter:

fq={!cache=false}inStock=true

queryResultCache
The queryResultCache class is used to prevent repeated searches on the index. The
cache stores the ordered set of document IDs for a particular query. It is defined in
the solrconfig.xml file by the queryResultCache parameter:

<queryResultCache class="solr.LRUCache"
 size="512"
 initialSize="512"
 autowarmCount="0"/>

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 7

[183]

The statistics on the Solr admin page can be referred to in order to judge the
performance of the cache.

queryResultCache usage statistics

The usage statistics for different caches is almost the same. We have the size statistic
that specifies the number of objects in the cache. The inserts statistic tells us about
the number of inserts that were made into the cache. When the size is full, inserts
will happen but size will not increase. Instead evictions will happen where the
least recently used object will be removed from the cache memory. We have the
lookups parameter that specifies the number of times the cache was queried, and the
hits parameter specifies the number of times the cache query provided results. The
higher the hit ratio, the better is the cache performance.

Query cache can also be ignored for a particular request using cache local
parameter.
Refer to the following usage example:

q={!cache=false}*:*

www.it-ebooks.info

http://www.it-ebooks.info/

Using Solr in an Advertising System

[184]

Application cache
In addition to the caches provided by Solr and Lucene, most advertising applications
have their own local cache. This cache can be used to reduce the search time to less
than 1 millisecond. Remember that we require a fast search in order to achieve the
CPM / CPC target.

The application will also need to handle cache invalidation and refresh whenever
any updates happen in the index.

Garbage collection
Java performs Garbage Collection (GC) at certain intervals to clean up unused
objects from the memory. During full garbage collection, Solr or any Java application
comes to a standstill. Depending on the amount of heap memory allocated, the pause
time can go up to 1 second or higher for large heaps. The aim here is to avoid full GC
and work on concurrent GC. There are certain parameters in Java or Tomcat that can
be used for concurrent garbage collection.

These parameters can be added to the Tomcat environment variables to enable better
garbage collection:

FULL_GC_OPTS="-XX:+UseConcMarkSweepGC -XX:+UseParNewGC
-XX:+SurvivorRatio=8 -XX:MaxTenuringThreshold=32
-XX:TargetSurvivorRatio=90"

For other servers such as Jetty or Resin, please refer to the respective
guides on how to add these variables to the environments.

For more information on the variables passed to the Tomcat environment, refer to
the following description:

•	 UseConcMarkSweepGC: This acts as a concurrent collector. The related
GC algorithm attempts to do most of the garbage collection work in the
background without stopping application threads while it works. However,
there are phases where it has to stop application threads, but these phases are
attempted to be kept to a minimum.

•	 UseParNewGC: This function uses a parallel version of the young-generation
copying collector alongside the default collector. It minimizes pauses by
using all available CPUs in parallel.

•	 SurvivorRatio: This class serves to increase the survivor spaces in order to
keep survivors alive longer.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 7

[185]

•	 MaxTenuringThreshold: This class serves to prevent objects from being
copied to the tenured space too early.

•	 TargetSurvivorRatio: This class serves to increase the maximum
percentage of available survivor space.

We need to tune the parameters as per our requirements. With upgrades, the Java
Virtual Machine (JVM) will have much better ways of handling garbage collection,
which will have to be looked into.

Merging Solr with Redis
Solr indexing involves huge costs. Therefore, handling of real-time data is expensive.
Every time a new piece of information comes into the system, it has to be indexed
to be available for search. Another way of handling this is to break the Solr index
into two parts, stable and unstable. The stable part of the index is contained inside
Solr, while the unstable part can be handled by a plugin by extracting information
from Redis. The unstable part of the index, which is now inside Redis, can handle
real-time additions and deletions through an external script, which is reflected in the
search results.

Redis is an advanced key value store that can be used to store documents containing
keys and values in the memory. It offers advantages over Memcache, as it syncs the
data onto disk and provides replication and clustering facilities. In addition to the
storage of normal key values, it provides facilities to store data structures such as
strings, hashes, lists, sets, and sorted sets. It also has a publisher-subscriber functionality
built into the server.

In an advertising system, the Solr index can be used for searches based on the
keyword, placement, and user profile or behavioral information. The data inside
Redis can be used for filtering and sorting and contains the following information:

•	 Status of the ad, whether active or not
•	 Ad price and rank, which affects the CTR
•	 Ad contents, such as image path, link, or text to be displayed

The data inside Redis can be small or large depending on the type of advertisements.
If an advertisement contains large images and text, it can bloat. However, since this
data is outside Solr, it would not affect the search performance.

Since, we are creating a plugin for sorting and filtering using Redis, we
need to decide where to place it. Solr provides two entry points for a plugin,
ResponseWriter and SearchComponent.

www.it-ebooks.info

http://www.it-ebooks.info/

Using Solr in an Advertising System

[186]

•	 ResponseWriter: This class is used for sending responses and is unsuitable
for filtering and sorting of data.

•	 SearchComponent: This class is easy to implement and configure and
contains a QueryComponent class that can be easily modified. The
QueryComponent class is the base for default searching.

We have learnt in Chapter 3, Solr Internals and Custom Queries how to write a query
parser plugin. We first create a RedisQParserPlugin class, which extends the
QParserPlugin class, and then override the createParser function:

public class RedisQParserPlugin extends QParserPlugin {

 @Override
 public QParser createParser
 (String qstr, SolrParams localParams, SolrParams params,
 SolrQueryRequest req) {
 return new QParser(qstr, localParams, params, req) {
 @Override
 public Query parse() throws SyntaxError {
 logger.info("Redis Post-filter invoked");
 return new RedisPostFilter();
 }
 };
 }
}

Inside the parse function, we are calling RedisPostFilter, which does all the
hard work.

The PostFilter interface provides a mechanism for filtering documents after they
have already gone through the main query and other filters.

The RedisPostFilter class extends the ExtendedQueryBase class and implements
the PostFilter interface. The APIs for PostFilter and ExtendedQueryBase can be
accessed from the following URLs:

http://lucene.apache.org/solr/4_7_0/solr-core/org/apache/solr/search/
PostFilter.html

http://lucene.apache.org/solr/4_7_0/solr-core/org/apache/solr/search/
ExtendedQueryBase.html

Let us also go through the code for the PostFilter:

public RedisPostFilter() {
 setCache(false);
 Jedis redisClient = new Jedis("localhost", 6379);

www.it-ebooks.info

http://lucene.apache.org/solr/4_7_0/solr-core/org/apache/solr/search/PostFilter.html
http://lucene.apache.org/solr/4_7_0/solr-core/org/apache/solr/search/PostFilter.html
http://lucene.apache.org/solr/4_7_0/solr-core/org/apache/solr/search/ExtendedQueryBase.html
http://lucene.apache.org/solr/4_7_0/solr-core/org/apache/solr/search/ExtendedQueryBase.html
http://www.it-ebooks.info/

Chapter 7

[187]

In the constructor, we have disabled caching and are connecting to the Redis server
on localhost port 6379. The post filter over here just filters the ads on the basis of
their status, as active (online) or inactive (offline):

 redisClient.select(1);
 onlineAds = redisClient.smembers("myList");
 this.adsList = new HashSet<BytesRef>(onlineAds.size());
 for (String ad : onlineAds) {
 this.adsList.add(new BytesRef(ad.getBytes()));
 }

After connecting to the Redis server, we select a table (or index in terms of Redis)
and get a list of all online ads from the Redis server. The same is added to the
adsList set in the object.

Next, we define a function isValid, which checks whether the ad is valid or not:

public boolean isValid(String adId) throws IOException {
 return this.onlineAds.contains(adId);
}

We construct a delegatingCollector class, which is run after the main query and
all filters but before any sorting or grouping collectors:

public DelegatingCollector getFilterCollector(final IndexSearcher
indexSearcher) {
 return new DelegatingCollector() {

We override two functions, setNextReader and collect, which gets the IDs from
FieldCache (the search results on the index) and returns them to the parent's result
Collector, respectively:

 @Override
 public void setNextReader(AtomicReaderContext context) throws
 IOException {
 this.docBase = context.docBase;
 this.store = FieldCache.DEFAULT.getTerms(context.reader(),
 "id", false);
 super.setNextReader(context);
 }
 @Override
 public void collect(int docId) throws IOException {
 String id = context.reader().document(docId).get("id");
 if (isValid(id)) {
 super.collect(docId);
 }
 }

www.it-ebooks.info

http://www.it-ebooks.info/

Using Solr in an Advertising System

[188]

Inside the RedisPostFilter parameter, we override the getCache and
getCost functions:

 @Override
 public int getCost() {
 return Math.max(super.getCost(), 100);
 }

The getCost function returns a value that is greater than 100:

 @Override
 public boolean getCache() {
 return false;
 }

The getCache function is required to be false for caching to be disabled, and
getCost is required to be greater than 100. Only then would the post filter interface
be used for filtering.

equals and hashCode are two methods that are overridden from the org.apache.
lucene.search.Query abstract class. This extends the functionality of the Lucene
search query.

In order to compile the code, we will need to use the following JAR files in our class
path to handle the dependencies:

•	 jedis-1.5.0.jar

•	 log4j-1.2.16.jar

•	 lucene-core-4.8.1.jar

•	 solr-core-4.8.1.jar

•	 slf4j-log4j12-1.6.6.jar

•	 slf4j-api-1.6.6.jar

•	 solr-solrj-4.8.1.jar

Once compiled, we can create a JAR file using the following command:

$ jar -cvf redis.jar packt/*

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 7

[189]

We will see the following output on the screen:

added manifest

adding: packt/search/(in = 0) (out= 0)(stored 0%)

adding: packt/search/RedisQParserPlugin$1.class(in = 1335) (out= 568)
(deflated 57%)

adding: packt/search/RedisQParserPlugin.class(in = 1179) (out= 524)
(deflated 55%)

adding: packt/search/RedisPostFilter.class(in = 2720) (out= 1497)
(deflated 44%)

adding: packt/search/RedisPostFilter$1.class(in = 2135) (out= 986)
(deflated 53%)

In order to load the plugin, copy redis.jar and jedis-1.5.0.jar to the <solr_
installation_dir>/example/lib folder and specify the library path in the
solrconfig.xml file:

<lib dir="../../lib/" regex="redis\.jar" />
<lib dir="../../lib/" regex="jedis-1\.5\.0\.jar" />

We will need to define the implementation class in the solrconfig.xml file. This is
an important glue to hook in the Redis post-filter implementation:

<queryParser name="redis" class="packt.search.RedisQParserPlugin" />

On starting Solr, we can see that the specified JAR files are loaded:

3110 [coreLoadExecutor-4-thread-2] INFO org.apache.solr.core.
SolrResourceLoader – Adding 'file:/home/jayant/installed/solr-4.7.2/
example/lib/redis.jar' to classloader

Now restart the Solr server and check whether Redis is working on the localhost
port 6379:

Redis server working

In order to call the filter, we will have to pass fq={!redis} to our Solr query:

http://localhost:8983/solr/collection1/select?q=*:*&fq={!redis}

www.it-ebooks.info

http://www.it-ebooks.info/

Using Solr in an Advertising System

[190]

The calls to RedisPostFilter can be seen in the Solr logs, as shown in the
following image:

This plugin can be used to filter the ads on the basis of their status. Updates
regarding the status of ads can be made into the Redis database through an external
script. The actual implementation inside Solr can differ depending on the logic that
you want to implement in the post filter.

Summary
In this chapter, we understood how an advertising network works. We went through
the implementation of Solr for a large-scale ad distribution network. We saw the
problems plaguing such an implementation in an advertising network and the
solutions to these problems. We also saw the architecture of a large-scale Solr system.
We saw the cache optimization options in Solr. We also built a plugin that interacts
with Redis to aid the real-time update of the status of ads.

In the next chapter, we will explore a framework known as AJAX Solr, which can be
used to execute queries on Solr directly from the client browser without the need for
any application.

www.it-ebooks.info

http://www.it-ebooks.info/

[191]

AJAX Solr
In the previous chapter, we learnt how Solr can be used in an advertising system.
We understood the working of an advertising system, its architecture, and the
complexities involved in the implementation of the system. We also discussed
some performance improvements in Solr with respect to the advertising system. In
addition, we wrote a custom plugin for Solr intended for the integration of Solr with
Redis (the key value memory store).

In this chapter, we will explore an advanced package known as AJAX Solr. We will
first look at the architecture of AJAX Solr and then see how different functionalities
of Solr such as pagination, search result faceting, customization of search results, and
tag cloud can be performed using AJAX Solr. We will cover the following topics:

•	 The purpose of AJAX Solr
•	 The AJAX Solr architecture
•	 Working with AJAX Solr
•	 Performance tuning

AJAX is a JavaScript library that can be used to create interfaces in Apache
Solr. It does not require any JavaScript framework to work, but needs an AJAX
implementation to communicate with Solr. Therefore, it can be used in conjunction
with JavaScript libraries and frameworks such as jQuery and Angular.js, which
support AJAX. Earlier a JavaScript library called SolrJS was developed as a Solr
JavaScript client. AJAX Solr is a fork of this library and has evolved as a JavaScript
client for Solr.

www.it-ebooks.info

http://www.it-ebooks.info/

AJAX Solr

[192]

The purpose of AJAX Solr
AJAX Solr is a Solr client developed using JavaScript. AJAX Solr facilitates
interesting visualizations of a result set that includes widgets to display tag clouds
of facets, filtering of results by date fields, and plotting of maps based on country
code information. AJAX Solr can be integrated with any web application enabling
the Solr-related operations to be performed directly on the Apache Solr interface,
without the necessity to incorporate any language in between.

Ideally, any request on the Internet is received by a web application residing on the
server, and Solr-related operations are forwarded to the Solr server for processing.
This is shown in the following diagram. The request originating from the browser
travels over the Internet to the web application residing on the web server. The web
server then creates a Solr request and performs the required operation on the
Solr server.

With AJAX Solr, the intermediary web application can be removed from the picture,
allowing the JavaScript application on the user's browser to communicate directly
with Solr servers. This is shown in the following diagram. We can now add a
visually appealing AJAX view of the search results without any impact on the
web application.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 8

[193]

While working with AJAX Solr, operations to be performed in Solr, such as Solr
queries, are processed on the web browser using JavaScript. This reduces processing
on the web application and its complexity.

The primary features of AJAX Solr are as follows:

•	 A dynamic and interactive GUI
•	 A faster GUI
•	 An enhanced hit highlighter
•	 Modernized standards
•	 Cost-effectiveness
•	 A widget framework

The AJAX Solr architecture
AJAX Solr follows the Model-View-Controller (MVC) pattern. The components of
AJAX Solr are:

•	 ParameterStore: This is the model of an MVC framework. This class stores
the Solr parameters and hence the state of the application.

•	 Manager: This acts as the controller in the MVC framework. It talks to the
ParameterStore class and sends requests to the Solr server and delegates
the response received to the widgets for rendering.

•	 Widgets: Widgets act as views rendering the interface.

www.it-ebooks.info

http://www.it-ebooks.info/

AJAX Solr

[194]

AJAX Solr library can be downloaded from https://github.com
using the Git client and the following command:
git clone https://github.com/evolvingweb/ajax-solr.git

You will need to install the Git client on your machine to execute this
command. For Linux users, Git can be installed using the following
command:
sudo apt-get install git

Windows users can download Git from the following URL and install
it on their machines: http://git-scm.com/downloads.

This will create a folder called ajax-solr with the following sub-folders:

•	 core: This sub-folder includes all the managers, parameter stores, and
abstract widgets

•	 managers: This sub-folder includes all the framework-specific managers
•	 widgets: This sub-folder includes all framework-specific widgets
•	 examples: This sub-folder includes working examples

AJAX Solr is built with extensibility in mind. Therefore, we can take an existing class
and extend its functionality by writing a new class that inherits the existing class.
AJAX Solr classes reside in the AjaxSolr namespace. In order to extend any class, we
can simply write:

AjaxSolr.ChildClass = AjaxSolr.ParentClass.extend({
 /* our code */
});

The architecture of the components of AJAX Solr can be understood from the
following image:

www.it-ebooks.info

https://github.com
http://git-scm.com/downloads
http://www.it-ebooks.info/

Chapter 8

[195]

Let us understand the components of AJAX Solr.

In order to use AJAX Solr, we will need to include the following
JavaScript libraries on our web page:

<script type="text/javascript" src="ajax-
solr/core/Core.js"></script>

<script type="text/javascript" src="ajax-
solr/core/AbstractManager.js"></script>

<script type="text/javascript" src="ajax-
solr/managers/Manager.jquery.js"></script>

<script type="text/javascript" src="ajax-
solr/core/Parameter.js"></script>

<script type="text/javascript" src="ajax-
solr/core/ParameterStore.js"></script>

Also, we will need an AJAX library for which we can download jQuery
from: http://jquery.com/download/.
We also include jQuery the library in our web page:

<script type="text/javascript" src="jquery-
1.11.2.min.js"></script>

www.it-ebooks.info

http://jquery.com/download/
http://www.it-ebooks.info/

AJAX Solr

[196]

The Manager controller
The Manager controller performs a two-way communication with our Solr server.
It accepts solrUrl or proxyUrl as its parameter. SolrUrl is used when Manager
communicates with Solr directly. ProxyUrl is used when it interacts with Solr
through a proxy. Ideally, we would not like to expose our Solr server to the Internet,
so we can put it behind a proxy server and specify ProxyUrl in the Manager. The
proxy server can also be configured to prevent Denial of Service (DoS) attacks and
ensure the number of records in the result set is at a maximum (by restricting the
row parameter).

The solrUrl parameter should hold the absolute URL of the Solr application and
can be represented using the following code snippet:

Manager = new AjaxSolr.Manager({
 solrUrl: "http://127.0.0.1:8983/solr/"
});

In our case, the Solr server is on the local machine, so we have specified the local
machine's IP address.

In the implementation of the solrUrl parameter, AJAX Solr uses the select servlet
by default. If you want to change the default value of the servlet parameter, you
need to pass the servlet parameter to Manager at the time of initialization, as shown
in the following code snippet:

Manager = new AjaxSolr.Manager({
 solrUrl: 'http://127.0.0.1:8983/solr/',
 servlet: 'readonly'
});

The Manager life cycle can be represented using the following image that shows how
the different components of AJAX Solr interact with each other.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 8

[197]

The ParameterStore object can be attached to Manager by the setStore method, as
shown in the following snippet:

Manager.setStore(new AjaxSolr.ParameterStore());

Similarly, the widgets to be used for display can be attached to Manager by using the
addWidget method, as shown in the following snippet:

Manager.addWidget(new AjaxSolr.AbstractWidget({
 id: 'identifier',
 target: '#css-selector'
}));

Once parameterStore and widgets are attached to Manager, we can call the init
method of the Manager to initialize AJAX Solr. This in turn calls the init methods of
the attached components, ParameterStore and widgets.

Manager.init();

Once Manager is initialized, we can call the doRequest() method to send the first
request to Solr:

Manager.doRequest();

www.it-ebooks.info

http://www.it-ebooks.info/

AJAX Solr

[198]

If any widget wishes to perform an action prior to sending the request to Solr (for
instance, displaying throbber gif image), doRequest triggers the beforeRequest
method of each of the widgets. The throbber may include activities such as content
download, computation of some values, or interaction with an external device. Then,
the executeRequest abstract method is called that actually sends the request to Solr.
The AJAX implementation of Solr is JavaScript framework agnostic. Any framework
supporting AJAX implementation can be used to send the AJAX request to Solr. This
is handled by the Manager.jquery.js file, which resides in the managers folder
inside the ajax-solr library. This implements the executeRequest method using
jQuery. As soon as the Manager receives a response from Solr, it captures the JSON
response in its response property. It then triggers the afterRequest method of each
widget so that the response property is investigated by the widgets and rendered to
the interface accordingly.

The ParameterStore model
The parameterStore model is used to store Solr parameters. It defines functions
for fetching, setting, and removing Solr parameters. Some Solr parameters, such as
facet.field and fq, may be specified multiple times. Other parameters, such as
q and start, may be specified only once. There is the isMultiple method, which
returns true if the parameter can be specified multiple times.

There is a list of functions that operate on Solr parameters, and their behavior is
based on whether a specific parameter needs to be used multiple times or just once.
These functions can be categorized as follows:

•	 Available parameters: Parameters that are directly available for us to use
•	 Exposed parameters: Consists of parameters that are exposed by AJAX Solr

for the end users to play around with

Let us understand these categories.

Available parameters
Solr parameters are represented as Parameter objects. The Parameter class defines
the following attributes and functions for its usage:

•	 val: This attribute gets and sets the parameter value
•	 local: This attribute gets and sets local parameters
•	 remove: This attribute removes the local parameters
•	 string: This attribute returns the parameter as a query string key-value pair

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 8

[199]

•	 parseString: This attribute parses the query string key-value pair back into
a parameter

•	 valueString: This attribute returns the parameter value as a query string-
safe value

•	 parseValueString: This attribute parses the query string-safe value back
into a parameter value

The following is a list of parameters that are available for use:

•	 CoreQueryParameters (https://wiki.apache.org/solr/
CoreQueryParameters)

•	 CommonQueryParameters (https://wiki.apache.org/solr/
CommonQueryParameters)

•	 HighlightingParameters (https://wiki.apache.org/solr/
HighlightingParameters)

•	 SimpleFacetParameters (https://wiki.apache.org/solr/
SimpleFacetParameters)

•	 TermsComponent (https://wiki.apache.org/solr/TermsComponent)
•	 TermVectorComponent (https://wiki.apache.org/solr/

TermVectorComponent)
•	 SpellCheckComponent (https://wiki.apache.org/solr/

SpellCheckComponent)
•	 StatsComponent (https://wiki.apache.org/solr/StatsComponent)
•	 LocalParams (https://wiki.apache.org/solr/LocalParams)
•	 MoreLikeThis (https://wiki.apache.org/solr/MoreLikeThis)

Exposed parameters
With exposed parameters, widgets allow end users to alter the Solr parameters. This
means that, if an end user modifies the value of a parameter, the application reacts
to the change that has been triggered by the end user. It is important to save the
respective states in case the end user performs a bookmark trigger or wants to move
across the states using the browser navigation button. Though we can implement
our custom storage method by extending ParameterStore (discussed in the
Extending the ParameterStore class section of this chapter), the easiest way is using the
ParameterHashStore class that stores the parameters in the URL hash.

www.it-ebooks.info

https://wiki.apache.org/solr/CoreQueryParameters
https://wiki.apache.org/solr/CoreQueryParameters
https://wiki.apache.org/solr/CommonQueryParameters
https://wiki.apache.org/solr/CommonQueryParameters
https://wiki.apache.org/solr/HighlightingParameters
https://wiki.apache.org/solr/HighlightingParameters
https://wiki.apache.org/solr/SimpleFacetParameters
https://wiki.apache.org/solr/SimpleFacetParameters
https://wiki.apache.org/solr/TermsComponent
https://wiki.apache.org/solr/TermVectorComponent
https://wiki.apache.org/solr/TermVectorComponent
https://wiki.apache.org/solr/SpellCheckComponent
https://wiki.apache.org/solr/SpellCheckComponent
https://wiki.apache.org/solr/StatsComponent
https://wiki.apache.org/solr/LocalParams
https://wiki.apache.org/solr/MoreLikeThis
http://www.it-ebooks.info/

AJAX Solr

[200]

Using the ParameterHashStore class
The ParameterHashStore class stores Solr parameters in the URL hash. To use
ParameterHashStore, add its JavaScript file, which is available inside the core folder
of the ajax-solr library:

<script type="text/javascript" src="ajax-
solr/core/ParameterHashStore.js"></script>

Before calling the Manager.init() function, create a new object out of
ParameterHashStore and set it as a store for the Manager using the following code:

Manager.setStore(new AjaxSolr.ParameterHashStore());

Also, the following code lists the Solr parameters that your widget will expose and
allow the user to set or change as this store's property.

Manager.store.exposed = ['fq', 'q', 'start'];

Using these two lines, we can use ParameterHashStore in our implementation of
AJAX Solr.

Extending the ParameterStore class
The init method of Manager calls the init abstract method of ParameterStore.
When extending the ParameterStore class, it is important to implement its init
method so that any one-time initializations are handled using this init method.
Also, the parameters that we want our widgets to allow the users to use directly
or indirectly in the exposed property. The method exposedString can be used to
retrieve these parameters as a query string.

The Manager class calls the save abstract method in its doRequest method. This
also means that the save method is triggered once before each request is sent to
Solr. The save method should be capable of storing the values of the exposed
parameters such that the end user is able to bookmark and move between states. The
ParameterHashStore class implements the save method in order to store the state
in the URL hash.

Another method, storedString, returns the current state of the application as a
string. It is implemented by ParameterHashStore in order to return the URL hash.

If we want to implement our own storage method instead of using
ParameterHashStore, we need to implement only two abstract methods, save
and storedString. We can also implement the load method, which by default
resets the exposed parameters by calling the exposedReset method. It also calls the
parseString method on the string returned by storedString thereby recreating the
parameter object.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 8

[201]

Widgets
The purpose of widgets is to inspect the JSON response retrieved from Solr by
Manager and update the interface accordingly. AbstractWidget is the base class
from which all widgets are inherited. Each widget accepts two parameters:

•	 id: A mandatory identifier that identifies the widget
•	 target: An optional parameter that is normally the CSS selector for the

HTML element that the widget updates upon each Solr request

The AbstractWidget base class exposes three abstract methods:

•	 init: Triggered by the init method of Manager to perform one-time
initializations

•	 beforeRequest: Triggered by the doRequest method of Manager prior to the
request being sent to Solr

•	 afterRequest: Called by the handleResponse method of Manager after
receiving a response from Solr

AJAX Solr defines a set of abstract widgets that we can use to write our own widgets.
In order to benefit from the functions that are contained in these widgets, we just
need to write a new widget that inherits one of the following widgets:

•	 AbstractFacetWidget: It is applied to the new widgets that intend to
manipulate the fq parameter and has been discussed in the Adding facets
section of this chapter

•	 AbstractSpatialWidget: It is applied to the widgets that manipulate the
Spatial Solr local parameters

•	 AbstractSpellcheckWidget: It helps us write widgets that deal with the
spell-check data in the Solr response

•	 PagerWidget: It applies to the widgets that are intended for performing
pagination activities and have been discussed in the Adding pagination section
of this chapter

•	 AbstractTextWidget: It helps us write widgets that manipulate the q
parameter

Working with AJAX Solr
Now that we have seen the architecture and components of AJAX Solr, let us go
ahead and see how to implement it. We will download the default reuters index and
build some features on top of it.

www.it-ebooks.info

http://www.it-ebooks.info/

AJAX Solr

[202]

The reuters index is included as a part of code of this chapter. It can also be
downloaded from http://public.slashpoundbang.com.s3.amazonaws.com/
data-solr-4-index.zip.

Start with a fresh installation of Solr. Unzip the downloaded index and replace the
data folder inside the <solr_installation>/example/solr/collection1 folder.

If the data folder does not exist, start Solr using the following command inside the
<solr_installation>/example folder:

java -jar start.jar

Once Solr is running, simply shut it down using Ctrl-C on the Command Prompt.

This will create the data folder and the related configuration files inside the <solr_
installation>/example/solr/collection1 folder.

We will also need to add and modify certain fields in our Solr schema. Open up the
schema.xml file inside the <solr_installation>/example/solr/collection1/
conf folder and add the following lines to it:

<field name="places" type="string" indexed="true" stored="true"
multiValued="true" omitNorms="true" termVectors="true" />
<field name="countryCodes" type="string" indexed="true" stored="true"
multiValued="true" omitNorms="true" termVectors="true" />
<field name="topics" type="string" indexed="true" stored="true"
multiValued="true" omitNorms="true" termVectors="true" />
<field name="organisations" type="string" indexed="true" stored="true"
multiValued="true" omitNorms="true" termVectors="true"
/>
<field name="exchanges" type="string" indexed="true" stored="true"
multiValued="true" omitNorms="true" termVectors="true" />
<field name="companies" type="string" indexed="true" stored="true"
multiValued="true" omitNorms="true" termVectors="true" />
<field name="allText" type="text_general" indexed="true" stored="true"
multiValued="true" omitNorms="true" termVectors="true"
/>
<field name="dateline" type="string" indexed="true" stored="true"
multiValued="true" omitNorms="true" termVectors="true" />
<field name="date" type="pdate" indexed="true" stored="true"
multiValued="true" omitNorms="true" termVectors="true" />
<copyField source="title" dest="allText"/>
<copyField source="text" dest="allText"/>
<copyField source="places" dest="allText"/>
<copyField source="topics" dest="allText"/>
<copyField source="companies" dest="allText"/>
<copyField source="exchanges" dest="allText"/>
<copyField source="dateline" dest="allText"/>

www.it-ebooks.info

http://public.slashpoundbang.com.s3.amazonaws.com/data-solr-4-index.zip
http://public.slashpoundbang.com.s3.amazonaws.com/data-solr-4-index.zip
http://www.it-ebooks.info/

Chapter 8

[203]

The configuration and schema files required for running the example
perfectly are available inside the ajax-solr/examples/solr-
home folder cloned from the ajax-solr Git repository.
These files can simply be replaced inside the <solr_
installation>/example/solr/collection1/conf folder.

Now start Solr.

Talking to AJAX Solr
We will now need to create or connect the web page with this Solr instance. The
complete HTML files required for running this example can be found inside the
ajax-solr/examples folder, cloned from the ajax-solr Git repository. Our base
HTML page on which we are going to build the search using AJAX Solr is ajax-
solr/examples/reuters/index.0.html. The following screenshot shows how the
basic web page appears:

www.it-ebooks.info

http://www.it-ebooks.info/

AJAX Solr

[204]

If we look at the code of the page, we can see that the following JavaScript and CSS
files are being included in it:

<script
src=http://ajax.googleapis.com/ajax/libs/jquery/1.7.2/jquery.min.js
> </script>
<script
src="http://ajax.googleapis.com/ajax/libs/jqueryui/1.8.24/jquery-
ui.min.js"></script>
<link rel="stylesheet"
href="http://ajax.googleapis.com/ajax/libs/jqueryui/1.8.24/themes/smo
othness/jquery-ui.css">

We can replace them by downloading our copy of jquery and jquery-ui files.

In order to connect to Solr, we will need to include the following JavaScript in
our code:

<script src="../../core/Core.js"></script>
<script src="../../core/AbstractManager.js"></script>
<script src="../../managers/Manager.jquery.js"></script>
<script src="../../core/Parameter.js"></script>
<script src="../../core/ParameterStore.js"></script>

We need to write the following JavaScript code to ask the Manager object to connect
to our Solr instance running on localhost port 8983:

var Manager;

(function ($) {

 $(function () {
 Manager = new AjaxSolr.Manager({
 solrUrl: 'http://localhost:8983/solr/collection1/'
 });
 Manager.init();
 Manager.store.addByValue('q', '*:*');
 Manager.doRequest();
 });

})(jQuery);

Let us write this code in a file called reuters.1.js inside the js folder and include
it as a JavaScript source in our web page:

<script src="js/reuters.1.js"></script>

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 8

[205]

Here we have created an instance of Manager and assigned to it the Solr URL that
connects to Solr running on our local machine, localhost:8983. We have initiated
Manager and executed a query q=*:*. Since we have not defined any display
widget, we will not be able to see the output. However, we can check whether the
request was sent by enabling the Firebug status bar on the Firefox web browser.

Inside the Net tab of Firebug, we can see the requests being sent from the browser.
Here we see the following Solr URL being called:

http://localhost:8983/solr/collection1/select?q=*%3A*&wt=json&json.wrf
=jQuery1720260791023981073_1422455368178&_=1422455368241

Also, we can see the parameters being sent in the call. This step creates the query and
specifies the return response format as JSON.

www.it-ebooks.info

http://www.it-ebooks.info/

AJAX Solr

[206]

Displaying the result
We can display the documents returned from Solr by creating a display widget. For
this, we will need to create a new widget, say ResultWidget.js, inside the widgets
folder. As this is inherited from AbstractWidget provided by the AJAX Solr library,
we will have to include AbstractWidget.js as a JavaScript source in our web page:

<script src="../../core/AbstractWidget.js"></script>

Let us get a sense of the structure of the code that we will write inside
ResultWidget.js:

AjaxSolr.ResultWidget = AjaxSolr.AbstractWidget.extend({
 //Methods

 init: function () {
 //Manipulation of results. For example, hiding details.
 },

 beforeRequest: function () {
 //Tasks that are supposed to be triggered before Solr responds.
 //For example, displaying loading image.
 },

 afterRequest: function () {
 //Actual code chunk to render the result set.
 }
}

Now create a new file inside the widgets folder ResultWidget.js. We will have to
define AjaxSolr.ResultsWidget, which extends the AbstractWidget:

(function ($) {
AjaxSolr.ResultWidget = AjaxSolr.AbstractWidget.extend({
 start: 0,

We would like to show a loader image while the request is being processed. This
image is included in the beforeRequest function:

 beforeRequest: function () {
 $(this.target).html($('').attr('src', 'images/ajax-
 loader.gif'));
 },

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 8

[207]

After the results are received, the afterRequest function is called. Here, we process
the result and create the view to be displayed:

afterRequest: function () {
 $(this.target).empty();
 for (var i = 0, l = this.manager.response.response.docs.length; i
 < l; i++) {
 var doc = this.manager.response.response.docs[i];
 $(this.target).append(this.template(doc));

Here, we are looping through the result set and getting the variable doc out of
manager. Now template is the function being called to create the HTML code for
each result tuple:

template: function (doc) {
 var snippet = '';
 if (doc.text.length > 300) {
 snippet += doc.dateline + ' ' + doc.text.substring(0, 300);
 snippet += '' +
 doc.text.substring(300);
 snippet += ' more';
 }
 else {
 snippet += doc.dateline + ' ' + doc.text;
 }

 var output = '<div><h2>' + doc.title + '</h2>';
 output += '<p id="links_' + doc.id + '" class="links"></p>';
 output += '<p>' + snippet + '</p></div>';
 return output;
 }

The template function checks whether the length of the text in the document is
more than 300. If so, the first 300 characters are displayed and a more link is added.
The function creates a div tag with the document title and id and returns the
output that is appended to the HTML view:

ResultsWidget.js is added to our web page with the following code:

<script src="widgets/ResultWidget.js"></script>

www.it-ebooks.info

http://www.it-ebooks.info/

AJAX Solr

[208]

In order to glue this widget to our Manager, we will add the Widget to our Manager.
We also add id and target div tags:

 Manager.addWidget(new AjaxSolr.ResultWidget({
 id: 'result',
 target: '#docs'
 }));

Note the following:

•	 id: It is a required parameter that identifies the widget
•	 target: It is an optional parameter and is normally the CSS selector for the

HTML element that the widget updates upon each Solr request

Here we have specified the target div tag as docs, which is mentioned on our
HTML page using the following code:

 <div id="result">
 <div id="navigation">
 <ul id="pager">
 <div id="pager-header"></div>
 </div>
 <div id="docs"></div>
 </div>

To implement the more link at the end of each result tag, we implement the following
code snippet inside the init method:

init: function () {
 $(document).on('click', 'a.more', function () {
 var $this = $(this),
 span = $this.parent().find('span');

 if (span.is(':visible')) {
 span.hide();
 $this.text('more');
 }
 else {
 span.show();
 $this.text('less');
 }

 return false;
 });
}

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 8

[209]

At the end of the each result tuple, the more link makes the entire result tuple visible,
and the less link makes the first 300 characters visible. This works on the basis of
the code in the init function shown earlier. Implementation of the previous code
enables the init method of Widget to be called as soon as the init method of
Manager is triggered.

This code is available in the index.2.html and js/reuters.2.js files. The
execution of the file yields the following output:

www.it-ebooks.info

http://www.it-ebooks.info/

AJAX Solr

[210]

AJAX Solr offers extremely convenient ways to achieve different activities and
functions using widgets. Some of the features that can be achieved by adding
widgets are:

•	 Display of the customized result set
•	 Addition of pagination capabilities
•	 Interactive and fast faceted search
•	 Free-text search
•	 Auto-complete capabilities
•	 Interactive maps
•	 Addition of calendars
•	 Interactive tag clouds
•	 Grouping of search results

Adding facets
Let us add facets and pagination to our example. We will need to define the
functions facetLinks and facetHandler in our ResultWidget.js to handle
faceting. The facetLinks function will be called from the afterRequest method.
Add the following lines after the for loop of the afterRequest method:

var items = [];
items = items.concat(this.facetLinks('topics', doc.topics));
items = items.concat(this.facetLinks('organizations',
doc.organisations));
items = items.concat(this.facetLinks('exchanges', doc.exchanges));

var $links = $('#links_' + doc.id);
$links.empty();
for (var j = 0, m = items.length; j < m; j++) {
 $links.append($('').append(items[j]));
}

Let us also define the facetLinks function:

facetLinks: function (facet_field, facet_values) {
 var links = [];
 if (facet_values) {
 for (var i = 0, l = facet_values.length; i < l; i++) {
 links.push(
 $('')
 .text(facet_values[i])
 .click(this.facetHandler(facet_field, facet_values[i]))
);

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 8

[211]

 }
 }
 return links;
},

The handler function being called inside facetHandler is as follows:

facetHandler: function (facet_field, facet_value) {
 var self = this;
 return function () {
 self.manager.store.remove('fq');
 self.manager.store.addByValue('fq', facet_field + ':' +
AjaxSolr.Parameter.escapeValue(facet_value));
 self.doRequest();
 return false;
 };
},

This code creates links for browsing by topics, organization, or exchanges. When
a link is clicked, the facetHandler function is called. This step resets the filter query
inside Manager, adds a filter query, and sends a Solr request. We can see these links
under the title – U.K. GROWING IMPATIENT WITH JAPAN – THATCHER as
seen in the following figure:

www.it-ebooks.info

http://www.it-ebooks.info/

AJAX Solr

[212]

Here we can see two links under the title, namely trade and acq. Also, the
parameters sent to Solr do not contain any filter query. Let us click on a link, say
trade. We can see that a new Solr query is being executed that contains the filter
query for topics:trade. The results are refreshed, so now all the results have at
least the trade link below the title, as shown in the following screenshot:

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 8

[213]

Adding pagination
For adding pagination, we will need to add the PagerWidget class to our manager.
Include the following JavaScript in the main HTML page:

<script src="../../widgets/jquery/PagerWidget.js"></script>

Add the pager widget to Manager inside the reuters.js file:

Manager.addWidget(new AjaxSolr.PagerWidget({
 id: 'pager',
 target: '#pager',
 prevLabel: '<',
 nextLabel: '>',
 innerWindow: 1,
 renderHeader: function (perPage, offset, total) {
 $('#pager-header').html($('').text('displaying ' +
 Math.min(total, offset + 1) + ' to ' + Math.min(total, offset +
 perPage) + ' of ' + total));
 }
}));

In addition to defining id and target for this widget, the pager widget exposes
some of its own properties, which were defined in the previous code. We have also
implemented the abstract method renderHeader to display the total results found.
This sets the total number of results inside the pager-header div tag, which needs
to be defined in our HTML code:

<div id="pager-header"></div>

The pager class is defined by the following code inside our HTML:

<ul id="pager">

www.it-ebooks.info

http://www.it-ebooks.info/

AJAX Solr

[214]

The pagination is shown above the results as follows:

Adding a tag cloud
Let us derive the tag cloud from the facet fields, namely topics, organizations,
and exchanges, and display the tag cloud on our web page. For this, add the Solr
parameters required for faceting to reuters.js:

var params = {
 facet: true,
 'facet.field': ['topics', 'organisations', 'exchanges'],
 'facet.limit': 20,
 'facet.mincount': 1,
 'f.topics.facet.limit': 50,
 'json.nl': 'map'
};
for (var name in params) {
 Manager.store.addByValue(name, params[name]);
}

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 8

[215]

Now, extend the AbstractFacetWidget and create a new widget called
TagcloudWidget by adding the following code in a new file widgets/
TagcloudWidget.js:

(function ($) {
AjaxSolr.TagcloudWidget = AjaxSolr.AbstractFacetWidget.extend({
});
})(jQuery);

We have used AbstractFacetWidget, which provides many convenient functions
specific to the faceting widget.

We will need to add these two JavaScript files to our HTML page:

<script src="../../core/AbstractFacetWidget.js"></script>
<script src="widgets/TagcloudWidget.js"></script>

Next, add three widget instances to Manager for each of the facet fields, topics,
organizations, and exchanges. For this, write the following code snippet in the
reuters.js file:

var fields = ['topics', 'organisations', 'exchanges'];
for (var i = 0, l = fields.length; i < l; i++) {
 Manager.addWidget(new AjaxSolr.TagcloudWidget({
 id: fields[i],
 target: '#' + fields[i],
 field: fields[i]
 }));
}

Any widget inherited from AbstractFacetWidget accepts the mandatory field
parameter that identifies the facet field we want the widget to deal with. We need to
add the target fields as div(s) to our main HTML page:

<h2>Top Topics</h2>
<div class="tagcloud" id="topics"></div>

<h2>Top Organisations</h2>
<div class="tagcloud" id="organisations"></div>

<h2>Top Exchanges</h2>
<div class="tagcloud" id="exchanges"></div>

www.it-ebooks.info

http://www.it-ebooks.info/

AJAX Solr

[216]

We will need to implement the afterRequest abstract method in TagcloudWidget
to handle the response received from Solr. This method is called after receiving a
response from Solr, similar to the afterRequest method of ResultsWidget.

We will add the following code to the afterRequest method of TagcloudWidget:

afterRequest: function () {
 if (this.manager.response.facet_counts.facet_fields[this.field] ===
 undefined) {
 $(this.target).html('no items found in current selection');
 return;
 }

 var maxCount = 0;
 var objectedItems = [];
 for (var facet in this.manager.response.facet_counts.facet_
fields[this.field]) {
 var count =
parseInt(this.manager.response.facet_counts.facet_fields[this.field]
[facet]);
 if (count > maxCount) {
 maxCount = count;
 }
 objectedItems.push({ facet: facet, count: count });
 }
 objectedItems.sort(function (a, b) {
 return a.facet < b.facet ? -1 : 1;
 });

 $(this.target).empty();
 for (var i = 0, l = objectedItems.length; i < l; i++) {
 var facet = objectedItems[i].facet;
 $(this.target).append(
 $('')
 .text(facet)
 .addClass('tagcloud_size_' + parseInt(objectedItems[i].count /
 maxCount * 10))
 .click(this.clickHandler(facet))
);
 }
}

A number of activities are performed in the previous code snippet. Let us focus on its
highlighted portions that are closely related to AJAX Solr.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 8

[217]

The first one, this.manager.response.facet_counts.facet_fields[this.
field], behaves in the same way as that discussed in the Displaying the result section
of this chapter. We set the field property this.field when adding the widget
instance to manager. Thus, using this code chunk, we actually inspect the facet data
associated with that field in the Solr response.

Note that clickHandler is another convenient function offered by
AbstractFacetWidget. It adds the fq parameter, which is associated with the
widget's facet field and its corresponding value. If it succeeds, a request is sent to
Solr with this filter query.

The following screenshot shows how the tag cloud is displayed when the page
is loaded:

www.it-ebooks.info

http://www.it-ebooks.info/

AJAX Solr

[218]

If we click on the topic earn, another Solr query is executed and the page is refreshed
with the results. As shown in the following image, the Solr query will have a filter
query for topics:earn in addition to faceting parameters.

AJAX Solr can be used to build many custom widgets, such as freetext,
filters, autocomplete, map, and calendar. More details can be obtained
from its wiki page at https://github.com/evolvingweb/ajax-
solr/wiki.

www.it-ebooks.info

https://github.com/evolvingweb/ajax-solr/wiki
https://github.com/evolvingweb/ajax-solr/wiki
http://www.it-ebooks.info/

Chapter 8

[219]

Performance tuning
With AJAX Solr, we end up adding a lot of JavaScript and CSS to our pages. Though
the searches would be faster as there is no server between the Solr server and the
web browser, front-end optimizations can improve user experience. Here are some
tips for that.

•	 Controlling and minimizing server traffic: It is important to minimize the
amount of data that flows between the Solr server and the web browser
where AJAX Solr is in action. This can be achieved using the following:

°° Filtering at the server level: It is not a good idea to fetch the
complete set of documents and the associated details from the
server and filter them at the browser level so as to render only those
results that match with the request. AJAX Solr performs filtering
at the server level itself so that the transport channel doesn't get
overcrowded with unwanted details. This also helps in minimizing
the computation activities performed at the browser level.

°° Solr schema consideration: The Solr schema in AJAX Solr allows us
to index the chunk of information that we intend to render on the
browser. This helps us minimize unwanted data transport and allows
the channel to transfer productive information.

°° Compressing JavaScript and CSS: Using AJAX Solr, we can
compress JavaScript and CSS files. This reduces the data being
transferred between the browser and the Solr server and hence
speeds up the requests and responses.

•	 Proxy server caching: AJAX Solr supports proxy servers. A proxy server
can be set up to act as a reverse proxy cache, which can cache responses
sent to the browser. Therefore, responses to repeated queries are faster,
as the queries are not executed on the Solr server but served from the
proxy server cache. Proxy servers can also be used to cache JavaScript and
CSS files. With a proxy server, all responses can be compressed, which
speeds up data transfer.

www.it-ebooks.info

http://www.it-ebooks.info/

AJAX Solr

[220]

Summary
In this chapter, we discussed AJAX Solr, which is an advanced JavaScript library
that can be used to execute queries on a Solr server from a web browser. We saw
the different components of AJAX Solr and discussed their internals. We also built a
sample application using AJAX Solr and saw how the different components interact
with each other. We also saw that, in addition to the display of the results received
from Solr, Ajax Solr can be used for pagination, faceting, and building tag clouds.

In the next chapter, we will go through the benefits of using SolrCloud. We will see
how SolrCloud can be set up and used to perform distributed indexing and search.

www.it-ebooks.info

http://www.it-ebooks.info/

[221]

SolrCloud
In this chapter, we will learn about SolrCloud. We will look at the architecture of
SolrCloud and understand the problems it addresses. We will look at how it can
be used to address scalability issues. We will also set up SolrCloud along with a
separate setup for central configuration management known as ZooKeeper. We
will look at the advanced sharding options available with SolrCloud, memory
management issues, and monitoring options. We will also evaluate SolrCloud
as a NoSQL storage system.

The major topics that will be covered in this chapter are:

•	 The SolrCloud architecture
•	 Centralized configuration
•	 Setting up SolrCloud
•	 Distributed indexing and search
•	 Advanced sharding with SolrCloud
•	 Memory management
•	 Monitoring
•	 Using SolrCloud as a NoSQL database

www.it-ebooks.info

http://www.it-ebooks.info/

SolrCloud

[222]

The SolrCloud architecture
Scaling proceeds in two ways when it comes to handling large amounts of data,
horizontally or vertically. Vertical scaling deals with the problems of handling large
data by adding bigger and bigger machines. Suppose a single machine which has 4
GB of RAM and 4 CPU can handle a concurrency of 100 queries per second on a data
size of say 8 GB. As the amount of data increases, the amount of processing required
for serving the queries also increases. Therefore, if the data size goes to 16 GB, the
query concurrency that the same machine can handle will be 75 queries instead of
100. For vertical scaling, we would replace the current 4 GB + 4 CPU machine with
an 8 GB + 8 CPU machine, which should again be able to serve a concurrency of 100
queries per second on a data size of 16 GB. Horizontal scaling would mean that we
add another machine of the same configuration 4 GB RAM + 4 CPU to the system
and divide 16 GB of data into two parts of 8 GB each. Each machine now hosts 8 GB
of data and can support a concurrency of 100 queries per second. That is, a combined
concurrency of 200 queries per second is obtained.

There is a limit to which a system can be scaled vertically. The largest machine
available on Amazon as of now has 32 vCPUs and 244 GB of RAM. While it may be
possible to scale a system in a vertical fashion by adding more hardware, horizontal
scaling is still preferable. Maybe a year down the line, Amazon will be able to offer
64 vCPUs with 488 GB of RAM. What if your data grows exponentially during the
one-year period? The larger machine may not be able to satisfy your queries per
second requirements. Horizontal scaling is cost-effective as it is possible to retain
the existing hardware and add new instead of discarding the existing hardware for
an upgraded or better machine. Horizontal scaling not only adds new machines
providing additional computing power and memory, but it also provides additional
storage. It can be made to act as a distributed system taking care of failover and high
availability scenarios wherever required.

Scaling with Solr is as complex. It is possible to add hardware and scale a single Solr
or a Solr setup in master-slave architecture in a vertical fashion. For vertical scaling,
we will need to continually add more memory and increase the computing power
and, if possible, move to SSD drives, which are expensive but a lot more efficient
than normal drives. This will improve the disk IO multiple times. Since we need a
master-slave architecture for high-availability and failover scenarios, we will need to
retain at least two machines, one acting as the master and the other acting as a slave
and replicating Solr index data from the master.

However, horizontal scaling is preferable. SolrCloud provides easy scaling in a
horizontal fashion.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 9

[223]

With SolrCloud, the complete index can be divided into shards and replicas. A shard
is a part of the complete index. A replica is basically a Solr slave that reads data from
the master and replicates it. A shard can have more than one replica. SolrCloud has
the capability to set up a cluster of Solr servers that also provides fault tolerance and
high availability in addition to distributed search and indexing.

SolrCloud offers a centralized configuration, automatic load balancing and failover
for queries, and ZooKeeper integration for cluster coordination and configuration.
ZooKeeper is a centralized service for maintaining configuration information for a
distributed system. It is possible to have a cluster of ZooKeeper services providing
high availability and failover. SolrCloud does not have a master node to allocate
nodes, shards, and replicas. Instead, it uses ZooKeeper to manage these components.

With SolrCloud, we can add documents to our distributed index via any server in the
cluster. The document is automatically routed to the proper shard in the cluster and
indexed there. In case of a server or Solr instance going down, another shard will be
elected as a leader. The searches are available near real time after indexing.

A full-scale SolrCloud setup is explained by the following architecture:

The SolrCloud architecture

www.it-ebooks.info

http://www.it-ebooks.info/

SolrCloud

[224]

The cloud consists of N shards, each of which can be on a different machine. Each
shard can have n replicas, again on different machines. The configuration is managed
by a separate cluster of ZooKeeper servers known as Zookeeper ensemble. The
ZooKeeper ensemble will interact with each machine in SolrCloud, namely shard
leaders and replicas.

Centralized configuration
While dealing with SolrCloud, the question that comes to mind is how any change in
the schema or configuration will be propagated to the different nodes in the cluster.
The ZooKeeper ensemble takes care of this.

The ZooKeeper ensemble is another cluster of servers having high availability and
failover solutions built into the system. It takes care of the distribution of the schema,
configuration and other files, and maintenance of the leader and replica information
with regard to SolrCloud. The advantage of this is that whenever any change in the
schema or configuration occurs, we need not worry about how it is propagated to all
the nodes in the cluster; the ZooKeeper ensemble takes care of the propagation.

It is generally recommended to keep at least three servers for the ZooKeeper
ensemble to provide for the failover scenarios. The ZooKeeper service can be run
as a separate service, as nodes running SolrCloud, or in separate machines. The
ZooKeeper process is lightweight and is not resource intensive.

Setting up SolrCloud
Let us set up SolrCloud. We will look at two ways of setting up SolrCloud. One setup
is the ZooKeeper service running inside SolrCloud. This can be considered as a dev
or a test setup that can be used for evaluating SolrCloud or for running benchmarks.
Another is the production setup where SolrCloud is set up as part of the Apache
Tomcat application server and the ZooKeeper ensemble as a separate service. Let us
start with the test setup.

Test setup for SolrCloud
We will create a test setup of a cluster with two shards and two replicas. The Solr
installation directory comes inbuilt with the packages required to run SolrCloud.
There is no separate installation required. ZooKeeper is also inbuilt in the SolrCloud
installation. It requires a few parameters during Solr start-up to get ZooKeeper up
and running.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 9

[225]

To start SolrCloud, perform the following steps:

•	 Create four copies of the example directory in the Solr installation, namely
node1, node2, node3, and node4:
cp -r example/ node1

cp -r example/ node2

cp -r example/ node3

cp -r example/ node4

•	 To start the first node, run the following command:
cd node1

java -DzkRun -DnumShards=2 -Dbootstrap_confdir=./solr/collection1/
conf -Dcollection.configName=myconf -jar start.jar

°° DzkRun: This parameter starts the ZooKeeper server embedded
in the Solr installation. This server will manage the Solr cluster
configuration.

°° DnumShards: This parameter specifies the number of shards in
SolrCloud. We have set it to 2 so that our cloud setup is configured
for two shards.

°° Dbootstrap_confdir: This parameter instructs the ZooKeeper server
to copy the configurations from this directory and distribute them
across all the nodes in SolrCloud.

°° Dcollection.configName: This parameter specifies the name of the
configuration for this SolrCloud to the ZooKeeper server.

•	 The output will be similar to the one shown in the following screenshot:

www.it-ebooks.info

http://www.it-ebooks.info/

SolrCloud

[226]

•	 We can see the information that we have provided. The shard is active and
is named as shard1. The number of shards is specified as 2. Also, we can
see that the status is updated as live nodes size: 1. This Solr instance will be
running on port 8983 on the local server. We can open it with the following
URL: http://localhost:8983/solr/.

•	 On the left-hand panel, we can see the link for Cloud:

•	 This was not visible earlier. This option becomes visible when we start Solr
with the parameters for SolrCloud. Clicking on the Cloud link yields the
following graph:

•	 There are also options available to have a radial view of SolrCloud. This can
be seen through the Graph (Radial) link. We will continue to examine the
SolrCloud graph to know how nodes are being added to the cloud.

•	 The legend for color coding of the nodes of SolrCloud is visible on the
right-hand side of the interface, as shown in the following image:

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 9

[227]

•	 As per the legend, the current node is Leader. All the other functionalities
of the admin interface of SolrCloud remain the same as those of the Solr
admin interface.

•	 To start the second node, let us enter the folder called node2 and run the
following command:
java -Djetty.port=8984 -DzkHost=localhost:9983 -jar start.jar

°° Djetty.port: This parameter is required to start the Solr server on
a separate port. As we are setting up all the nodes of SolrCloud on
the same machine, the default port 8983 will be used for one Solr
instance. Other instances of Solr will be started on separate custom
ports.

°° DzkHost: This parameter tells this instance of Solr where to find the
ZooKeeper server. The port for the ZooKeeper server is Solr's port
+ 1000. In our case, it is 9983. Once the instance of Solr gets
connected to the ZooKeeper server, it can get the configuration
options from there. The ZooKeeper server then adds this instance
of Solr to the SolrCloud cluster.

•	 On the terminal, we can see that the live nodes count has now increased to
2. We can see the graph on the SolrCloud admin interface. It now has two
shards, one running on port 8983 and the other on port 8984:

www.it-ebooks.info

http://www.it-ebooks.info/

SolrCloud

[228]

•	 To add more nodes, all we have to do is change the port and start another
Solr instance. Let us start the third node with the following commands:
cd node3

java -Djetty.port=8985 -DzkHost=localhost:9983 -jar start.jar

•	 We can see that the live nodes size is now 3 and the SolrCloud graph has
been updated:

•	 This node is added as an active replica of the first shard.
•	 Let us now add the fourth node as well:

cd node4

java -Djetty.port=8986 -DzkHost=localhost:9983 -jar start.jar

•	 The live nodes size grows to 4, and the SolrCloud graph shows that the
fourth node is added as an active replica of the second shard:

This setup for SolrCloud uses a single ZooKeeper instance running on port 9983,
which is the same instance as the Solr instance running on port 8983. This is not an
ideal setup. If the first node goes offline, the entire SolrCloud setup will go offline.

It is not necessary to run the SolrCloud admin interface from the first Solr
running on port 8983. We can open up the admin interface from any of
the Solr servers that are part of SolrCloud. The options for cloud will be
visible in all. Therefore, ideally, we can open SolrCloud from Solr servers
running on ports 8984, 8985, and 8986 in our setup.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 9

[229]

Setting up SolrCloud in production
The setup we saw earlier was for running SolrCloud on a single machine. This setup
can be used to test out the features and functionalities of SolrCloud. For a production
environment, we would want a setup that is fault tolerant and highly available. In
order to have such a setup, we need at least three ZooKeeper instances. The more,
the better. A minimum of three instances are required to have a fault tolerant and
highly available cluster of ZooKeeper servers. As all communication between the
Solr servers in SolrCloud happens via ZooKeeper, it is important to have at least two
ZooKeeper instances for communication if the third instance goes down.

Setting up the Zookeeper ensemble
ZooKeeper can be downloaded from: http://zookeeper.apache.org/releases.
html#download.

We will set up three machines to run ZooKeeper. Let us name the machines zoo1,
zoo2, and zoo3. The latest version of ZooKeeper is 3.4.6. Let us copy the zookeeper
tar.gz file to the three machines and untar them over there. We will have a folder
zookeeper-3.4.6 on all the three machines.

On all the nodes, create a folder named data inside the ZooKeeper folder:

ubuntu@zoo1:~/zookeeper-3.4.6$ mkdir data

ubuntu@zoo2:~/zookeeper-3.4.6$ mkdir data

ubuntu@zoo3:~/zookeeper-3.4.6$ mkdir data

Each ZooKeeper server has to be given an ID. This is specified in the myid file in the
data directory. We will have to create a file called myid inside the data directory
on each ZooKeeper server (zoo1, zoo2, and zoo3) and put the ID assigned to the
ZooKeeper server there. Let us assign the IDs 1, 2, and 3 to the ZooKeeper servers
zoo1, zoo2, and zoo3:

ubuntu@zoo1:~/zookeeper-3.4.6/data$ echo 1 > myid

ubuntu@zoo2:~/zookeeper-3.4.6/data$ echo 2 > myid

ubuntu@zoo3:~/zookeeper-3.4.6/data$ echo 3 > myid

Copy the ZooKeeper sample configuration zoo_sample.cfg to zoo.cfg inside the
conf folder under the zookeeper folder. Open the ZooKeeper configuration file zoo.
cfg and make the following changes:

dataDir=/home/ubuntu/zookeeper-3.4.6/data
server.1=zoo1:2888:3888
server.2=zoo2:2888:3888
server.3=zoo3:2888:3888

www.it-ebooks.info

http://zookeeper.apache.org/releases.html#download
http://zookeeper.apache.org/releases.html#download
http://www.it-ebooks.info/

SolrCloud

[230]

Let the remaining setting remain as it is. We can see the clientPort=2181 setting.
This is the port where the Solr servers will connect. We have specified the data
directory, which we just created, as also the ZooKeeper servers that are part of the
ensemble, as follows:

server.id=host:xxxx:yyyy

Note the following:

•	 id: It is the ZooKeeper server ID specified in the myid file.
•	 host: It is the ZooKeeper server host.
•	 xxxx: It is the port used to connect to other peers for communication.

A ZooKeeper server uses this port to connect followers to the leader.
When a new leader arises, a follower opens a TCP connection to the
leader using this port.

•	 yyyy: It is the port that is used for leader election.

Let us now start the ZooKeeper instances on all three machines. The following
command starts the ZooKeeper instance:

ubuntu@zoo1:~/zookeeper-3.4.6$./bin/zkServer.sh start

We will have to run the command on all three machines. The output indicates that
the ZooKeeper instance has started on all the three machines:

Check the logs in the zookeeper.out file to verify whether everything is running
smoothly. ZooKeeper also comes with a client zkCli.sh, which can be found in the
bin folder. In order to check whether everything is running fine, we can fire a ruok
command via Telnet on any one of the ZooKeeper servers. If everything is running
fine, we would get the output as imok. Another command mntr can be used to
monitor the variables on the ZooKeeper cluster over Telnet.

We have a running ZooKeeper ensemble that we will use for setting up our
SolrCloud. We will not delve into the advanced ZooKeeper settings.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 9

[231]

Setting up Tomcat with Solr
Let's install Apache Tomcat on all the Solr servers in the /home/ubuntu/tomcat
folder. On all the Solr servers (solr1, solr2, solr3, and solr4), start up Tomcat to
check whether it is running fine:

ubuntu@solr1:~$ cd tomcat/

ubuntu@solr1:~/tomcat$./bin/startup.sh

We are using Tomcat version 7.0.53. Check the catalina.out log file inside the
tomcat/logs folder to check whether Tomcat started successfully. We can see the
following message in the logs if the start-up was successful:

INFO: Server startup in 2522 ms

Now, on one server (say solr1), upload all the configuration files to the ZooKeeper
servers. Our Solr configuration files are located inside the <solr_installation>/
example/solr/collection1/conf folder. To upload the files onto ZooKeeper, we
will have to use the ZooKeeper client. We can copy the zookeeper installation folder
to one of the Solr servers in order to use the ZooKeeper client. Another option is to
use the ZooKeeper client inside the SolrCloud installation. For this, we will have to
extract the solr.war file found inside the <solr_installation>/dist folder. Let us
extract it inside a new folder solr-war:

ubuntu@solr1:~/solr-4.8.1/dist$ mkdir solr-war

ubuntu@solr1:~/solr-4.8.1/dist$ cp solr-4.8.1.war solr-war/

ubuntu@solr1:~/solr-4.8.1/dist$ cd solr-war/

ubuntu@solr1:~/solr-4.8.1/dist/solr-war$ jar -xvf solr-4.8.1.war

This will extract all the libraries here. We will need another library slf4j-api that
can be found in the <solr_installation>/dist/solrj-lib folder:

ubuntu@solr1:~/solr-4.8.1/dist/solr-war/WEB-INF/lib$ cp ../../../solrj-
lib/slf4j-api-1.7.6.jar .

ubuntu@solr1:~/solr-4.8.1/dist/solr-war/WEB-INF/lib$ cp ../../../solrj-
lib/slf4j-log4j12-1.7.6.jar .

ubuntu@solr1:~/solr-4.8.1/dist/solr-war/WEB-INF/lib$ cp ../../../solrj-
lib/log4j-1.2.16.jar .

www.it-ebooks.info

http://www.it-ebooks.info/

SolrCloud

[232]

Now run the following command in the Solr library path solr-war/WEB-INF/lib to
upload the Solr configuration files onto zookeeper on all three servers, namely zoo1,
zoo2, and zoo3:

java -classpath zookeeper-3.4.6.jar:solr-core-4.8.1.jar:solr-solrj-
4.8.1.jar:commons-cli-1.2.jar:slf4j-api-1.7.6.jar:commons-io-2.1.jar org.
apache.solr.cloud.ZkCLI -cmd upconfig -z zoo1,zoo2,zoo3 -d ~/solr-4.8.1/
example/solr/collection1/conf -n conf1

We have specified all the required JAR files in the -classpath option.

We used the zookeeper built inside the Solr cloud with the org.apache.solr.
cloud.ZkCLI package.

•	 -cmd: This option specifies the action to be performed. In our case, we are
performing the config upload action.

•	 -z: This option specifies the ZooKeeper servers along with the path (/solr)
where the files are to be uploaded.

•	 -d: This option specifies the local directory from where the files are to be
uploaded.

•	 -n: This option is the name of the config (the solrconf file).

In order to check whether the configs have been uploaded, move to machine zoo1
and execute the following commands from the zookeeper folder:

ubuntu@zoo1:~/zookeeper-3.4.6$./bin/zkCli.sh -server zoo1

Connecting to zoo1

[zk: zoo1(CONNECTED) 0] ls /configs/conf1

This will list the config files inside the ZooKeeper servers:

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 9

[233]

Let us create a separate folder to store the Solr index. On each Solr machine, create a
folder named solr-cores inside the home folder:

ubuntu@solr1:~$ mkdir ~/solr-cores

Inside the folder solr-cores, add the following code in the solr.xml file. This
specifies the host, port, and context along with some other parameters for ZooKeeper
and the port on which Tomcat or Solr will work. The values for these variables will
be supplied in the setenv.sh file inside the tomcat/bin folder:

<?xml version="1.0" encoding="UTF-8" ?>
<solr>
 <!-- Values are supplied from SOLR_OPTS env variable in setenv.sh --
>
 <solrcloud>
 <str name="host">${host:}</str>
 <int name="hostPort">${port:}</int>
 <str name="hostContext">${hostContext:}</str>
 <int name="zkClientTimeout">${zkClientTimeout:}</int>
 <bool name="genericCoreNodeNames">${genericCoreNodeNames:true}</
bool>
 </solrcloud>

 <shardHandlerFactory name="shardHandlerFactory"
 class="HttpShardHandlerFactory">
 <int name="socketTimeout">${socketTimeout:0}</int>
 <int name="connTimeout">${connTimeout:0}</int>
 </shardHandlerFactory>
</solr>

Now, to set these variables, we will have to define them in the setenv.sh file in the
tomcat/bin folder. Place the following code inside the setenv.sh file:

JAVA_OPTS="$JAVA_OPTS -server"
SOLR_OPTS="-Dsolr.solr.home=/home/ubuntu/solr-cores -Dhost=solr1
-Dport=8080 -DhostContext=solr -DzkClientTimeout=20000 -DzkHost=zoo1:2
181,zoo2:2181,zoo3:2181"
JAVA_OPTS="$JAVA_OPTS $SOLR_OPTS"

Note the following:

•	 solr.solr.home: This is the Solr home for this app instance
•	 host: The hostname for this server
•	 port: The port of this server

www.it-ebooks.info

http://www.it-ebooks.info/

SolrCloud

[234]

•	 hostContext: Tomcat webapp context name
•	 zkHost: A comma-separated list of the host and the port for the servers in the

ZooKeeper ensemble
•	 zkClientTimeout: Timeout for the ZooKeeper client

Now, copy the solr.war file from the Solr installation into the tomcat/webapps
folder:

cp ~/solr-4.8.1/dist/solr-4.8.1.war ~/tomcat/webapps/solr.war

Also, copy the JAR files required for logging from the lib/ext folder into the
tomcat/lib folder:

cp -r ~/solr-4.8.1/example/lib/ext/* ~/tomcat/lib/

Once done, restart Tomcat. This will deploy the application solr.war into the
webapps folder.

We can see Tomcat running on port 8080 on machine solr1 and access Solr via the
following URL:

http://solr1:8080/solr/

However, this does not have any cores defined.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 9

[235]

To create the core mycollection in our SolrCloud, we will have to execute the
CREATE command via the following URL:

http://solr1:8080/solr/admin/collections?action=CREATE&name=mycollec
tion&numShards=2&replicationFactor=2&maxShardsPerNode=2&collection.
configName=conf1

We require at least two running nodes to execute this command
on SolrCloud. In order to start SolrCloud on multiple nodes, we
can use VirtualBox and create multiple virtual machines on a
single host.
The host name can be mapped onto the IP address in the /
etc/hosts file on all the (virtual) machines participating in
SolrCloud in the following format:

#<ip address> <hostname>

10.0.3.1 solr1

10.0.3.2 solr2

Note the following:

•	 action: CREATE to create the core or collection
•	 name: The name of the collection
•	 numShards: The number of shards for this collection
•	 replicationFactor: The number of replicas for each shard
•	 maxShardsPerNode: Sets a limit on the number of replicas the CREATE action

will spread to each node
•	 collection.configName: Defines the name of the configuration to be used

for this collection

www.it-ebooks.info

http://www.it-ebooks.info/

SolrCloud

[236]

The execution of the CREATE action yields the following output:

We can see that two shards and two replicas are created for mycollection.
The naming of each core is self-explanatory <collection_name>_<shard_
no>_<replica_no>. We can also see the SolrCloud graph that shows the
shards for the collection along with the leader and replicas:

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 9

[237]

We can see that mycollection has two shards, shard1 and shard2. Shard1 has
leader on solr1 and replica on solr2. Similarly, Shard2 has leader on solr3 and
replica on solr4. The admin interface on each node of the Solr cluster will show the
shard or core hosted on this node. Go to the admin interface on the node solr1 and
select the core name from the drop-down on the left-hand panel. We should be able
to see the details of the index on that node:

Let us also see what happened at the ZooKeeper end. Go to any of the ZooKeeper
servers and connect to the ZooKeeper cluster using the zkCli.sh script:

ubuntu@zoo1:~/zookeeper-3.4.6$./bin/zkCli.sh -server zoo1,zoo2,zoo3

Connecting to zoo1,zoo2,zoo3

We can see that mycollection is created inside the /collections folder. On
executing a get, mycollection is linked with the configuration conf1 that we
specified in the collection.configName parameter while creating the collection:

[zk: zoo1,zoo2,zoo3(CONNECTED) 0] get /collections/mycollection
{"configName":"conf1"}

We can also see the cluster configuration by getting the clusterstate.json file
from the ZooKeeper cluster:

[zk: zoo1,zoo2,zoo3(CONNECTED) 1] get /clusterstate.json
{"mycollection":{
 "shards":{
 "shard1":{
 "range":"80000000-ffffffff",
 "state":"active",
 "replicas":{
 "core_node2":{
 "state":"active",
 "base_url":"http://solr1:8080/solr",
 "core":"mycollection_shard1_replica1",
 "node_name":"solr1:8080_solr",

www.it-ebooks.info

http://www.it-ebooks.info/

SolrCloud

[238]

 "leader":"true"},
 "core_node3":{
 "state":"active",
 "base_url":"http://solr2:8080/solr",
 "core":"mycollection_shard1_replica2",
 "node_name":"solr2:8080_solr"}}},
 "shard2":{
 "range":"0-7fffffff",
 "state":"active",
 "replicas":{
 "core_node1":{
 "state":"active",
 "base_url":"http://solr3:8080/solr",
 "core":"mycollection_shard2_replica2",
 "node_name":"solr3:8080_solr",
 "leader":"true"},
 "core_node4":{
 "state":"active",
 "base_url":"http://solr4:8080/solr",
 "core":"mycollection_shard2_replica1",
 "node_name":"solr4:8080_solr"}}}},
 "maxShardsPerNode":"2",
 "router":{"name":"compositeId"},
 "replicationFactor":"2"}}

This shows the complete cluster information—the name of the collection, the shards
and replicas, as well as the base URLs for accessing Solr. It contains the core name
and the node name. Other configuration information that we passed while creating
the cluster are maxShardsPerNode and replicationFactor.

Distributed indexing and search
Now that we have SolrCloud up and running, let us see how indexing and search
happen in a distributed environment. Go to the <solr_installation>/example/
exampledocs folder where there are some sample XML files. Let us add some
documents from the hd.xml file to SolrCloud. We will use the node solr1 for adding
documents to the index. Here we are passing the collection name in the update
URL instead of the core. The output from the command execution is shown in the
following snippet:

$ java -Durl=http://solr1:8080/solr/mycollection/update -jar post.jar
hd.xml

SimplePostTool version 1.5

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 9

[239]

Posting files to base url http://solr1:8080/solr/mycollection/update
using content-type application/xml..

POSTing file hd.xml

1 files indexed.

COMMITting Solr index changes to http://solr1:8080/solr/mycollection/
update..

Time spent: 0:00:21.209

Please use localhost instead of the solr1 host if running on a
local machine.

The documents are now committed into SolrCloud. To find the documents,
perform a search on any node. Let us say we search on the node solr2.
Execute the following query:

http://solr2:8080/solr/mycollection/select/?q=*:*

We can see that there are two documents in the result:

www.it-ebooks.info

http://www.it-ebooks.info/

SolrCloud

[240]

So, we actually indexed the documents via the solr1 server in our SolrCloud and
searched via the solr2 server. The documents were indexed somewhere inside
SolrCloud. In order to check where the documents went, we will have to go to each
server and examine the overview of the collection. In the present case, the documents
were indexed on servers solr3 and solr4, which are replicas.

This means that we can index documents from any shard in SolrCloud, and those
documents will be routed to a server in the cloud. Similarly, we can search from any
shard in the cluster and query the complete index on SolrCloud.

Later in this chapter, we will also look at how and why to send documents to a
particular shard.

Let us try indexing via the other machines. Execute the following commands from
the exampledocs folder on the remaining machines in SolrCloud:

java -Durl=http://solr2:8080/solr/mycollection/update -jar post.jar mem.
xml

java -Durl=http://solr3:8080/solr/mycollection/update -jar post.jar
vidcard.xml

java -Durl=http://solr4:8080/solr/mycollection/update -jar post.jar
monitor*.xml

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 9

[241]

This will index the documents in the mem.xml, vidcard.xml, monitor.xml, and
monitor2.xml files into SolrCloud. On searching via, say, the solr3 machine, we can
get all the documents. We indexed all nine documents, and all of them were found
during a search on SolrCloud:

http://solr3:8080/solr/mycollection/select/?q=*:*

This means that since we have a four-node cluster, we can now index and search
via all four nodes. The nodes themselves take care of routing of the documents to
their appropriate shards and indexing them. Ideally, this should result in a four-fold
increase in the indexing and searching speed. However, in a real-life scenario, the
number of queries per second for indexing and search would be a little less than four
times. It may also depend on the amount of data in the index, the IO capabilities of
the server, and the network bandwidth between the machines in the cloud.

www.it-ebooks.info

http://www.it-ebooks.info/

SolrCloud

[242]

Routing documents to a particular shard
As we have seen, SolrCloud automatically distributes documents to different shards
in the index. The queries on the cloud accumulate results from all the different
shards and send them back. Why then would we want to route documents to a
particular shard?

Suppose that we have a huge cluster of servers as part of SolrCloud—say 100
servers—with 30 shards and 3 replicas for each shard. This gives us ample room
to manage a large-scale index expanding to some terabytes of data. A query to get
the documents from the index based on a criterion would go to all the 30 shards
in the index to get the results. The machine on which the query is executed would
accumulate results from all the 30 shards and create the final result set. This would
involve huge movement of data between shards and the shard performing the merge
operation on the results will have to do some heavy processing, since it would move
through 30 different result sets and merge them into a single result set.

It would be better if the query hits fewer shards or probably a single shard and
fetches results from that shard without performing any merge operation. This
would definitely be faster and less resource and network intensive. Ideally, each
query should have an identifier or a set of identifiers pointing to the shards that
may contain results from the query. This may not look possible from a broad view.
Nevertheless, if the indexing is performed in a fashion that the data is distributed
across the shards on the basis of some identifier, it may become possible.

A realistic example is to have documents from different customers indexed in
SolrCloud. It would make sense to route the documents on the basis of the customer
ID or customer name to the different shards in the cloud. Thus, documents belonging
to IBM, Samsung, Apple, and Sony can reside on different shards. While querying,
we can specify a prefix in the query so that a query done by IBM hits only the shard
on which IBM resides.

Let us create a separate collection in SolrCloud with a routing parameter and then
index a few documents into the cloud. We will be indexing the documents in the file
docs.csv. We will consider the category as the sharding key. Therefore, Solr will
create a hash based on the category and distribute the index on the basis of that hash.

To create the collection (let us call it catcollection), we have to execute the
following command. Note the router.field=cat parameter at the end of the
CREATE command. This is how we specify a router in a collection:

http://solr1:8080/solr/admin/collections?action=CREATE&name=catcolle
ction&numShards=2&replicationFactor=2&maxShardsPerNode=2&collection.
configName=conf1&router.field=cat

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 9

[243]

We can see that catcollection is created along with the previous collection
mycollection. This collection again has two shards—shard1 with solr3 as leader
and solr1 as replica, and shard2 with solr4 as leader and solr3 as replica:

In order to verify whether the routing that we have specified has been successful, we
will have to connect to the ZooKeeper server using the zkCli.sh script and look at
the clusterstate.json file:

ubuntu@zoo1:~/zookeeper-3.4.6$./bin/zkCli.sh -server zoo1,zoo2,zoo3

[zk: zoo1,zoo2,zoo3(CONNECTED) 2] get /clusterstate.json

The output will contain both the collections—mycollection and catcollection—
along with all the configuration parameters, as follows:

 "catcollection":{
 "shards":{
 "shard1":{
 "range":"80000000-ffffffff",
 "state":"active",
 "replicas":{
 "core_node2":{
 "state":"active",
 "base_url":"http://solr1:8080/solr",
 "core":"catcollection_shard1_replica1",
 "node_name":"solr1:8080_solr"},
 "core_node3":{
 "state":"active",
 "base_url":"http://solr3:8080/solr",
 "core":"catcollection_shard1_replica2",
 "node_name":"solr3:8080_solr",
 "leader":"true"}}},
 "shard2":{
 "range":"0-7fffffff",
 "state":"active",

www.it-ebooks.info

http://www.it-ebooks.info/

SolrCloud

[244]

 "replicas":{
 "core_node1":{
 "state":"active",
 "base_url":"http://solr4:8080/solr",
 "core":"catcollection_shard2_replica1",
 "node_name":"solr4:8080_solr",
 "leader":"true"},
 "core_node4":{
 "state":"active",
 "base_url":"http://solr2:8080/solr",
 "core":"catcollection_shard2_replica2",
 "node_name":"solr2:8080_solr"}}}},
 "maxShardsPerNode":"2",
 "router":{
 "field":"cat",
 "name":"compositeId"},
 "replicationFactor":"2"}}

Here the router parameter has the field cat mentioned in it. Also, the range is
specified in the range parameter for each shard. shard1 and shard2 will contain
documents with hash IDs in the ranges 80000000-ffffffff and 0-7fffffff,
respectively. Therefore, when a document is marked for indexing, the router will
calculate the 32 bit hash of the content in the cat field and route the document to the
shard whose range includes the hash value of the category value:

The hash values are represented in hexadecimal.

Now let us push the docs.csv file (available with this chapter) to the cloud and
see how the documents are distributed across the shards. Execute the following
command to push the documents into SolrCloud:

$ java -Dtype=text/csv -Durl=http://solr4:8080/solr/catcollection/update
-jar post.jar docs.csv

SimplePostTool version 1.5

Posting files to base url http://solr4:8080/solr/catcollection/update
using content-type text/csv..

POSTing file docs.csv

1 files indexed.

COMMITting Solr index changes to http://solr4:8080/solr/catcollection/
update..

Time spent: 0:00:16.608

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 9

[245]

In order to query a particular shard, we will have to append the shards=shard<no>
command at the end of the query. Let us see the documents in shard1 and shard2:

http://solr1:8080/solr/catcollection/select?q=*:*&shards=shard1

We can see that documents belonging to the category currency are indexed on
shard1. Similarly, on executing the query on shard2, we can see that the documents
belonging to the categories book and electronics are indexed on shard2:

http://solr1:8080/solr/catcollection/select?q=*:*&shards=shard2

www.it-ebooks.info

http://www.it-ebooks.info/

SolrCloud

[246]

To send a query to a particular shard, we have to use the shard.keys parameter in
our query. For example, to send the following query to the shard containing only
books, we need to execute the following query:

http://solr1:8080/solr/catcollection/select?q=martin&fl=cat,name,descr
iption&shard.keys=book!

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 9

[247]

We can see that all the books that have the word martin in their descriptions become
a part of the query result. If we try to execute the same query with a different shard
key, say currency, we will not be able to get any results:

http://solr1:8080/solr/catcollection/select?q=martin&fl=cat,name,descr
iption&shard.keys=currency!

Adding more nodes to the SolrCloud
Let us see how we can add more nodes to SolrCloud. Create one more machine
solr5. Copy the Tomcat folder to this machine and create the folder solr-cores
in the /home/ubuntu folder. Alter the tomcat/bin/setenv.sh file and change the
-Dhost parameter to match the machine's host. For solr5, it will be:

SOLR_OPTS="-Dsolr.solr.home=/home/ubuntu/solr-cores -Dhost=solr5
-Dport=8080 -DhostContext=solr -DzkClientTimeout=20000 -DzkHost=zoo1:2
181,zoo2:2181,zoo3:2181"

Also copy the solr.xml file from any Solr machine to these machines inside the
solr-cores folder. Now start Tomcat and check whether it is running by opening
the following URL: http://solr5:8080/solr.

www.it-ebooks.info

http://www.it-ebooks.info/

SolrCloud

[248]

There are two ways to identify whether this node has been added to SolrCloud.
We can check whether the admin interface on solr5 displays the current Cloud |
Graph. Another way is to go to the admin | Cloud | Tree | live_nodes folder. This
should contain the name of the live nodes. solr5 should be visible there.

Now, let us add the node as a replica for shard2 of mycollection. For this, we will
have to execute the ADDREPLICA command on the collection API, as follows:

http://solr5:8080/solr/admin/collections?action=ADDREPLICA&collection=
mycollection&shard=shard2&node=solr5:8080_solr

The output from command execution will specify the name of the core that has
been created:

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 9

[249]

In this command, we have specified:

•	 action=ADDREPLICA: This is the action to be performed on the collection.
•	 collection=mycollection: This is the collection on which the action is to be

performed.
•	 shard=shard2: This is the shard for which the replica is to be created.
•	 node=solr5:8080_solr: This is the node on which the replica is to be

created. The name of the shard is obtained from the live_nodes list we
saw earlier.

The cloud graph indicates that solr5 is added as a replica of shard2 of mycollection:

Fault tolerance and high availability in
SolrCloud
Whenever SolrCloud is restarted, election happens again. If a particular shard that
was a replica earlier comes up before the shard that was the leader, the replica shard
becomes the leader and the leader shard becomes the replica. Whenever we restart
the Tomcat and ZooKeeper servers for starting SolrCloud, we can expect the leaders
and replicas to switch.

Let us check the availability of the cluster. We will bring down a leader node and a
replica node to check whether the cluster is able to serve all the documents that we
have indexed. First check the number of documents in mycollection:

http://solr5:8080/solr/mycollection/select/?q=*:*

We can see that there are nine documents in the collection. Similarly, run the
following query on catcollection:

http://solr5:8080/solr/catcollection/select/?q=*:*

www.it-ebooks.info

http://www.it-ebooks.info/

SolrCloud

[250]

The catcollection contains 11 documents.

Now let us bring down Tomcat on solr2 and solr3, or simply turn off the machines.
Check the SolrCloud graph:

We can see that the nodes solr2 and solr3 are now in the Gone state. Here solr3 was
the leader for shard2 in mycollection. Now since it is offline, solr4 is promoted as
the leader. The replica of shard1 that was solr2 is not available, so solr1 remains
the leader.

Let us execute the queries we had executed earlier on both the collections. We can
see that the count of documents in both the collections remains the same.

We can even add documents to SolrCloud during this time. Add the ipod_other.
xml file from the example/exampledocs folder inside the Solr installation to
mycollection on SolrCloud. Execute the following command:

$ java -Durl=http://solr5:8080/solr/mycollection/update -jar post.jar
ipod_other.xml

SimplePostTool version 1.5

Posting files to base url http://solr5:8080/solr/mycollection/update
using content-type application/xml..

POSTing file ipod_other.xml

1 files indexed.

COMMITting Solr index changes to http://solr5:8080/solr/mycollection/
update..

Time spent: 0:00:07.978

Now again run the query to get the complete count from mycollection:

http://solr5:8080/solr/mycollection/select/?q=*:*

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 9

[251]

The mycollection collection now contains 11 documents.

Now start up Tomcat on solr2 and solr3. We can see that after a short time in
recovery, both the Solr instances are now added to the cloud. For mycollection, solr2
continues its role as the replica of solr1 for shard1, and solr3 becomes the replica of
solr4 for shard2:

The documents that were added to the cloud while any of the nodes were down
are automatically replicated onto the nodes once they come back into the cloud.
Therefore, as long as one of the nodes for the shard of a collection is available, the
collection will remain available and will continue to support indexing and searching
of documents.

Advanced sharding with SolrCloud
Let's explore some of the advanced concepts of sharding, starting with
shard splitting.

Shard splitting
Let us say that we have created a two-shard replica looking at the current number
of queries per second for a system. In future, if the number of queries per second
increases to, say, twice or thrice the current value, we will need to add more shards.
Now, one way is to create a separate cloud with say four shards and re-index all
the documents. This is possible if the cluster is small. If we are dealing with a 50
shard cluster with more than a billion documents, re-indexing of the complete set of
documents again may be expensive. For such scenarios, SolrCloud has the concept of
shard splitting.

www.it-ebooks.info

http://www.it-ebooks.info/

SolrCloud

[252]

In shard splitting, a shard is divided into two new shards on the same machine. All
three shards, the old one and the two new ones, remain. We can check the sanity of
the shards and then delete the existing shard. Let us see a practical implementation
of the same.

Before starting, lets add a few more documents into mycollection. Add the books.
csv file from the example/exampledocs folder to mycollection.

java -Dtype=text/csv -Durl=http://solr1:8080/solr/mycollection/update
-jar post.jar books.csv

To check the number of documents in mycollection, execute the following query:

http://solr1:8080/solr/mycollection/select/?q=*:*

We can see that there are 35 documents currently in mycollection. Let us check
the count of documents in each shard. Execute the following queries to find the
documents in shard1 of mycollection:

http://solr1:8080/solr/mycollection/select/?q=*:*&shards=shard1

There are 17 documents in shard1. Now execute the following query to find the
number of documents in shard2 of mycollection:

http://solr1:8080/solr/mycollection/select/?q=*:*&shards=shard2

We can see that there are 18 documents in shard2. Let us also look at how our
SolrCloud graph looks. We can see that shard1 is on solr3 and solr4 and shard2
is on solr1, solr2, and solr5:

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 9

[253]

Now let us split shard1 into two parts. This is done by the SPLITSHARD action on
the collections API via the Solr admin interface. Execute the command by calling the
following URL:

http://solr1:8080/solr/admin/collections?action=SPLITSHARD&collection=
mycollection&shard=shard1

The output of the command is seen on the browser. We can see that shard1 is split
into two shards shard1_0 and shard1_1:

While the query for shard splitting is being executed, the shard does not go offline. In
fact, there is no interruption of service. Let us also look at the SolrCloud graph that
would contain information on the split shards.

www.it-ebooks.info

http://www.it-ebooks.info/

SolrCloud

[254]

We can see that shard1 has been split into shard1_0 and shard1_1. Even the shards
that have been split have their leaders and replicas in place. Shard1_0 has solr4 as
the leader and solr1 as the replica. Similarly, shard1_1 has solr4 as the leader and
solr5 as the replica. To check the number of documents in the split shards, execute
the following queries:

http://solr1:8080/solr/mycollection/select/?q=*:*&shards=shard1_0

Shard1_0 contains eight documents.

http://solr1:8080/solr/mycollection/select/?q=*:*&shards=shard1_1

Also, shard1_1 contains nine documents. In all, the split shards now contain 17
documents that shard1 had earlier. In addition to splitting shard1 into two sub
shards, SolrCloud makes the parent shard, shard1, inactive. This information is
available in the ZooKeeper servers. Connect to any of the ZooKeeper servers and get
the clusterstate.json file to check the status of the shards for mycollection:

"mycollection":{
 "shards":{
 "shard1":{
 "range":"80000000-ffffffff",
 "state":"inactive",
 "replicas":{
 "core_node1":{
 "state":"active",
 "base_url":"http://solr4:8080/solr",
 "core":"mycollection_shard1_replica1",
 "node_name":"solr4:8080_solr",
 "leader":"true"},
 "core_node4":{
 "state":"active",
 "base_url":"http://solr3:8080/solr",
 "core":"mycollection_shard1_replica2",
 "node_name":"solr3:8080_solr"}}},

Now, shard1_0 and shard1_1 are marked as active:

 "shard1_0":{
 "range":"80000000-bfffffff",
 "state":"active",
 "replicas":{
 "core_node6":{
 "state":"active",

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 9

[255]

 "base_url":"http://solr4:8080/solr",
 "core":"mycollection_shard1_0_replica1",
 "node_name":"solr4:8080_solr",
 "leader":"true"},
 "core_node8":{
 "state":"active",
 "base_url":"http://solr1:8080/solr",
 "core":"mycollection_shard1_0_replica2",
 "node_name":"solr1:8080_solr"}}},
 "shard1_1":{
 "range":"c0000000-ffffffff",
 "state":"active",
 "replicas":{
 "core_node7":{
 "state":"active",
 "base_url":"http://solr4:8080/solr",
 "core":"mycollection_shard1_1_replica1",
 "node_name":"solr4:8080_solr",
 "leader":"true"},
 "core_node9":{
 "state":"active",
 "base_url":"http://solr5:8080/solr",
 "core":"mycollection_shard1_1_replica2",
 "node_name":"solr5:8080_solr"}}}},

Deleting a shard
Only an inactive shard can be deleted. In the previous section, we found that since
shard1 was split into shard1_0 and shard1_1, shard1 was marked as inactive. We can
delete shard1 by executing the DELETESHARD action on the collections API:

http://solr1:8080/solr/admin/collections?action=DELETESHARD&collection
=mycollection&shard=shard1

www.it-ebooks.info

http://www.it-ebooks.info/

SolrCloud

[256]

The following is a representation of the SolrCloud graph after the deletion of shard1:

Moving the existing shard to a new node
In order to move a shard to a new node, we need to add the node as a replica. Once
the replication on the node is over and the node becomes active, we can simply shut
down the old node and remove it from the cluster.

In the current cluster, we can see that shard2 has three nodes—solr1, solr2, and
solr5. We added solr5 some time back as a replica for shard2. In order to remove
solr2 from mycollection, all we need to do is use the DELETEREPLICA action on the
collections API:

http://solr1:8080/solr/admin/collections?action=DELETEREPLICA&collecti
on=mycollection&shard=shard2&replica=core_node3

The name of the replica is obtained from clusterstate.json in the ZooKeeper
cluster:

"mycollection":{
 "shards":{
 "shard2":{
 "range":"0-7fffffff",
 "state":"active",
 "replicas":{
 "core_node2":{
 "state":"active",
 "base_url":"http://solr1:8080/solr",
 "core":"mycollection_shard2_replica1",
 "node_name":"solr1:8080_solr",
 "leader":"true"},
 "core_node3":{

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 9

[257]

 "state":"active",
 "base_url":"http://solr2:8080/solr",
 "core":"mycollection_shard2_replica2",
 "node_name":"solr2:8080_solr"},
 "core_node5":{
 "state":"active",
 "base_url":"http://solr5:8080/solr",
 "core":"mycollection_shard2_replica3",
 "node_name":"solr5:8080_solr"}}},

The graph now shows solr2 is removed from mycollection:

In this case, solr2, which is also a node in catcollection is still active.

Shard splitting based on split key
Split key-based shard splitting is a viable option. A split key can be used to route
documents on the basis of certain criteria to a shard in SolrCloud. In order to split a
shard by using a shard key, we need to specify the shard.key parameter along with
the collection parameter in the SPLITSHARD action of the collections API.

We can split catcollection into more shards using category as the split.key
parameter. The URL for splitting the shard will be:

http://solr1:8080/solr/admin/collections?action=SPLITSHARD&collection=
catcollection&split.key=books!

www.it-ebooks.info

http://www.it-ebooks.info/

SolrCloud

[258]

Once the query has been executed, we can see the success message. It says that
Shard2 of catcollection has been broken into three shards, as shown in the following
SolrCloud graph:

The complete process of splitting a shard into two and moving it to a separate new
node in SolrCloud is required in the following scenarios:

•	 Average query performance on a shard or slowing down of a number
of shards. It is important to measure this regularly and keep track of the
number of queries per second.

•	 Degradation of indexing throughput. This is a scenario wherein you were
able to index 1000 documents per second earlier, but it goes down to say 800
documents per second.

•	 Out of memory errors during querying. Even after tuning - query,
cache and GC.

Asynchronous calls
Since some API calls, such as shard splitting, can take a long time and result in
timeouts, we have the option of running a call asynchronously by specifying the
async=<request_id> parameter in the URL. <request_id> is any ID that can be
used to track the status of a particular API call. The request_id class and the status
of the task are stored in ZooKeeper and can be retrieved using the REQUESTSTATUS
action on the collections API.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 9

[259]

We can delete and recreate catcollection using the following API
calls or URLs:

http://solr1:8080/solr/admin/collections?action=DELETE&
name=catcollection

http://solr1:8080/solr/admin/collections?action=CREATE
&name=catcollection&numShards=2&replicationFactor=2&m
axShardsPerNode=2&collection.configName=conf1&router.
field=cat

catcollection can be populated using docs.csv file provided by the
following command:
java -Dtype=text/csv -Durl=http://solr4:8080/solr/
catcollection/update -jar post.jar docs.csv

To perform splitting using the async parameter, execute the following command:

http://solr1:8080/solr/admin/collections?action=SPLITSHARD&collection=
catcollection&split.key=books!&async=1111

We immediately get a response which just shows the requestid that we submitted.
The status of the request can be checked by executing the following URL:

http://solr1:8080/solr/admin/collections?action=REQUESTSTATUS&request
id=1111

www.it-ebooks.info

http://www.it-ebooks.info/

SolrCloud

[260]

Here we can see that the status is marked as completed. These requests and their
status are stored in ZooKeeper and are not cleaned up automatically. We can clean
up the requests by passing requestid as -1:

http://solr1:8080/solr/admin/collections?action=REQUESTSTATUS&request
id=-1

Migrating documents to another
collection
Suppose we have a huge collection of over a billion documents and we get a
requirement whereby we need to create a separate index with a particular set of
documents, or we want to break our index into two parts on the basis of certain
criteria. Migration of documents to another collection makes this possible.
Effectively, we can specify a source and a destination collection in SolrCloud. On the
basis of the routing criteria, certain documents will be copied from the source to the
destination collection. We can specify the migration time as the forward.timeout
parameter during which all write requests will be forwarded to the target collection.
The target collection must not receive any writes while the migrate command is
running. Otherwise, some writes may be lost.

Let us look at a practical scenario.

We currently have two collections—catcollection and mycollection. Now
catcollection contains documents belonging to the categories books, currency,
and electronics. Let us move the documents belonging to the category currency
from catcollection to mycollection.

The query to get the documents belonging to category currency will include the
shard.keys=currency! parameter:

http://solr1:8080/solr/catcollection/select/?q=*:*&rows=15&shard.
keys=currency!

We can see that there are 4 documents in the collection. On querying the
mycollection collection, we find that there are 35 documents in the collection. Now,
let us copy the documents from catcollection to mycollection:

http://solr1:8080/solr/admin/collections?action=MIGRATE&collection=cat
collection&split.key=currency!&target.collection=mycollection&forward.
timeout=120

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 9

[261]

Note the following:

•	 The action is MIGRATE.
•	 The source collection is catcollection.
•	 split.key is currency!. All documents that have currency!* as the ID

will be moved to mycollection. split.key is identified by the routing
parameter that we used earlier. If there is no routing parameter, split.key
can be identified by the unique ID of the documents.

•	 target.collection refers to the target mycollection.
•	 forward.timeout is the timeout specified during which all write requests to

catcollection are forwarded to mycollection.

A success message is displayed once this completes.

We can see the routing parameters in the clusterstate.json file. This also includes
an expiresAt parameter specifying the time after which the forwarding of requests
to the target collection is stopped:

www.it-ebooks.info

http://www.it-ebooks.info/

SolrCloud

[262]

Once the migration is over, the destination collection, mycollection, will contain
4 more documents, with the number totaling to 39. These documents will also be
available in the source collection.

Solr collections API reference:
https://cwiki.apache.org/confluence/display/solr/
Collections+API.

Sizing and monitoring of SolrCloud
It is important to understand that SolrCloud is horizontally scalable. However, each
node needs to have a certain capacity. The amount of CPU, disk, and RAM required
for each node in SolrCloud needs to be figured out for the efficient allocation of
resources. Though no fixed number can be assigned to these parameters as each
application is unique, each index within each application has a unique indexing
pattern—the number of documents that need to be indexed per second, the size
of the documents, and the fields, the tokenization and the storage parameters
defined. Similarly, the search patterns would also differ across indexes belonging to
different applications. The number of queries per second and the search parameters
can be different. The amount of data retrieved from Solr and the faceting and
grouping parameters play an important role in the handling of resources used
during querying.

Therefore, it is difficult to assign numbers to the RAM, CPU, and disk requirements
for each node. Ideally, we should implement sharding on the size of the shard
instead of the size of the collection. Routing is another very important parameter
in the index. It would save a lot of network IO. The weight of a particular shard
depends on the routing parameter, either in terms of the number of documents
or the number of queries per second.

It is important to restrict the disk space to two to three times the size of the index.
When index optimization happens, it uses up more than twice the disk space.

The ideal way to go about sizing is to put a few normal machines as the nodes of
SolrCloud and monitor their resource usage. For each node, we need to monitor the
following parameters:

•	 Load average or CPU usage
•	 Disk usage

www.it-ebooks.info

https://cwiki.apache.org/confluence/display/solr/Collections+API
https://cwiki.apache.org/confluence/display/solr/Collections+API
http://www.it-ebooks.info/

Chapter 9

[263]

•	 RAM usage, or RAM utilization across each core
•	 Core to CPU consumption, or CPU utilization across each core
•	 Collection to node consumption, or how the requests are being distributed

across each node in the collection

Once these parameters are in place, nodes belonging to some shards are found to
be overweight. These shards need to be split further in order to properly address
scalability issues that may occur in the future.

The health of SolrCloud can be monitored via the following files or directories in the
ZooKeeper server:

•	 clusterstate.json

•	 /livenodes

We need to constantly watch the state of each core in the cluster. livenodes provides
us with a list of available nodes. If any node or core goes offline, a notification has
to be sent out. Additionally, it is important to have enough replicas distributed in
such a fashion that a core or a node going down should not affect the availability of
the cloud. The following points need to be considered while planning out the nodes,
cores, and replicas of SolrCloud:

•	 Each collection should have an appropriate number of shards
•	 Shards should have a leader and more than one replica
•	 Leaders and replicas should be on different physical nodes
•	 Even when using virtual machines, the third step should be considered
•	 A few standby nodes, which can be assigned as replicas, should be set up, if

needed
•	 An automated process should be followed for setting up standby nodes
•	 An automated process should be followed for spawning new nodes
•	 Checks on the network IO should be scheduled to identify the network or

cluster traffic and continually optimized

These action points will make the SolrCloud function in an effortless manner.

www.it-ebooks.info

http://www.it-ebooks.info/

SolrCloud

[264]

Using SolrCloud as a NoSQL database
There is a huge market for NoSQL databases, each having its own strength and
weakness. Several factors need consideration during the selection of a NoSQL
database, namely performance, scalability, security, and ease of development.
RDBMS is good but has limitations in terms of scaling to billions of records.
Horizontal scaling is a challenge in most RDBMSs.

Search, which was earlier a complex process, is now easy to use and scale. With
horizontal scalability, search has also become affordable. NoSQL databases can be
key-value, column oriented, document oriented and graph database. The key factors
that are used to make a decision regarding the NoSQL database are as follows:

•	 Data model: Refers to how data is stored and accessed or whether the
NoSQL database is key-value, document oriented, or column oriented.

•	 Distribution model: Refers to how data is distributed across the cluster to
address horizontal scalability. It considers sharding and replication features.

•	 Conflict resolution: Refers to how data is kept consistent across the nodes
in the cluster. It ensures that all the nodes apply the operations in the same
order and takes care of update and read consistency.

Each NoSQL database needs a search option. MongoDB, Redis, CouchDB, Riak,
and other NoSQL databases provide search options, though the search is not as
effectively implemented in these databases. Ideally, we need to come down to using
Lucene, Solr, or Elasticsearch.

Therefore, instead of adding the search feature to the database, we can add the
database to the search function. This means that we can store data inside the Solr
index and retrieve it during search. Solr is a document-oriented data store, which is
closer to the MongoDB data model. With the latest version of Solr and near real-time
functionalities, we obtain the following features:

•	 Real-time get
•	 Update durability
•	 Atomic compare and set
•	 Versioning and optimistic locking

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 9

[265]

This brings Solr closer to being a NoSQL database. Talking about the schema less
- Solr is effectively 'schemaless'. We need not run a lengthy alter command to add
new fields to the schema. The schema can be altered and new fields indexed in the
new schema without affecting the documents that are already present in the index.
Altering the schema of existing fields can cause problems. In that case, those fields
would need to be re-indexed. However, adding new fields to the index does not
affect the existing documents in any way. Any search on those fields would simply
ignore the documents in which the fields do not exist.

SolrCloud takes this further by providing horizontal scalability to the Solr database.
Solr is 'eventually consistent'.

Eventual consistency is a consistency model used in distributed computing that
informally guarantees that, if no new updates are made to a given data item,
eventually all accesses to that item will return the last updated value.

Source: http://en.wikipedia.org/wiki/Eventual_consistency.

The duration of the presence of inconsistency is known as the inconsistency window.
SolrCloud has a very small inconsistency window that depends on the size of the
data, the command to be executed, and the network.

This effectively means that Solr can be used as a NoSQL database to store, search,
and retrieve data.

Summary
In this chapter, we went through most of the aspects of SolrCloud. We understood
the architecture of SolrCloud, constructed a setup for SolrCloud using ZooKeeper
servers, and created our collections on the cloud. We saw the advantages of
routing and how to implement it. We saw how SolrCloud addresses the horizontal
scalability, high availability, and distributed indexing and search requirements
for a large-scale Solr deployment. We saw how to manage the shards in SolrCloud
and monitor SolrCloud. We can use the monitoring information to size the cores
in SolrCloud and scale it further. We also saw that SolrCloud can be used as a
NoSQL database.

In the next chapter, we will explore text tagging using the Lucene Finite State
Transducer (FST). We will delve into FSTs and how they can be implemented
using Lucene and SolrCloud?

www.it-ebooks.info

http://en.wikipedia.org/wiki/Eventual_consistency
http://www.it-ebooks.info/

www.it-ebooks.info

http://www.it-ebooks.info/

[267]

Text Tagging with Lucene FST
In the previous chapter, we delved into the setup and working of SolrCloud. We
saw the working of distributed indexing and search and how they can be used
for handling horizontal scalability and high availability issues in a large-scale
Solr deployment. We also discussed the use of SolrCloud as a large-scale
NoSQL database.

In this chapter, we will understand what text tagging is and how Lucene and,
hence, Solr can be used to implement it in indexing. We will discuss the Finite State
Transducer (FST) and the algorithms related to it and learn how it can be integrated
with Solr. The topics that we will cover are:

•	 An overview of FST and text tagging
•	 Implementation of FST in Lucene
•	 Text tagging algorithms
•	 Using Solr for text tagging
•	 Implementing a text tagger using Solr

An overview of FST and text tagging
FSTs are used for Natural Language Processing (NLP). To understand the function
of an FST, let us understand a Finite State Machine (FSM) first. An FSM is an
abstract mathematical model of computation that is capable of storing a status or
state and changing this state on the basis of the input. FSMs can be applied to various
electronic modeling, engineering, and NLP problems. An FSM is represented as a
set of nodes containing the various states of a system and labeled edges between
these nodes. Here the edges represent transitions from one state to another and the
labels represent the conditions on these transitions. A stream of input can be then
processed by the FSM causing a number of state transitions.

www.it-ebooks.info

http://www.it-ebooks.info/

Text Tagging with Lucene FST

[268]

The following diagram is an example of an FSM that describes some of the states of
our day-to-day life:

Hungry

Eat

Hungry

Bored

Tired

Work
Sleep

Bored

Hungry

Tired

Tired

Bored

Here Eat, Sleep, and Work are the states in which a person will be. Bored, Tired,
and Hungry are the edges showing the conditions under which transitions occur.

An FSM containing a start state and an end state can be used for language processing
by generating or recognizing a language defined by all the possible combinations
of conditions generated by traversing each of the edges from the start state to the
end state.

An FST is a special type of FSM. An FST contains an input string and an output
string. Therefore, instead of traversing an input string for just accepting or rejecting
it, an FST translates the contents of the input string into the output string. That is, an
FST accepts an input string and generates an output string. In an FST, each transition
has two symbols—one representing the input and the other representing the output.
If an FST does not generate an output string, we can assume that the input string has
been rejected.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 10

[269]

A sample FST is shown in the following figure:

1

30

2

a/b h/h

a/c e/e

To understand text tagging, let us first look at what geotagging is. Geotagging is a
solution for identifying place name references in a natural language. The following
text is an example of geotagging:

I live in a house near Delhi.

A geotagger identifies the place Delhi in the previous text. This information can
be extended to resolve the place name into a particular latitude and longitude
combination.

A text tagger has a broader scope. It can identify names and places from
unstructured text. An FST can be used as a mechanism for text tagging. A text
tagger consults with a dictionary to extract names or tags. Then, it uses simple NLP
to eliminate low-confidence tags. It needs to find names with varying word lengths
as well as overlapping names. There is a great deal of theory behind FSMs, FSTs, and
text tagging. In any case, let us go ahead and see how an FST functions with the help
of Lucene.

Implementation of FST in Lucene
The algorithm used for implementing an FST in Lucene is based on the paper
Direct Construction of Minimal Acyclic Subsequential Transducers published by Stoyan
Mihov and Denis Maurel. This algorithm can be used to build a minimal acyclic
sub-sequential transducer (a type of FST) that represents a finite relation, given a
sorted list of input words and their outputs. As this algorithm constructs the minimal
transducer directly, it has better efficiency than other algorithms. It is the perfect fit
for a Lucene FST, as all the terms in the Lucene index are stored in a sorted order.

The following paper was referred to for building the
algorithm: http://citeseerx.ist.psu.edu/viewdoc/
summary?doi=10.1.1.24.3698.

www.it-ebooks.info

http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.24.3698
http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.24.3698
http://www.it-ebooks.info/

Text Tagging with Lucene FST

[270]

An FST is implemented in Lucene under the following package:

org.apache.lucene.util.fst

Let us see a few of the classes inside the package that can be used to work with
an FST:

•	 Builder<T>: Can be used to build a minimal FST from pre-sorted terms
with outputs

•	 FST<T>: Represents an FSM and uses a compact byte[] format
•	 Outputs<T>: Represents the outputs for an FST and provides the basic

algebra for building and traversing the FST
•	 PositiveIntOutputs: An implementation of Outputs class where each

output is a non-negative long value
•	 Util: Contains static helper methods

The complete Java documentation for the Lucene FST implementation can
be obtained from the following link: http://lucene.apache.org/
core/4_8_0/core/org/apache/lucene/util/fst/package-
summary.html.

Let us understand this with an example:

d/1

o/2

g

g/4

a

s/9

t/3c/2

www.it-ebooks.info

http://lucene.apache.org/core/4_8_0/core/org/apache/lucene/util/fst/package-summary.html
http://lucene.apache.org/core/4_8_0/core/org/apache/lucene/util/fst/package-summary.html
http://lucene.apache.org/core/4_8_0/core/org/apache/lucene/util/fst/package-summary.html
http://www.it-ebooks.info/

Chapter 10

[271]

Here is a sample FST that maps three words, cat, dog, and dogs, to their ordinal
numbers, which are 5, 7, and 12, respectively. As we traverse the edges of the FST,
we sum up the outputs. For example, dog outputs 1 when it hits d, 2 when it hits o,
and finally 4 when it hits g. Therefore, the output ordinal will be 7, which is the sum
of the outputs corresponding to each hit.

An FST in the Lucene core for the preceding three words would function with
reference to the following code:

String inputValues[] = {"cat", "dog", "dogs"};
long outputValues[] = {5, 7, 12};

PositiveIntOutputs outputs = PositiveIntOutputs.getSingleton();
Builder<Long> builder = new Builder<Long>(INPUT_TYPE.BYTE1, outputs);
BytesRef scratchBytes = new BytesRef();
IntsRef scratchInts = new IntsRef();
for (int i = 0; i < inputValues.length; i++) {
 scratchBytes.copyChars(inputValues[i]);
 builder.add(Util.toIntsRef(scratchBytes, scratchInts),
outputValues[i]);
}
FST<Long> fst = builder.finish();

Once this FST has been built, we can use it for FST-related operations. Lucene
supports the following FST operations:

•	 Retrieval by key: The input dog would output 7
•	 Retrieval by value: The input 5 would output cat
•	 Scanning: Iteration over key-value pairs in a sorted order
•	 Deduction: Identification of the n-shortest path by weight

Internally, an FST is stored as a SortedMap class of ByteSequence and Output.
If the edges are sorted, it can be represented as:

SortedMap<ByteSequence,SomeOutput>

This implementation of the FST in Lucene requires less RAM but leads to higher
CPU utilization during lookup. This is because in Lucene, the FST has been encoded
as byte[]. Higher CPU utilization can be attributed to the fact that the amount of
processing required for lookup in this implementation of the FST is more. An FST
is memory efficient and loads fast from disk, as it is built from pre-sorted inputs
in Lucene.

www.it-ebooks.info

http://www.it-ebooks.info/

Text Tagging with Lucene FST

[272]

Text tagging algorithms
The process of text tagging can be explained by the following figure:

Document

Geo location
Database

Tokenizer

Tokens

Geo coord
finder

Output

Naive
TaggerTags

Database

A document is tokenized and the tokens are passed to the naive tagger. The naive
tagger uses a tagging algorithm to find the tags. Then, the geo-coordinate finder
identifies the geo-locations (lat-long coordinates) corresponding to those tags.
They are then available as the output.

There are various text tagging algorithms, each of which has its own benefits.
Let us go through some of the algorithms that can be used for text tagging.

Fuzzy string matching algorithm
The fuzzy string matching algorithm can be used to match two strings, exactly or
partially. This means the relationship is fuzzy when there is a set of n-elements and
another set of m-elements, and both partially match the same elements. Using this
algorithm, we can identify strings that are similar to a set of other strings. It is like
drawing similar terms from the string.

Suppose we want to find the similarity between two words, say jumps and juumpss,
and correct them if necessary. The fuzzy string matching algorithm will return true
for the first word (jumps) as it is correct and will return the correct string (jumps) for
the other word juumpss.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 10

[273]

The fuzzy string matching algorithm is characterized by a metric that is a function of
the distance between two words. This helps us evaluate the similarity between them.
This metric is known as edit distance.

Edit distance is defined as the number of operations required to transform one
string to another. Using edit distance, we can quantify the dissimilarity between
two strings. Edit distance can be used as an NLP mechanism to find corrections for a
misspelled word. This is done by identifying words from a dictionary that have the
smallest edit distance with respect to the word for which corrections are sought.

Let us see an example to calculate the edit distance. We will find the number of
primitive operations, insertions, deletion, and substitution, that are required to convert
a string to obtain an exact match with another. This number will be the edit distance
between the string and the pattern:

•	 Mak can be converted to Make by an insertion operation:
 Mak + e = Make

•	 Boooks can be converted to Books by a deletion operation:
 Boooks - o = Books

•	 Dish can be converted to Fish by a substitution operation:

 Dish + (- D + F) = Fish

The edit distance between these examples is numerically 1, as only a single operation
is required to convert them to the target string.

Let us look at some algorithms used for calculating the edit distance.

The Levenshtein distance algorithm
Levenshtein distance is defined as the minimum number of single-character edits
required to convert one word to another. Here the edits are performed by insertion,
deletion, and substitution operations that we saw earlier.

Sitting can be converted to Bettings by the following operation:

 Sitting + (- S + B) = Bitting
 Bitting + (- i + e) = Betting
 Betting + s = Bettings

In the previous example, the Levenshtein distance between Sitting and Bettings is
3 (2 substitution operations + 1 insertion operation).

www.it-ebooks.info

http://www.it-ebooks.info/

Text Tagging with Lucene FST

[274]

If the lengths of the two strings are m and n, the algorithm will have a time
complexity of O(mn) and a space complexity of O(mn). In addition, the
Levenshtein distance has the following properties:

•	 It is at least the difference of the sizes of the two strings
•	 It is at most the length of the longer string
•	 The distance is 0 if both strings are equal
•	 The distance is equal to the number of substitutions required for conversion

(hamming distance) if both strings are of the same size

Damerau–Levenshtein distance
The Damerau–Levenshtein algorithm is an extension of the Levenshtein distance
algorithm. It involves an additional operation, transposition. Transposition is the
operation whereby the adjacent characters are swapped in order to bring them to a
certain form. Let us see an example of transposition:

•	 The word eat can be converted to ate by two transposition operations:

 eat => aet (swap e & a)
 aet => ate (swap e & t)

Therefore, the Damerau–Levenshtein algorithm consists of four operations:

•	 Insertion
•	 Deletion
•	 Substitution
•	 Transposition

Let us look at an example for calculating the Damerau–Levenshtein distance:

•	 The word clocks can be converted to bold formatting by the
following operation:

 clocks => substitute c with b => blocks
 blocks => transpose l and o => bolcks
 bolcks => substitute c with d => boldks
 boldks => substitute k with e => boldes
 boldes => substitute s with r => bolder

The Damerau–Levenshtein distance in this example is 5 (1 transpose + 4
substitution).

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 10

[275]

Using Solr for text tagging
Now that we know what text tagging is and have seen some algorithms that can be
used for text tagging, let us learn how text tagging is done using Solr. There is an
open source library, Solr Text Tagger, that can be used for text tagging in Solr.

The library can be referred to at the following link:
https://github.com/OpenSextant/SolrTextTagger.

Text tagging via this library involves two layers of FSTs. A word dictionary FST is
used to hold each unique word. This enables integers to be used as substitutes for
a word (char[]). For example, the word New will be mapped to 13452 and another
word Delhi will be mapped to 5223316:

New => 13452
Delhi => 5223316

The call to Lucene's FST library Util.getByOutput(<fst object>, 13452) will
yield the word New.

The second layer is a word phrase FST comprising word ID string keys. In the case of
New Delhi, the word phrase FST will be:

New Delhi => [13452, 5223316]

The tagging algorithm used in the Solr text tagger is a single-pass or streaming
algorithm. The algorithm looks for the original ID of each input term and then
creates an FST arc iterator for the name phrase. It then appends the iterator onto a
queue of active iterators and tries to advance all iterators. The iterators that do not
advance are removed.

An FST arc iterator is used to access the transitions leaving an
FST state.

The Solr text tagger scans the posted text and looks for matching strings in the
Solr index. The tags are formed as a linked list containing a start offset and an end
offset. A tag starts without a value in an advancing state. The tag is advanced with
subsequent words, and then eventually, if it does not advance any more, the value is
set. Now, the linked list is reduced to tags that are to be emitted.

www.it-ebooks.info

https://github.com/OpenSextant/SolrTextTagger
http://www.it-ebooks.info/

Text Tagging with Lucene FST

[276]

Let us see an example to understand this:

Iterator linked list queue
Head => New Delhi, city
Head+1 => Delhi, city
Head+2 => City

In this case, Head containing the New Delhi City phrase will advance and will be
emitted as an output.

Implementing a text tagger using Solr
Let us see how we can implement the Solr text tagger. Let us get the latest code for the
Solr text tagger from the GitHub repository by cloning the Git repository with the
following command:

git clone https://github.com/OpenSextant/SolrTextTagger.git

This will get the code inside a folder called SolrTextTagger.

Now inside the SolrTextTagger library, run the following command to create the
JAR file:

mvn package

The mvn command is available in the Maven repository. This repository
can be installed using the following command on Ubuntu machines:
sudo apt-get install maven2

We can also install and use the latest release of maven – maven3.
The mvn command fetches the dependencies required for compiling
and creating the JAR file. If any dependencies are not satisfied or
remain unavailable, you will need to debug the pom.xml file inside the
SolrTextTagger folder and re-run the command.
Alternatively, you can use the solr-text-tagger.jar file available
with this chapter.

On successful compilation, we will be able to see the following output on the screen:

[INFO] Building jar: /home/jayant/solrtag/SolrTextTagger/target/solr-
text-tagger-2.1-SNAPSHOT.jar

[INFO] --

[INFO] BUILD SUCCESSFUL

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 10

[277]

[INFO] --

[INFO] Total time: 54 seconds

[INFO] Finished at: Tue Feb 17 10:43:34 IST 2015

[INFO] Final Memory: 62M/322M

[INFO] --

The compiled file is available in the target folder inside the SolrTextTagger folder:

target/solr-text-tagger-2.1-SNAPSHOT.jar

This JAR file has to be copied into the <solr installation>/example/lib folder
from where solrconfig.xml will pick it up.

To configure a text tagger with this instance of Solr, we will need to modify
the solrconfig.xml and schema.xml files in our Solr installation. For a fresh
installation of Solr, we can go to the <solr installation>/example/solr/
collection1/conf folder and add or modify the following lines in our schema.xml:

<field name="name_tag" type="tag" stored="false"
omitTermFreqAndPositions="true" omitNorms="true"/>
<copyField source="name" dest="name_tag"/>

Here we are defining a new field name_tag, which is of the field type tag. In order to
populate the field, we have copied the text from our existing field name to the new
field name_tag.

Next, we will also need to define the behavior of tag. This is also done in schema.
xml, as follows:

<fieldType name="tag" class="solr.TextField"
positionIncrementGap="100" postingsFormat="Memory">
 <analyzer type="index">
 <tokenizer class="solr.StandardTokenizerFactory"/>
 <filter class="solr.ASCIIFoldingFilterFactory"/>
 <filter class="solr.LowerCaseFilterFactory"/>
 <filter
class="org.opensextant.solrtexttagger.ConcatenateFilterFactory" />
 </analyzer>
 <analyzer type="query">
 <!-- 32 just for tests, bumps posInc -->
 <tokenizer class="solr.StandardTokenizerFactory"
 maxTokenLength="32"/>
 <!--

www.it-ebooks.info

http://www.it-ebooks.info/

Text Tagging with Lucene FST

[278]

 NOTE: This used the WordLengthTaggingFilterFactory to test
 the TaggingAttribute.
 The WordLengthTaggingFilter set the
 TaggingAttribute for words based on their length.
 The attribute is ignored at
 indexing time, but the Tagger will use it to only start tags
 for words that are equals or longer as the configured
 minLength.
 -->
 <filter
class="org.opensextant.solrtexttagger.WordLengthTaggingFilterFactory"
minLength="4"/>
 <filter class="solr.ASCIIFoldingFilterFactory"/>
 <filter class="solr.LowerCaseFilterFactory"/>
 </analyzer>
</fieldType>

Here, we are defining the analysis happening on the tag field type during indexing
and search or querying. The attribute postingsFormat="Memory" requires that we
set codecFactory in our solrconfig.xml file to solr.SchemaCodecFactory. The
postingsFormat class provides read and write access to all postings, fields, terms,
documents, frequencies, positions, offsets, and payloads. These postings define the
format of the index being stored. Here we are defining postingsFormat as memory,
which keeps data in memory thus making the tagger work as fast as possible.

During indexing, we use standard tokenizer, which breaks our input into tokens.
This is followed by ASCIIFoldingFilterFactory. This class converts alphabetic,
numeric, and symbolic Unicode characters that are not on the 127-character list of
ASCII into their ASCII equivalents (if the ASCII equivalent exists). We are converting
our tokens to lowercase by using LowerCaseFilterFactory. Also, we are using
ConcatenateFilterFactory provided by solrTextTagger, which concatenates all
tokens into a final token with a space separator.

During querying, we once again use Standard Tokenizer followed by
WordLengthTaggingFilterFactory. This defines the minimum length of a token to
be looked up during the tagging process. We use ASCIIFoldingFilterFactory and
LowerCaseFilterFactory as well.

Now, let us go through the changes we need to make in solrconfig.xml. We will
first need to add solr-text-tagger-2.1-SNAPSHOT.jar to be loaded as a library
when Solr starts. For this, add the following lines in solrconfig.xml:

<lib dir="../../lib/" regex="solr-text-tagger-2\.1-SNAPSHOT\.jar" />

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 10

[279]

You can also use the solr-text-tagger.jar file provided with this
chapter. It has been properly compiled with some missing classes.
Copy the solr-text-tagger.jar file to your <solr
installation>/example/lib folder and add the following line in
your solrconfig.xml:

<lib dir="../../lib/" regex="solr-text-tagger\.jar" />

Also, add the following lines to support postingsFormat="Memory", as explained
earlier in this section:

<!-- for postingsFormat="Memory" -->
<codecFactory name="CodecFactory" class="solr.SchemaCodecFactory" />
<schemaFactory name="SchemaFactory"
class="solr.ClassicIndexSchemaFactory" />

We will also have to define our own request handler, say /tag, which calls
TaggerRequestHandler as provided by the Solr text tagger. Inside the /tag request
handler, we have defined the field to be used for tagging as name_tag, which we
added to our schema.xml earlier. The filter query is an optional parameter that can
be used to match the subset of the documents (for name matching) in our case:

<requestHandler name="/tag" class="org.opensextant.solrtexttagger.
TaggerRequestHandler">
 <!-- top level params; legacy format just to test it still works
-->
 <str name="field">name_tag</str>
 <str name="fq">NOT name:(of the)</str><!-- filter out -->
</requestHandler>

Now, let us start the Solr server and watch the output to check whether any errors
crop up while Solr loads the configuration and library changes that we made.

www.it-ebooks.info

http://www.it-ebooks.info/

Text Tagging with Lucene FST

[280]

If you get the following error in your Solr log stating that it is missing
WorlLengthTaggingFilterFactory, this factory has to be compiled
and added to the JAR file we had created:

2768 [coreLoadExecutor-4-thread-1] ERROR org.apache.
solr.core.CoreContainer – Unable to create core:
collection1

.

.

Caused by: java.lang.ClassNotFoundException: solr.
WordLengthTaggingFilterFactory

The files that are required to be compiled,
WordLengthTaggingFilterFactory.java and
WordLengthTaggingFilter.java, are available in the following
folder:

SolrTextTagger/src/test/java/org/opensextant/
solrtexttagger

In order to compile the file, we will need the following JAR files from our
Solr installation:
javac -d . -cp log4j-1.2.16.jar:slf4j-api-1.7.6.jar:slf4j-
log4j12-1.7.6.jar:lucene-core-4.8.1.jar:solr-text-tagger-
2.1-SNAPSHOT.jar WordLengthTaggingFilterFactory.java
WordLengthTaggingFilter.java

These jars could be found inside <solr installation>/example/
lib/ext and webapps/solr.war file. The WAR file will need to be
unzipped to obtain the required JAR files.
Once compiled, the class files can be found inside the org/
opensextant/solrtexttagger folder. In order to add these files into
our existing solr-text-tagger-2.1-SNAPSHOT.jar, simply unzip
the JAR file and copy the files to the required folder org/opensextant/
solrtexttagger/ and create the JAR file again using the following zip
command:
zip -r solr-text-tagger.jar META-INF/ org/

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 10

[281]

In order to check whether the tag request handler is working, let us point our
browser to http://localhost:8983/solr/collection1/tag.

We can see a message stating that we need to post some text into
TaggerRequestHandler. This means that the Solr text tagger is now
plugged into our Solr installation and is ready to work.

Now that we have our Solr server running without any issues, let us add some files
from the exampledocs folder to build the index and the tagging index along with it.
Execute the following commands:

cd example/exampledocs

java -jar post.jar *.xml

java -Dtype=text/csv -jar post.jar books.csv

www.it-ebooks.info

http://www.it-ebooks.info/

Text Tagging with Lucene FST

[282]

This will index all the xml documents and the books.csv file into the index.

Let us check whether the tagging works by checking the tags for the content inside
the solr.xml file inside the exampledocs folder. Run the following command:

curl -XPOST 'http://localhost:8983/solr/tag?overlaps=ALL&tagsLimit=5000&f
l=*&wt=json' -H 'Content-Type:text/xml' -d @solr.xml

We can see the output on our command prompt:

The tagcount is 2 in the output.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 10

[283]

Windows users can download curl from the following location and
install it: http://curl.haxx.se/download.html.
The commands can then be run from the command prompt.
Linux users can pretty print the JSON output from the previous query
by using Python's pretty-print tool for JSON and piping it with the curl
command. The command will then be:
curl -XPOST 'http://localhost:8983/solr/tag?overlaps=ALL
&tagsLimit=5000&fl=*&wt=json' -H 'Content-Type:text/xml'
-d @solr.xml | python -m json.tool

The output will be similar to the following image:

www.it-ebooks.info

http://curl.haxx.se/download.html
http://www.it-ebooks.info/

Text Tagging with Lucene FST

[284]

The output contains two sections, tags and docs. The tags section contains an array
of tags with the ids of the documents in which they are found. The docs section
contains Solr documents referenced by those tags.

We take up another findtags.txt file and find the tags in this file. Let us run the
following command:

curl -XPOST 'http://localhost:8983/solr/tag?overlaps=ALL&tagsLimit=5000&
fl=*' -H 'Content-Type:text/plain' -d @findtags.txt | xmllint --format -

This will give us the output in the XML format, as follows:

<?xml version="1.0" encoding="UTF-8"?>
<response>
 <lst name="responseHeader">
 <int name="status">0</int>
 <int name="QTime">54</int>
 </lst>
 <int name="tagsCount">3</int>
 <arr name="tags">
 <lst>
 <int name="startOffset">905</int>
 <int name="endOffset">915</int>
 <arr name="ids">
 <str>0553293354</str>
 </arr>
 </lst>
 <lst>
 <int name="startOffset">1246</int>
 <int name="endOffset">1256</int>
 <arr name="ids">
 <str>0553293354</str>
 </arr>
 </lst>
 <lst>
 <int name="startOffset">1358</int>
 <int name="endOffset">1368</int>
 <arr name="ids">
 <str>0553293354</str>
 </arr>
 </lst>
 </arr>
 <result name="response" numFound="1" start="0">
 <doc>
 <str name="id">0553293354</str>
 <arr name="cat">
 <str>book</str>
 </arr>
 <str name="name">Foundation</str>
 <float name="price">7.99</float>

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 10

[285]

 <str name="price_c">7.99,USD</str>
 <bool name="inStock">true</bool>
 <str name="author">Isaac Asimov</str>
 <str name="author_s">Isaac Asimov</str>
 <str name="series_t">Foundation Novels</str>
 <int name="sequence_i">1</int>
 <str name="genre_s">scifi</str>
 <long name="_version_">1493514260482883584</long>
 </doc>
 </result>
</response>

Here, we can see that three tags were found in our text. All of them refer to the same
document ID in the index.

For the index to be useful, we will need to index many documents. As the number of
documents increases so will the accuracy of the tags found in our input text.

Now let us look at some of the request time parameters passed to the Solr text tagger:

•	 overlaps: This allows us to choose an algorithm that will be used to
determine which overlapping tags should be retained versus which should
be pruned away:

°° ALL: We have used ALL in our Solr queries. This means all tags should
be emitted.

°° NO_SUB: Do not emit a sub tag, that is, a tag within another tag.
°° LONGEST_DOMINANT_RIGHT: Compare the character lengths of the tags

and emit the longest one. In the case of a tie, pick the right-most tag.
Remove tags that overlap with this identified tag and then repeat the
algorithm to find other tags that can be emitted.

•	 matchText: This is a Boolean flag that indicates whether the matched text
should be returned in the tag response. In this case, the tagger will fully
buffer the input before tagging.

•	 tagsLimit: This indicates the maximum number of tags to return in the
response. By default, this is 1000. In our examples, we have mentioned it as
5000. Tagging is stopped once this limit is reached.

•	 skipAltTokens: This is a Boolean flag used to suppress errors that can occur
if, for example, you enable synonym expansion at query time in the analyzer,
which you normally shouldn't do. The default value is false.

www.it-ebooks.info

http://www.it-ebooks.info/

Text Tagging with Lucene FST

[286]

•	 ignoreStopwords: This is a Boolean flag that causes stop words to be
ignored. Otherwise, the behavior is to treat them as breaks in tagging
on the presumption that our indexed text-analysis configuration doesn't
have a StopWordFilter class. By default, the indexed analysis chain is
checked for the presence of a StopWordFilter class and, if found, then
ignoreStopWords is true if unspecified. If we do not have StopWordFilter
configured, we can safely ignore this parameter.

Most of the standard parameters that work with Solr also work here. For example,
we have used wt=json here. We can also use echoParams, rows, fl, and other
parameters during tagging.

Summary
We explored text tagging with the help of Lucene and Solr in this chapter. We
understood what FSTs are and how they are implemented in Lucene. We also went
through some well-known text tagging algorithms and got a brief idea of how text
tagging is implemented in Solr. We explored the SolrTextTagger package by
installing it as a module in Solr and saw some examples of text tagging using
this package.

This is the last chapter in this book. In our journey throughout this book, we
went through Solr indexing internals where we saw the roles of analyzers and
tokenizers in index creation. We also saw multi-lingual search and discussed the
challenges in large-scale indexing and the solutions to these problems. We then saw
how Solr's scoring algorithm can be tweaked and customized. We discussed some
existing algorithms and concept scoring algorithms. In the next chapter, we explored
Solr internals and learnt how the relevancy scoring algorithm works on the inverted
index. We delved into the query parsers available in Solr and implemented a Solr
plugin for performing proximity search.

Next, we moved on to use cases, where we saw how Solr can be used for analytics and
big data processing and for creating graphs. We saw an example of the use of Solr in
e-commerce and discussed the relevant problems and solutions. Then, we explored
the use of Solr for spatial search. We discussed in depth the geospatial search plugin
available with Solr. We went through the problems faced during the implementation
of Solr in an advertising system and discussed some solutions to the same.

In the advanced stage, we covered AJAX Solr, an asynchronous library available
for executing queries in Solr from the browser. We discussed its features and
advantages. We also went ahead and configured SolrCloud. We saw how SolrCloud
addresses the problems in horizontal scalability by providing distributed indexing
and search. SolrCloud can also be used as a NoSQL database. Finally, we learnt how
text tagging can be performed using Solr and Lucene's FST library.

www.it-ebooks.info

http://www.it-ebooks.info/

[287]

Index
A
AbstractWidget base class

afterRequest 201
beforeRequest 201
init 201

ad distribution system
architecture 171-174
functionalities 169-171
requisites 174

ad distribution system, performance
improvements

application cache 184
documentCache 180, 181
fieldCache 177, 178
fieldValueCache 179
filterCache 181, 182
garbage collection (GC) 184
queryResultCache 182, 183

ad distribution system, requisites
about 174
listing ad, schema 175
targeted ads, schema 176

AJAX 191
AJAX Solr

about 192
architecture 193-195
facets, adding 210-212
features 193
Manager controller 193, 196-198
pagination, adding 213
parameters 198
ParameterStore model 193, 198
performance, tuning 219

result, displaying 206-210
tag cloud, adding 214-218
talking to 203-205
widgets 193
working with 201-203

analyzers
about 7-13
URL 12

AND clause
working 54-58

API documents
URL 37

ASM 4.2
URL 76

asynchronous calls
running 258-260

available parameters, ParameterStore
model 198, 199

B
BBoxField field type 148
bbox query 153-158
Best Matching (BM25 similarity) 44-47
big data

about 80, 81
velocity 80
veracity 80
volume 80

Boolean model 30
bounding box filter 90, 92
BRS queries

using 66

www.it-ebooks.info

http://www.it-ebooks.info/

[288]

C
centralized configuration, SolrCloud 224
chart.js

URL 98
Click Through Rate (CTR) 174
commit

strategy, planning 25, 26
ConcurrentUpdateSolrServer class

URL 24
used, for indexing 24

conflict resolution 264
Cost Per Aquision (CPA) 170
Cost Per Click (CPC) 170
curl

URL 283
customer scorer

building 32-38

D
D3.js

URL 98
Damerau-Levenshtein distance 274
data analysis

used, for pivot faceting 94-98
data model 264
data points

getting, facets used 81-84
Denial of Service (DoS) 196
DFR similarity

about 48, 49
URL 49

DisMax (disjunction Max) 58
distance function queries

about 92
dist 92
geodist 92
hsin 92
sqedist 92

distance sort 158-161
distributed indexing 26, 238-241
distribution model 264
documentCache 180, 181
documents

migrating, to another collection 260, 261
routing, to particular shard 242-247

E
e-commerce search

designing 107-112
problem statement 19-21

eDisMax query parser (extended
disjunction max)

about 58
filter queries 64-66
minimum should match parameter 62, 63
working 58-61

edit distance 273
eventual consistency

about 265
URL 265

exposed parameters, ParameterStore
model 199

F
facets

adding 210-212
field faceting 84, 85
for display size 82
for internal memory 83
for price and discount 83
query faceting 86-88
range faceting 86-88
used, for getting data points 81, 82
with hierarchical taxonomy 127-130
with multi-select option 123-127
with size 130

fault tolerance 249, 250
fieldCache 177, 178
field faceting 84, 85
fieldValueCache 179
file types, index 5-7
filterCache 181, 182
filter queries 64-66
filters

about 7-13
URL 12

Finite State Machine (FSM) 267-269
Finite State Transducer (FST)

about 267-269
implementing, in Lucene 269-271
URL 269

www.it-ebooks.info

http://www.it-ebooks.info/

[289]

flash sale searches
problems 121, 122
solutions 121, 122

fuzzy string matching algorithm 272, 273

G
Garbage Collection (GC) 184
geofilt filter 89
Geohash

about 163-167
URL 165

geospatial search 140
geotagging 269
Git

URL 194
Google charts

URL 98
graphs

displaying, for analytics 98

H
hierarchical taxonomy

faceting with 127-130
high availability, SolrCloud 249, 250
Highcharts

about 98-102
URL 98, 99
used, for displaying Solr data 102- 106

HttpSolrServer
URL 23

I
indexing

ConcurrentUpdateSolrServer class,
using 24

Java binary format, using 23
maxBufferedDocs property 24
mergeFactor 25
multiple threads, using 22
ramBufferSizeMB property 24
Solr configuration changes 24, 25
useCompoundFile property 24

information gain model
about 42
implementing 43, 44

inverted index
about 2
scorer, working 52, 53

J
Java Topology Suite (JTS)

about 143
library, URL 146

job site
problem statement 21

jQuery
URL 195

L
large-scale indexing

challenges 22
LatLonType field type 145
Levenshtein distance algorithm 273, 274
Lucene

FST implementation, URL 270
FST, implementing 269-271
FST operations 271
URL 7

Lucene 4 spatial module
about 145
BBoxField 145, 148
LatLonType 145
PointType 145
SpatialRecursivePrefixTreeFieldType

(RPT) 145-148

M
Manager controller 196-198
minimum should match parameter

(mm parameter)
multiple conditions 63
negative integer 62
negative percentage 62
percentage 62
positive integer 62
positive integer (> or <) percentage 62

multilingual search
handling 13-17

multi-select option
faceting 123-127

www.it-ebooks.info

http://www.it-ebooks.info/

[290]

N
Natural Language Processing (NLP) 267
Near Real Time Indexing and Search

(NRT) 21
nodes

adding, to SolrCloud 247-249
NoIDFSimilarity class 32
NoSQL database

conflict resolution 264
considerations 264
data model 264
distribution model 264
features 265

O
optimizations, Solr 136, 137
OR clause

working 54-58

P
pagination

adding 213
Parameter class

local attribute 198
parseString attribute 199
parseValueString attribute 199
remove attribute 198
string attribute 198
val attribute 198
valueString attribute 199

ParameterStore model
available parameters 198
exposed parameters 198
ParameterHashStore class, using 200
ParameterStore class, extending 200

parboiled library
URL 71

parboiled parser
creating 69-74

Parsing Expression Grammar
(PEG) parsers

about 69
parser actions 70
ParseRunner class 71

parse tree 70
value stack 70

pivot faceting
used, for data analysis 94-98

PointType field type 145
PrefixTree field

options 147, 148

Q
Quadtree

about 162
data, inserting 162
data, searching 163

query faceting 86-88
query parser

custom query parser, building 67
queryResultCache 182, 183

R
radius faceting

about 93, 94
bounding box filter 90, 91
distance function queries 92
for location-based data 89
geofilt filter 89
rectangle filter 92

range faceting 86-88
rectangle filter 92
Redis

Solr, merging with 185-189
relevance calculation algorithm 30, 31
replicas 223
reuters index 202

S
scorer

on inverted index, working 52, 53
scoring algorithm

URL 31
search 238-241
search results, quality measurement

precision 17
recall 17-19

semantic search
implementing 130-136

www.it-ebooks.info

http://www.it-ebooks.info/

[291]

shards
about 223
deleting 255
documents, routing 242-247
moving, to new node 256, 257
splitting 251-254
splitting, based on key 257, 258

size
faceting with 130

Solarium 103
Solid State Drive (SSD) 26
Solr

data displaying, Highcharts used 102-106
features 140, 141
indexing 2-7
merging, with Redis 185-190
ResponseWriter 186
SearchComponent 186
SWAN plugin, integrating 75
Tomcat, setting up 231-238
used, for implementing text

tagger 276-286
used, for text tagging 275

SolrCloud
architecture 222, 223
centralized configuration 224
fault tolerance 249-251
high availability 249, 250
monitoring 262, 263
nodes, adding 247-249
setting up 224
setting up, in production 229
sizing 262, 263
test setup, creating 224-228
Tomcat, setting up with Solr 231-238
using, as NoSQL database 264, 265
Zookeeper ensemble, setting up 229, 230

SolrCloud solution
about 26-28
collection 27
leader 27
shard 27

Solr end
URL 38

SolrJS 191

Solr plugins
building, for SWAN queries 74, 75
URL 17

Solr query interface
URL 33

sorting 118-121
Spatial4j library 144
spatial index

bbox query 152-158
filtering 152
searching 152

SpatialRecursivePrefixTreeFieldType (RPT)
about 145
advantages 145
options 146, 147

spatial search
features 140
indexing for 148-151
Java Topology Suite 143
Spatial4j library 144
Well-known Text (WKT) 144

stemmers 12
Stock Keeping Unit (SKU) 109
SWAN plugin

integrating, on Solr 75
SWAN queries

Solr plugin, building 74
used, for proximity search 67, 68

T
tag cloud

adding 214-218
Term Frequency-Inverse Document

Frequency (TF-IDF)
about 13
BM25 similarity 44-48
DFR similarity 48, 49
drawbacks 38-41

test setup
creating, for SolrCloud 224-228

text tagging
algorithms 272
implementing, Solr used 276-285
Solr used 275

www.it-ebooks.info

http://www.it-ebooks.info/

[292]

text tagging, algorithms
Damerau-Levenshtein distance 274
fuzzy string matching algorithm 272, 273
Levenshtein distance algorithm 273, 274

tokenizers
about 2, 7-13
URL 12

Tomcat
setting up, with Solr 231-238

Tomcat environment, variables
MaxTenuringThreshold 185
SurvivorRatio 184
TargetSurvivorRatio 185
UseConcMarkSweepGC 184
UseParNewGC 184

Trie structure
URL 163

U
unclean data

handling 112-114

V
variations

in product, handling 115-118
Vector Space Model (VSM) 30
VirtualBox 235

W
Well-known Text (WKT) 144
widgets

about 201
AbstractFacetWidget 201
AbstractSpatialWidget 201
AbstractSpellcheckWidget 201
AbstractTextWidget 201
id parameter 201
PagerWidget 201
target parameter 201

Z
Zookeeper ensemble

about 224
setting up 229, 230
URL 229

www.it-ebooks.info

http://www.it-ebooks.info/

Thank you for buying
Apache Solr Search Patterns

About Packt Publishing
Packt, pronounced 'packed', published its first book, Mastering phpMyAdmin for Effective
MySQL Management, in April 2004, and subsequently continued to specialize in publishing
highly focused books on specific technologies and solutions.
Our books and publications share the experiences of your fellow IT professionals in adapting
and customizing today's systems, applications, and frameworks. Our solution-based books
give you the knowledge and power to customize the software and technologies you're using
to get the job done. Packt books are more specific and less general than the IT books you have
seen in the past. Our unique business model allows us to bring you more focused information,
giving you more of what you need to know, and less of what you don't.
Packt is a modern yet unique publishing company that focuses on producing quality,
cutting-edge books for communities of developers, administrators, and newbies alike.
For more information, please visit our website at www.packtpub.com.

About Packt Open Source
In 2010, Packt launched two new brands, Packt Open Source and Packt Enterprise, in order
to continue its focus on specialization. This book is part of the Packt Open Source brand,
home to books published on software built around open source licenses, and offering
information to anybody from advanced developers to budding web designers. The Open
Source brand also runs Packt's Open Source Royalty Scheme, by which Packt gives a royalty
to each open source project about whose software a book is sold.

Writing for Packt
We welcome all inquiries from people who are interested in authoring. Book proposals should
be sent to author@packtpub.com. If your book idea is still at an early stage and you would
like to discuss it first before writing a formal book proposal, then please contact us; one of our
commissioning editors will get in touch with you.
We're not just looking for published authors; if you have strong technical skills but no writing
experience, our experienced editors can help you develop a writing career, or simply get some
additional reward for your expertise.

www.it-ebooks.info

www.packtpub.com
http://www.it-ebooks.info/

Scaling Apache Solr
ISBN: 978-1-78398-174-8 Paperback: 298 pages

Optimize your searches using high-performance
enterprise search repositories with Apache Solr

1.	 Get an introduction to the basics of Apache Solr
in a step-by-step manner with lots of examples.

2.	 Develop and understand the workings of
enterprise search solution using various
techniques and real-life use cases.

3.	 Gain a practical insight into the advanced
ways of optimizing and making an enterprise
search solution cloud ready.

Apache Solr High Performance
ISBN: 978-1-78216-482-1 Paperback: 124 pages

Boost the Performance of Solr instances and
troubleshoot real-time problems

1.	 Achieve high scores by boosting query time
and index time, implementing boost queries
and functions using the Dismax query parser
and formulae.

2.	 Set up and use SolrCloud for distributed
indexing and searching, and implement
distributed search using Shards.

3.	 Use GeoSpatial search, handling
homophones, and ignoring listed
words from being indexed and searched.

Please check www.PacktPub.com for information on our titles

www.it-ebooks.info

http://www.it-ebooks.info/

Instant Apache Solr for Indexing
Data How-to
ISBN: 978-1-78216-484-5 Paperback: 90 pages

Learn how to index your data correctly and create
better search experiences with Apache Solr

1.	 Learn something new in an Instant! A
short, fast, focused guide delivering
immediate results.

2.	 Take the most basic schema and extend it to
support multi-lingual, multi-field searches.

3.	 Make Solr pull data from a variety of
existing sources.

Apache Solr Beginner's Guide
ISBN: 978-1-78216-252-0 Paperback: 324 pages

Configure your own search engine experience
with real-world data with this practical guide
to Apache Solr

1.	 Learn to use Solr in real-world contexts, even
if you are not a programmer, using simple
configuration examples.

2.	 Define simple configurations for searching data
in several ways in your specific context, from
suggestions to advanced faceted navigation.

3.	 Teaches you in an easy-to-follow style, full
of examples, illustrations, and tips to suit
the demands of beginners.

Please check www.PacktPub.com for information on our titles

www.it-ebooks.info

http://www.it-ebooks.info/

	Cover
	Copyright
	Credits
	About the Author
	About the Reviewers
	www.PacktPub.com
	Table of Contents
	Preface
	Chapter 1: Solr Indexing Internals
	The job site problem statement – Solr indexing fundamentals
	Working of analyzers, tokenizers and filters
	Handling multilingual search
	Measuring the quality of search results
	The E-commerce problem statement
	The job site problem statement
	Challenges of large-scale indexing
	Using multiple threads for indexing on Solr
	Using Java binary format of data for indexing
	Using the ConcurrentUpdateSolrServer class for indexing
	Solr configuration changes that can improve indexing performance

	Planning your commit strategy
	Using better hardware
	Distributed indexing

	The SolrCloud solution
	Summary

	Chapter 2: Customizing the Solr Scoring Algorithm
	Relevance calculation
	Building a custom scorer
	Drawbacks of the TF-IDF model
	The information gain model
	Implementing the information gain model
	Options to TF-IDF similarity
	BM25 similarity
	DFR similarity

	Summary

	Chapter 3: Solr Internals and Custom Queries
	Working of a scorer on an inverted index
	Working of OR and AND clauses
	The eDisMax query parser
	Working of the eDisMax query parser
	The minimum should match parameter
	Working of filters

	Using BRS queries instead of DisMax
	Building custom query parser
	Proximity search using SWAN queries
	Creating a parboiled parser
	Building a Solr plugin for SWAN queries
	Integrating the SWAN plugin in Solr

	Summary

	Chapter 4: Solr for Big Data
	Introduction to big data
	Getting data points using facets
	Field faceting
	Query and range faceting

	Radius faceting for location-based data
	The geofilt filter
	The bounding box filter
	Rectangle filter
	Distance function queries
	Radius faceting

	Data analysis using pivot faceting
	Graphs for analytics
	Getting started with Highcharts
	Displaying Solr data using Highcharts

	Summary

	Chapter 5: Solr in E-commerce
	Designing an e-commerce search
	Handling unclean data
	Handling variations in the product
	Sorting
	Problems and solutions of flash sale searches
	Faceting with the option of multi-select
	Faceting with hierarchical taxonomy
	Faceting with size
	Implementing semantic search
	Optimizations
	Summary

	Chapter 6: Solr for Spatial Search
	Features of spatial search
	Java Topology Suite
	Well-known Text
	The Spatial4j library

	Lucene 4 spatial module
	SpatialRecursivePrefixTreeFieldType
	BBoxField (to be introduced in Solr 4.10)

	Indexing for spatial search
	Searching and filtering on a spatial index
	The bbox query

	Distance sort and relevancy boost
	Advanced concepts
	Quadtree
	Indexing data
	Searching data

	Geohash

	Summary

	Chapter 7: Using Solr in an Advertising System
	Ad system functionalities
	Architecture of an ad distribution system
	Requirements of an ad distribution system
	Schema for a listing ad
	Schema for targeted ads

	Performance improvements
	fieldCache
	fieldValueCache
	documentCache
	filterCache
	queryResultCache
	Application cache
	Garbage collection

	Merging Solr with Redis
	Summary

	Chapter 8: AJAX Solr
	The purpose of AJAX Solr
	AJAX Solr architecture
	The Manager controller
	The ParameterStore model
	Available parameters
	Exposed parameters
	Using the ParameterHashStore class
	Extending the ParameterStore class

	Widgets

	Working with AJAX Solr
	Talking to AJAX Solr
	Displaying the result
	Adding facets
	Adding pagination
	Adding a tag cloud

	Performance tuning
	Summary

	Chapter 9: SolrCloud
	SolrCloud architecture
	Centralized configuration
	Setting up SolrCloud
	Test setup for SolrCloud
	Setting up SolrCloud in production
	Setting up the Zookeeper ensemble
	Setting up Tomcat with Solr

	Distributed indexing and search
	Routing documents to a particular shard
	Adding more nodes to the SolrCloud
	Fault tolerance and high availability in SolrCloud
	Advanced sharding with SolrCloud
	Shard splitting
	Deleting a shard
	Moving the existing shard to a new node
	Shard splitting based on key

	Asynchronous calls
	Migrating documents to another collection
	Sizing and monitoring of SolrCloud
	Using SolrCloud as a NoSQL database
	Summary

	Chapter 10: Text tagging with Lucene FST
	Overview of FST and text tagging
	Implementation of FST in Lucene
	Text tagging algorithms
	Fuzzy string matching algorithm
	The Levenshtein distance algorithm
	Damerau–Levenshtein distance

	Using Solr for text tagging
	Implementing a text tagger using Solr
	Summary

	Index

